

FINAL

REMEDIAL INVESTIGATION REPORT FOR THE VASQUEZ-BOULEVARD AND I-70 SUPERFUND SITE OPERABLE UNIT 03 (ARGO SMELTER) DENVER, COLORADO

APPENDICES

September 2007

Prepared for, and with oversight by:

U.S. Environmental Protection Agency Region 8 Denver, Colorado

With Technical Assistance From:

Knight Piésold and Co. 1050 17th Street, Suite 450 Denver, CO 80265

and

Syracuse Research Corporation 999 18th Street, Suite 1975 Denver, CO 80202

FINAL

REMEDIAL INVESTIGATION REPORT FOR THE VASQUEZ-BOULEVARD AND I-70 SUPERFUND SITE OPERABLE UNIT 03 (ARGO SMELTER) DENVER, COLORADO

APPENDICES

- A Sample Station Coordinates
- B Soil Boring Logs
- C Summary of Analytical Results
- D Data Validation Reports
- E Data Quality Assessment
- F Nature and Extent of Soil Contamination
- G Nature and Extent of Groundwater Contamination
- H Nature and Extent of Off-Site Groundwater Contamination
- I Groundwater Migration
 - II Influence of I-25 on Groundwater Flow Towards the South Platte River
 - 12 Screening Level Estimates of Metal Loading to the South Platte
- J Well Data

APPENDIX A

SAMPLE STATION COORDINATES

Table A-1. VBI70 OU3 Phase I Investigation Sample Station Locations

STATION	COORD	INATES	ELEVATION
	Northing	Easting	(ft)
1	1710693.49	3142187.28	5215.19
2	1710635.21	3142349.27	5214.31
3	1710392.16	3141890.09	5220.95
4	1710484.04	3141922.36	5220.78
5	1710423.24	3142027.79	5218.74
6	1710476.89	3142327.24	5214.80
7	1710398.27	3142342.15	5215.17
8 .	1710421.52	3142523.78	5215.62
9	1710510.04	3142557.99	5214.04
10	1710180.98	3141736.81	5216.37
12	1710259.54	3141863.27	5220.76
13	1710303.44	3141862.73	5220.19
14	1710323.33	3142078.68	5220.16
15	1710323.38	3142324.47	5215.68
16	1710177.66	3142061.28	5222.64
17	1710183.81	3142285.96	5221.34
18	1710162.77	3142369.35	5220.63
19	1710142.76	3141846.31	5222.27
20	1710123.53	3141924.92	5222.73
21	1710072.07	3142250.95	5222.03
22	1710101.85	3142575.98	5217.51
23	1709967.00	3142630.42	5199.82
24	1709776.56	3141864.92	5219.36
25	1709724.64	3141959.37	5220.99
26	1709810.75	3142661.14	5197.93
. 27	1709505.38	3142154.89	5225.04
28	1710885.48	3141388.12	5216:12
29	1710640.99	3141410.43	5216.99
30	1709784.10	3141430.70	5221.54
31	1709530.36	3141412.83	5224.38
32	1710598.25	3142818.46	5214.01
33	1710284.93	3143031.77	5198.94
34	1710567.65	3143284.37	5200.47
35	1710798.60	3143964.16	5177.70
36	1710363.75	3143985.59	5175.37
37	1709846.85	3143935.42	5169.93

Colorado State Plate Coordinate System of 1983(92), Central Zone, US Survey Feet Surveyed by Foresight West Surveying, Inc., January 2004

Table A-2. VBI70 OU3 Phase I Investigation Round 2 Monitoring Well Locations

STATION	COORE	INATES	ELEVATION [1]
STATION	Northing	Easting	(ft)
MW-32	1710581.51	3142892.43	5207.93
MW-33	1710322.68	3143032.19	5199.18
MW-34	1710567.32	3143346.23	5200.06 [2]
MW-35	1710792.03	3143934.39	5178.74
MW-36	1710364.20	3143986.44	5175.32

^[1] Elevation at Rim

Colorado State Plate Coordinate System of 1983(92), Central Zone, UŞ Survey Feet Surveyed by Foresight West Surveying, Inc., May 2004

^[2] Elevation is top of lid (MW-34 lid is locked)

Table A-3. VBI70 OU3 Phase I Investigation Round 3 Sample Locations

STATION	COORE	DINATES	ELEVATION [1]
STATION	Northing	Easting	(ft)
GW-15	1711586.17	3145499.59	5150.60
GW-16	1710824.50	3145105.10	5145.57
GW-17	1711543.04	3145086.76	5151.09
GW-46	1710135.04	3144651.31	5147.85
PS-1	3143762.56	1708507.98	1573.00
PS-2	3143856.68	1708465.89	1564.00
PS-3	3143973.36	1708509.17	1570.00
PS-4	3144226.05	1708559.04	1566.00
PS-5	3144473.58	1709519.96	1572.00
PS-6	3144361.02	1709543.36	1570.00
PS-7	3144290.65	1709561.18	1566.00
SW-1	3143248.27	1710848.51	1589.00
SW-2	3143946.16	1710840.41	1589.00

^[1] Elevation at rim (for GW-15 through GW-46), otherwise ground elevation.

Colorado State Plate Coordinate System of 1983(92), Central Zone, US Survey Feet.
Stations GW-15 through GW-46 surveyed by Foresight West Surveying, Inc., December 2004.
Station PS-1 through PS-7 and SW-1 and SW-2 locations recorded using GPS by Knight Piesold and Co., March and May 2005.

APPENDIX B

BORING LOGS

this page left intentionally blank

ROUND 1 BORING LOGS DECEMBER 2003

this page left intentionally blank

		BORING		<u>-</u>			AR & ASSO		
Project			& I-70	N .			Boring No: 1		Sheet 1 of 1
Boring Driller:		tion: SEE S			FCT F		Completion Date: NORTHING		2/19/03 ASTING
Logged		CA.		7Pe. DIKI		Water Depth: Not Encountered			142187.28
			· .						
		,	CORE		,			Ŧ	
Depth. feet	EXTENT % RECOVERY	1 710	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION		CONTACT DEPTH	FIELD NOTES
°		-0001B		$\bigvee\bigvee$	FILL	ASPHALT 0-4" ABOVE GRAVELLY,	CLAYEY SAND	s	AMPLE AT 4"
4-	0-5	-0001C				WEATHERED CLAYSTONE, MEDIUM 5Y 5/1, MOIST, LENSES OF SAND FROM 10" TO 6' 2" LAYER OF WHITE MINERLIZATION	OLIVE GRAY DY CLAYSTONE	<u>.</u>	AMPLE AT 1'6"
6 –		-0001D				AT 3'-10"			
8 –	5-10 80		·		cs			S	AMPLE AT 5°10
10-						MINOR IRONSTAINING FROM 10" T STIFFENS WITH DEPTH	0 15		
12 -	ω_					•		-	
	10-15								
14 -						BORING TERMINATED AT 15' BGS.		ည်	
16						·			
.	.	1							
18 –		1.							
00	-								
20-									
22 –						. •			
24 -									
26 -									
28 -									
30		:							
32 –						QC SAMPLES:			•
34 -		-0001A RIN-0005				PE SOIL 1-5 RINSEATE BLANK			

				<u> </u>			,							
	S	IIC		BORING	LOC	¥				KUN	MAR & ASS	CI	ATES	
	ject				k I−70				Project No.	03-1-411		2	Sheet	
_				on: SEE S					Start Date:	12/12/03		e:	12/12/	03
	ller:			TEVE ENS		Type: DiRt	CI I	-02H	Ground Elev: Water Depth:	5214.31	NORTHING		EASTING 3142349	27
100	1000	Бу.		<u> </u>					water Depin:	tor Encountere	0 1710000.21		0172075	.27
	- 71								···			·	,	
			_T	SOIL	CORE	,	, 1					DEPTH	.	
1		EXTENT	¥	Laboratory Sample ID	PID Reading (ppm)	ي	S		DF	SCRIPTION		•	FIE	חו
1	Depth, feet		9	pratiple ple	p m	Graphic Log	U.S.C.S					ACT	TON	
"	۾ ۾		쉳	abc Sam	و و	5	5					CONTACT	1	
-	0-1		8	0002A	<u>a</u>	<u> </u>						् ठ	ļ	· ·
			ĺ	UUUZA		$\times \times$	FILL	ASP	HALT 0-4" 0\	ER GRAVELLY	SANDY CLAY		SAMPLE	AT 4"
	2 -	S				X	1		•		•	ļ		
1		0-5	ĕ									2"		
	4						sc		YEY SAND, MO R 8/3 TO BRO				SAMPLE	AT 4°
		H	_	0002B		Y		.0.1	י טיים וה פער	WIN TOTA U	~			
1	6 -										•	8	1	
		9										5]	
1	8 -	7	2				cs		THERED CLAYS		OLIVE GRAY		SAMPLE	AT 8'3"
Ì			-	0002C				5Y :	5/1 STIFFENS	WITH DEPTH			Johann EE	A. 5 G
10	0	$\vdash \vdash$	\dashv			:		•						
ł	- }	4	1				, ,	SAN	DSTONE, CLAY	EY. WEAKLY (CEMENTED.	-	-	
12	2 -	1	2 -	0002D		•		OCC	ASIONAL DECO	MPOSED GRAY	VEL, MICACEOUS	=		
	Ì	2					SS		NITIC GRAINS, R 8/3 MINOR		LIGHT BROWN		SAMPLE	AI 12"
14	4 -	\vdash	4			A			14'			-	1	
	j					A	j	REFU	JSAL AT 14' I	BELOW GROUN	D SURFACE.	4		
16	6 –		1			REFUSAL				•				
						REFUSAL					•			
18	8 –													
			-			1				•	•			
20	0-										·		1	
		1							• •					
2:	2 -											1		
ł						1								
24	4 -													
1														
20	6 -									•				
	1								•			.	}	
25	8 -													
														•
30	0								٠.					
ľ	_													
7.	2 -													
۵,								oc	SAMPLES:					
١.					1				SOIL 1-1					
1 3	4 -		r	0002E		1						1	}	
_					Í	†							1	
30	ر ہ	<u> </u>					·							

St)][.	BORING	1.00	•	-	KUMAR & ASSOCIATES
				<u>-</u>		
				N.		
Driller:		ZACK ENS			ECT	
Logged	Ву:	CA.	j			Water Depth: Not Encountered 1710392.16 3141890.09
		·				
Depth, feet		710	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION DESCRI
٥					FILL	LL ASPHALT 0'-4" ABOVE GRAVELLY CLAYEYS AND SAMPLE AT 2"
			,		İ	ABOVE APPROXIMATELY 5" OF SLAG, CINDER,
2 -	50	-0003B				SAMPLE AT 2'
	2					
• 7		00030				WEATHERED OLAVETONE (CAMPETONE OLIVE
6	Computed Continue SEE SITE PLAN Start Date: 12/18/03 Computed Continue C					
	Topical Name: VB & i-70					
8 -	5-1 75	-				
10-						
	111100	-0003D	'		ss	ASSAULTION OF THE STATE OF STATE AND STATE OF THE STATE O
12		,		A		
-		}				LIGHT BROWN 10YR 8/3 DRILLER REENTE
14 -				REFUSAL		
1						
16 —						
18 –						
20—						
22 –						
24 -].			
26 –						
Project Name: VB & 1-70						
30	Sound Core Set Site Plan Start Dole 12/18/03 Corpletion Date 12/18/03					
	Topic Name: VB & 1-70 Project No. 03-1-41 Boring No: 3 Sheef 1 of 1					
32 –	Sound Coulons SEE SITE PLAN Stert Dote: 12/18/03 Completion Dote: 12/18/03 Signed By: CAJ Sound Elev: 5220.95 NORTHING SOUL CORE					
1	SOIL CORE					
34 -			[
]			
36 –J	ш	i	<u> </u>			

											
<u>SC</u>	H	. E		G LOG	! 				AR & ASSO	CI	ATES
Project				& I-70			Project No.	03-1-411		4	Sheet 1 of 1
	Loc	atio	1: SEE ENS	SITE PLA		CT DUC	Start Date:	12/18/03	Completion Date	e:	12/18/03
Driller: Logged	D.		ENS CA		Type: Dik:	CI PUS	Water Depth:	5220.78 11 BGS	1710484.04	•	EASTING 3141922.36
Logged	Бу	<u> </u>		<u> </u>			water bepitt.	11 000	17710404.04		
	Ĺ,		SOI	CORE						DEPTH	
	EXTENT	E 18	Laboratory Sample ID	Reading (ppm)	O	S	DE	SCRIPTION		띨	FIELD
Depth, feet	EN	ဂ္ဂ	pra Pia	P G C	Graphic Log	U.S.C.S		SOM HOW		Ş	NOTES
چ ۾	ă	2	abc mps	64 9	Gre L	ا د				CONTACT	
0-7		*	004A	<u> </u>					· · · · · · · · · · · · · · · · · · ·	10	CANDIE AT AT
		Γ'	UUAA		XX				ABOVE CLAYEY		SAMPLE AT 1"
2 -	ŵ						ND WITH CINDE OVE CLEAN SAM		CK FROM 1"-4',		WOOD AT 10' TO
	0-5	∞			$\langle \times \rangle$		AYEY SAND FRO				10'6"
4 -					$\langle \rangle \langle \rangle$	SL 10	AG, BRICK FROM '-11'6"	4 7'6"-11".W	ET FROM		CHARCOAL AT 10'6' TO 11'
6		-0	004B		$\langle \rangle \langle \rangle$	FILL					SAMPLE AT 6'
	0				XX				,		
8 -	5-10	35			$\times\!\!\times$						
10		ا_0	004C		$\times \times$						SAMPLE AT 10'
					$\langle X \rangle$	_ wi	ATHERED CLAYS	TONE, SATUR	ATED FROM		
12 -	-15	8				고 11	'6" TO 16' LIG	HT OLIVE BRO	WN 5Y 5/6	=	
14	2					cs					
,	7	\dashv				н	SHLY WEATHERE	D IN ZONE O	F 11'-15'		SAMPLE AT 15'6"
16 -	15-1	0 [3	004D				LOR IS BROWNI OWN 10YR 6/3		OYR 6/8 TO		. SAMPLE AT 150
18 –					A	RE	FUSAL AT 17' I	BELOW GROUN	D SURFACE	17	
20					REFUSAL						
20-		}									
22 -											
1											
24 -											
26 —							· ·				
28 -									•		
30—											
									-		
32 -		1				_					
34						GF GF	TERED AND UNI OUNDWATER SA OUNDWATER QU MPLE PE 7-A.	MPLES COLLE			
36	Ш					<u>L_</u>		 			<u> </u>

												· · · · · · · · · · · · · · · · · · ·			
S	0	L	BOR	ING	LOC	j_				K	UM.	AR & ASSO	CL	ATES	
Project	_				: I-70				Project No.	03-1-		Boring No:		Sheet 1 of	1
	_	oca	tion: S						Start Date:	12/18/		Completion Date	_	12/18/03	
Driller:			ZACK	CAJ	Rig	Type: DIKI	ECI		Ground Elev			NORTHING 1710423.24		EASTING 3142027.79	
Logged	- (y:		CAJ					water Depth	: NOT ENCOUR	iered	1710423.24	-	3142027.79	
					-										
	L			SOIL			T	7					DEPTH		
_		RECOVERY	Laboratory	₽	Reading (ppm)	0	S	ļ	1	DESCRIPTION	,		DE	FIELD	
Depth, feet	1		, p	a	p m C	Graphic Log	U.S.C.S		Į.	DESCRIPTION			Ş	NOTES	
f e	2	기문	육	Ē	ے ج	S_	U.S	1					CONTACT		
0-	┸	Ж	'		014 							· · · · · · · · · · · · · · · · · · ·	ျ		. 17
			-0005/ -0005E				FILL	ASPH ABOV	ALT 0'1" A	BOVE 3" OF SLAG, BRICK	CLA FRO	AYEY SAND DM 4" TO 10"	10"	SAMPLE AT SAMPLE AT	10"
2 -	2	65				./	SC	CLAY	EY SAND. F	INE-MEDIUM	. LIG	HT BROWN			•
4-							1	10YR	8/3 MOIST	•					
6 -	a	25	-00050			_			•	WEATHERE!		-		SAMPLE AT	6'
8 –	4) -	100030		· 	•	ss	STIFF	ENS BELOW	RED SANDST 6'6", LIGH SH YELLOW	T BR	OWN 10YR	8,6'8"		
						A		MICAC	CEOUS			, o, o,	8		
10-						REFUSAL		REFU	SAL AT 8'	BELOW GRO	DND	SURFACE			
12 -															
14-									•						
16 -	ľ							:							
,,,					•										
18 –															
20—															
22 -															
24 -															
~~															
26 –															
28 -															
30—								}							
32 -					•										
									SAMPLES: OIL 1-3			,			
34 -			-00050)								٠			
36	L		<u> </u>					<u>L</u>	· · · · · · · · · · · · · · · · · · ·				Ш	L	

KUMAR & ASSOCIATES SOIL BORING LOG Project Name: VB & 1-70 Project No. 03-1-411 Boring No: Sheet 1 of 1 Boring Location: SEE SITE PLAN 12/12/03 12/12/03 Start Date: Completion Date: Rig Type: DIRECT PUSH Ground Elev: 5214.80 EASTING Driller: STEVE ENS NORTHING 1710476.89 3142327.24 Logged By: Water Depth: 6" OF SATURATED FILL AT 6" SOIL CORE Reading (ppm) EXTENT RECOVERY Laboratory Sample 1D Graphic Log DESCRIPTION FIELD CONTACT NOTES P.O. ASPHALT 0'4", OVER GRAVELY SAND, WITH CINDER, SLAG AND BRICK FRAGMENTS SAMPLE AT 6" -0006A 2 -35 6" OF SATURATED FILL ABOVE CS BLACK AND **ORANGE STAINING** -00068 6 WEATHERED CLAYSTONE, HIGHLY WEATHERED SAMPLE AT 5' 0006C%D FROM 6' TO 10', MOIST TO VERY MOIST, LIGHT OLIVE BROWN 5Y 5/6 8 -10-STIFFENS BELOW 10', ALSO SLIGHTLY MOIST SAMPLE AT 7' BELOW 10' 10-15 12 -CS 14 BROWNISH YELLOW 10YR 6/8 BETWEEN 16' & 17'6" OLIVE GRAY 5Y 4/1 BELOW 17'-6" 16 -15-19 125 18 -REFUSAL AT 19' BELOW GROUND SURFACE 20-REFUSAL 22 24 26 -28 30-32 -34 36

										
<u>s</u>	SC)[L	BORING	G LOC	3		KUMAR &	& ASSOC	IATES
Projec	:t	No	m	e: VB	& I-70			Project No. 03-1-411 Borin	g No: 7	Sheet 1 of 1
Boring	_	Lo			SITE PLA				letion Date:	12/12/03
Driller	_	_	_	ZACK ENS		Type: DIR	ECT		HING	EASTING
Logge	d	Ву	<u>/:</u>	CA	<u>'1</u>			Water Depth: 10.8' BGS 1710	398.27	3142342.15
					CORE	1				EIEI D
		<u>-</u>	RECOVERY	Laboratory Sample ID	Reading (ppm)	<u> </u>	Ŋ	DESCRIPTION	12	FIELD
Depth,	5	EXTENT	00	orat Iple	Seg.	Graphic Log	U.S.C.S			NOTES
گ ۾	2	ĭ	RE	abc	64 9	5	=	·		NOTES
0	╗	'	Ж		<u> </u>	k ~ >	 			. اد
				00074		XX		ASPHALT 0-4" ABOVE, GRAVELLY SAND, C SLAG AT 4'10" TO 5'6", OVER SANDY CLA		
2	$\ \ $	เว	٥	-0007A		\times	1	CINDER, SLAG FROM 5'10" TO 6', OVER C	LAYEY	
		0-5	2			(X)	1	SAND DARK BROWN 10YR 3/3		j
4 -						XX				
				- 0007B		$\times \times$]			
6 –	1				ļ	(X, X, X)	FILL			
		5-10	0				k			
8 -		က်	2			$\times \times$				OVER SATURATED
						$\langle \mathcal{X} \rangle$			-	FILL FROM 6'-12'
10—		7		-0007C	1	$\langle \times \rangle$	=	GLASS FRAMENTS AT 10' CLAY, HEAVILY IF	RON	" " "
	П)			\times	=	STAINED FROM 10'6" TO 12'		
12 –		0-15	20			$\langle \cdot \rangle$	1	PLASTIC, ORGANIC, CLAY, ROOTS, FROM 12	TO 20'4"	7
		2	·	00070	ļ	 `		GRAY AND BLACK LAMINATIONS FROM 12°	TO 14'6"	
14 —				- 00070	}		}	OLIVE GRAY 5Y 4/1		ROOTS AT 14"
4.0					Ì		ОН			
16 —	$\ \ $	20			1		On	VEDY MOIST ON Y SHEEK ORGANIC ORGA	ļ	,
18 -	!!	5-2	6					VERY MOIST, OILY SHEEN, ORGANIC ODOR	1	
16		=								
20						``			L	_
		_		-0007E				. WEATHERED CLAYSTONE, LIGHT OLIVE GRAY	5 5 5 6 /1 E	7
22			75				cs	MOIST.	31 0/1	
		20	'							
24 —		_						REFUSAL AT 24" BELOW GROUND SURFACE	·	
						A				
. 26 —						955.55.1				
						REFUSAL				
28 -								•		1
30—										,
	$\ \ $			•				•	1	
32 –	$\ $				1.					
	$\ $									
34 —	$\ \ $							FILTERED AND UNFILTERED	•	
						<u> </u>		GROUNDWATER SAMPLE COLLECTED		1
36 -	1		Ш		<u> </u>	L	<u> </u>			<u> 1</u>

roject	Nar	ne:		& I-70				Project No.			Boring		3	Sheet		1
		oito	n: SEE S			- ~ ~		Start Date:				tion Date		12/12/	03	
Oriller: Logged			ENS CAJ		Type: Dist	LC1		Ground Ele Water Dept		5.62	NORTHI			EASTING 3142523	79	
-oggea	_ Бу:		CAL				l	water Dept	W: NOT ENC	ouniered	1171042	1.52	!	3142323	.76	
			SOIL	CORE									Ŧ			
Dapth. feet	EXTENT	- 1	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S			DESCRIPT	ION			CONTACT DEPTH	FIE NOT		
0			0008A		XX		ASPH/ SAND	ALT 0-3",	GRAVELLY S	SANDY CI	LAY TO (CLAYEY		SAMPLE	AT 3'	н
2 -	0-5	20			$\times\!\!\times$	FILL	CINDE	R, SLAG AN	ID BRICK F	RAMENTS	FROM 1	' то з'				
4-			98000		$\langle \rangle \langle \rangle$		DEACK	C II 11/0/						SAMPLE	AT 4	i
6	-10	3/0	08C		$\langle \times \rangle$		WEATH CLAYS	HERED CLAY	STONE, MO MOIST FRO	IST BROV	WN 10YR TO 8'	6/3	9,9	SAMPLE	AT 7)
8 -	Ġ.															
10-	S															
12 -	10-15	3						•								
16 -		$\frac{1}{1}$				cs										
18 -	15-20	3						·								
20—							SANDY	CLAYSTON	E FROM 17	' TO 18	,	•				
22 -	20-25	3														
24 -	50		0800C											SAMPLE	AT 2	4'
26 -							KLFUS	SAL AT 25'	RFFOM CK	JUND SU	IRF ACE		25,			
28 –					REFUSAL											
30-					:			·								
32 –																
34 -														-		

Project			RINC	& I-70		•		Project No.	03-1-4	111	Boring No:	9	Sheet	1 1 of 1
			SEE S					Start Date:	12/12/		Completion		12/1	
Driller:			E ENS			ECT		Ground Elev:	5214.0	4	NORTHING		EASTIN	
Logged	Ву:		CA	J				Water Depth:	Not Encoun	tered	1710510.04	<u> </u>	31425	57.99
·	,													
	 			CORE	· · · · · · · · · · · · · · · · · · ·	ı	ז					нгазо		•
	EXTENT	٠ ايا	Laboratory Sample ID	Reading (ppm)	.0	S		n	ESCRIPTION			ة ا	4	FIELD
Depth, feet	EXTENT	3	orat Iple	Sea.	Graphic Log	U.S.C.S		•	, , , ,			ACT	į ,	OTES
و ۵			da S	5 9	يق	5						TONTACT		
0-	3	e) -000		<u> </u>		_						-		E AT 3"
· []		[000	JA.		XX			LT 0–3", OVE LLY SANDY CI				.	SAMPL	L AI S
2 -	س .			l		1		L SIZE BRICK				1		
	0-5	ا و			(X)	FILL								
4 -					XX	}	1	• .				1		
	-	-				1	1						CALIE	F 47 F10#
6 -		-000	9B		1/	sc	CLAYE	Y SAND, MOIS	T. LIGHT BR	OWN	10YR 8/3)	E AT 5'6"
	2 9	2							.,			2		IRON STAINI JNDARY
8 -	7 5	-000	9C			ŀ							1	E AT 8'6"
						ŀ							SAME	L AI G O
10-	\dashv	-		Í			WEATH	ERED CLAYSTO	ONE, MOIST,	BROV	/N 10YR 6/	3		
11				İ										
12 -	15	2			24			•						
	2													
14 -												1		
	\dashv	1				cs								
16 -		1			** .									•
	5-20	3	•			·			•			ļ		
18 –	15	-												
				İ	- 1								İ	
20		7					STIFFE	NS AT 18'						
22 -	20-24	3 000	9 0			-	OLIVE CLAYS	GRAY 5Y 4/1 TONE AT 18'	BELOW 18	' UNW	EATHERED		SAMPL	E AT 23'
24 -	\perp					ĺ	REFUS	AL AT 24° BE	LOW GROUN	D SUF	RFACE .	<u> </u>	_	
				ł	A							180	Ţ,	
. 26 -												.	! .	
					REFUSAL									٠.
28 -						1	1							
														•
30—		1												
			. •											
32 -								•						
								_]	1.	
34 –							1	•						
- 1		1		1	}	l	l					- 1	1	

	Nam	e: VB 4	& I-70			- 1	Project No.	03-1-411	Boring No:	10	Sheet	1 of 1
		ion: SEE S		N			Start Date:	12/10/03			12/10,	
ller:		ZACK ENS			ECT P	บรห	Ground Elev:	5216.37	NORTHING		EASTING	
gged	₽y:	CA)				Water Depth: N	ot Encountere	d 1710180.98	-	314173	5.81
	1	SOIL	CORE					··········		1=	T	······································
	Z			[DEPTH		
ċ	EXTENT RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic 1.09	S		DE:	SCRIPTION				ELD
Depth, feet	필잉	P de	P G	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U.S.C.S					CONTACT	NO	TES
24		d P	ت و	త్	=					8		
]	1 35	-0010A	<u> </u>		I	÷	AD 11 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W 04:25		<u>Ö</u>	611.51	
		LUUIUA	i	} / } /			GRAVELLY CLAYE			==	SAMPLE VERY DI	
,		00100	1		SM	SM S	ILTY SAND, BRO	WNISH YELLOV	V 10YR 6/8		ROLL	
2 -	12 2	-0010B	1]	SLIGH	T MOIST		•	2,	SAMPLE	AT 2'
		1										
i -			1	/				DLIVE BROWN	5Y 6/6, SLIGHT			
	├-	0010C	1	Υ.		MOIST				-	SAMPLE	AT 5'
]	1								DOUNDA	
- ()		1	1							9	OBVIOUS	
+	100	-00100					STONE, LIGHT OF 5YR 4/1 SLIGH		YR 5/6 TO OLIVI	Ε	SAMPLE	AT 8'
		0010 © 9'-10'				PERM	EABILITY SAMPLE	AT 9'-10'				
	2											
11	100					WEAT	HERED CLAYSTO	NE FROM 6' I	0 17	·	IDON ST	AINING
					CS]		RES IN (
			1									
		-	}		l.							
;		,	}						•			
1	15-19						ASED SAND IN OLIVE BROWN					
,_	122			· ·	,	REFU!	SAL AT 20' BEL	OW GROUND S	SURFACE		1	
	2			A		• .				20,		
	19-20									1		•
-				REFUSAL								
		1										
\dashv				ļ							}	
											1	
4		-	}	1			•				1	
									•	-		
		1	1						•			
7			1									
											1	
\dashv			}								1	
											-	
			-						•			
			1							1	 -	
		1		l	1						1	
		1	1	l .	1 1						}	

36 - 1

Frojec		ame:		& I-70				Project		03-1-411	Boring N		_	Sheet 1 of	<u> </u>
		catio	n: SEE S					Start D		12/19/03	Completio			12/19/03	
Criller:			DEREK		Type: HAN	AUGL	JR 4°				NORTHING	i	- 1	EASTING	
Logge	<u>d</u> 8	у:	CA	J.	<u> </u>			Water	Depth:	NE			\dashv		
											METHANE:				
								•		•	LEL= %	<u> </u>			
	1		SOII	CORE							ppm=		1-		
Depth, feet	XTENT	RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S			DES	SCRIPTION			CONTACT DEPTH	FIELD NOTES	
		%	Set	og O	<u>.</u>	2							දි		
٠,		П						- "							
2 -												•			
- 7							•								
4 -										•					
•]															
6 -					-										
8 -			·												
•]				·											-
10															
,					•										
12 -															
12										•					
14 –															
16															
16 –															
						1		•	•						
18 -															
20						} }									
22															
22 -															
,	-			ļ. 										•	
24 -			. •							•					
			i												
26 -															
25															
28 –	1														
									٠						
30															
															٠
32 –															
				ļ. ļ						•	•				
34 –				[· ·	
-					•		•					•	1 1		

oject	Nam	BORING e: VB	& I-70				Project No.	03-	-1-411	Borin	g No:	12	She	et 1	of 1
	Local	ion: SEE S					Start Date:				letion Do	te:		19/0	3
riller: ogged	D.,,	DEREK		Type: KAN	D AUGU	R 4"	Ground Elev: Water Depth:		220.76	NORT			EAST	ING 863.2)7
oggee	Бу.		<u> </u>				water Depin:	VOI CII	Conmered	(1710.	200.04		1212	003.2	
	1>-		CORE	1				·			· ···	DEPTH			
تہ	EXTENT RECOVERY	Laboratory Sample 1D	ding (2	\si		DE	SCRIP	TION			- (.		FIELD)
Depth, feet		nple	Red	Graphic Log	U.S.C.S							TAC		NOTE	S
	% ⊡ ≅		PID Reading (ppm)	5	7							CONTACT			
0—		-0012A		XX		CLAY	EY SAND, BLAC	K, CIN	DER/SLAG	0-3"	ABOVE		SAMF	LE AT	2"
2 -		-0012B		$\langle \times \rangle$	F11.	CLAY BRICK	WITH FRAGMEN (AT 2' AND 3'	15 OF	CLAYSTO	NE 3	10 2		SAME	LE AT	2'
				(X)	y		MENTS OF SLAG		BRICK TO	4'6"			GREE!	4 MINE	RALIZATI
4					۱, ا	HAND	BORING REFUS					=	BLAC	K TAR	PAPER
6 -			ļ	1		GROU	IND SURFACE					4.6	AT 4	'6 "	
			}	REFUSAL											
8 -			ļ										}		
o								•							
5															
2 -											•				
															-
4 -															
16 -]]										
8 -															
20									•		•				
		ļ 				•									
2 -															
4 -															
6 -															
							•								
28 -															
io_									•						
32 -									•						
34 —	1 1	l	Į.	I	1 1							ı	i		

.

		BORING						IAR & ASSO		<u> </u>
Project			& I-70			Project No.	03-1-411		3	Sheet 1 of
Driller:	Local	ion: SEE S			D. AUC	Start Date: GER 4" Ground Elev:	12/19/03 5220.19	Completion Dat	e:	12/19/03 EASTING
Logged	Bv:	CA		Type. IIAN	J AUC		Not Encountered			3141862.73
· · · · · · · · · · · · · · · · · · ·	1									
			CORE			1			DEPTH	
Dapth, feet	EXTENT % RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S	ם	ESCRIPTION		CONTACT DE	i FIELD
ا	1	-0013A	 			TOPSOIL 0-4" ABO	VE SANDY CLAY		+	SAMPLE AT O"
2 -					FILL	FRAGMENTS OF SLA FRAGMENTS AT 1'0' TO DARK BROWN 1	" VERY MOIST, B	1' CHARCOAL ROWN 10YR 6/3		WHITE MINERALIZA AT 2'6" ROOTS AT 3' SAMPLE AT 4'
		-0013B		$\langle X \rangle$	cs	WEATHERED CLAYST	ONE, GRAY GREE	N 5G 6/1, MOIST	r 📙	}
6 -		·		A		HAND BORING REFU SURFACE	SAL AT 28' BELO	OW GROUND		
8 –				REFUSAL						
10—						·	·			
12 —								٠		
14 -										
16 -		•								
18 –		i								
20									-	·
22 -										
24 -										
26 -		·								
28 -										·
30				·				· , ·		
32 –								. •		
34 -										

50	זזר	BORING	100	٧	-			KUM	AR & ASSO	CI	ATES
Project			k 1–70				Project No.			14	Sheet 1 of 1
		ion: SEE SI					Start Date:		Completion Dat		12/10/03
Driller:		ZACK ENS			ECT F		Ground Elev:		NORTHING .		EASTING
Logged		CAJ		 			Water Depth: N				3142078.68
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	CORE	·						DEPTH	
_	EXTENT RECOVERY	Laboratory Sample ID	Reading (ppm)	U	S		DES	SCRIPTION	•	2	FIELD
Depth, feet	EXTENT	pre pre pre pre pre pre pre pre pre pre	P G	Graphic Log	U.S.C.S					VCT.	NOTES
ş	Z Z	9 E B	۾ چ	5	5					CONTACT	}
0-	%	אב	를							ၓ	
			0.0	$\times \times$	1	2" A	SPHALT CLAYEY	SAND, BLACK N	11.75/, MOIST,		
2 –				(X)	FILL	FROM	1 2" 10 2'				
	55	-0014A		$\triangle X$		CLAY,	, DARK BROWN	10YR 3/3, MOIS	ST, FROM 2-3'		
							•	·		3	
4 –						WEAT	THERED CLAYSTO	NE, LIGHT BROW	N 10YR 6/3		
]									
6 –					!						
_	100	-0014B				ו באיבי	EC OE EARINY 0	AVETONE AT A	TO OF AND		
8 -	<u>ب</u> اب	-00148					ES OF SANDY CI TO 15' COLOR				
							VNISH YELLOW 1				
10	 							•			
					cs						
12	-15	_0014 @						-			
	일은	_0014 e 13'-15'									
14 -						PERM	EABILITY SAMPLE	AT 13'-15'			
		ł									
16 -											
	2						٠				
18	5-20										
"	-	-0014C							•	L	
20						C 1 1 1 C	ACTANE VERY C	AVEV WEAVEY	CENERITES	19,	CAMBLE IT CO!
20—	2				1	MICAC	STONE, VERY CL CEOUS, MANY WI	ATET, WEAKLY	CEMENTED AYS), BROWNISH	1	SAMPLE AT 20'
_	33				SS	YELL	OW 10YR 7/8	201120 (02			
22 –	2			• • • • • • •							
	- -				1	SAMP	PLER CLOGGED A	r 23' BELOW G	ROUND SURFACE	23	
24 -				1	1 1	BORIN	NG TERMINATED			12	
				1							
26 —				1							
. [
28 —					}						
30—											
32 -								•			·
J2 -											
_											. ,
34 -								-			
36 –	<u> </u>	I		i							L

			BORING				KUMAR & ASSOCIATES
Project			on: SEE S	k 1-70			Project No. 03-1-411 Boring No: 15 Sheet 1 of 1 Start Date: 12/12/03 Completion Date: 12/12/03
Driller:			ACK ENS			CT	PUSH Ground Elev: 5215.68 NORTHING EASTING
Logged	Ву		CAJ				Water Depth: Not Encountered 1710323.38 3142324.47
			•				
			SOIL	CORE	······································		TE TE
Depth. feet	1 1	% RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION FIELD NOTES
0-7		_	0015A		XX	_	ASPHALT 0-3" OVER GRAVELLY, CLAYEY SAND, DARK BROWN TO LIGHT BROWN 10YR 3/3 TO 10YR 8/3
2 -	0-5	22		'	$\times \times$	CII I	FRAGMENTS OF GLASS, BRICK, SLAG THROUGHOUT
4 -	0					FILL	
	-	+	00158		$\langle X \rangle$		2" OF SATURATED
6 -					1		WEATHERED CLAYSTONE, MOIST, LIGHT OLIVE BROWN
8 -	5-10	3					5Y 5/6 TO BROWN 10YR 7/3
10							STIFFENS WITH DEPTH
12 -	-15	-	0015C			cs	
14 -	-01	8			-		VERY SANDY CLAYSTONE BELOW 15'6" GRANITIC
16 -	82						GRAINS, MICACEOUS
18 -	15-1	135	-			ss	SANDSTONE, VERY CLAYEY, LIGHT BROWN 10YR 8/3 GRADATIONAL SLIGHT MOIST
"					A		REFUSAL AT 18' BELOW GROUND SURFACE
20-					REFUSAL		
22 –							
24 -							
. 26 -					•		
28 -							
30							
				-			
32 -							
34 -							
36	Ш		l				

	Nom	BORING e: VB &	& I−70			Project No.	03-1-411	Boring No: 1	6	Sheet 1 of 1
	Locat	ion: SEE S				Start Date:	12/10/03	Completion Date		
iller:		ZACK ENS		ype: DIRI	ECT PUSH	Ground Elev:		NORTHING		EASTING
gged	Đy:	CAJ				Water Depth: i	of Encountered	1710177.66		3142061.28
	γ	SOII	CORE						T-	
	≥								DEPTH	
خے	EXTENT RECOVERY	Laboratory Sample ID	PID Reading (ppm)	ခ်	Ni Ni	· DE	SCRIPTION	•	, ,	FIELD
Depth, feet		ord Plet	Red	Graphic Log	U.S.C.S				AC	NOTES
۵۵			ا ٿو ا	້ວ	j				CONTACT	
0-7		ļ	-		E11 1 4 CO				ပ	SAUDIS IT OR
		-0016A		Y - Y	I LILL ASPI	HALT 0-4", ABO	VE CLAYEY SAN	υ	0,,	SAMPLE AT 6"
2 -	5				COPI	ED THROUGH 4'	עב מטוכה כסט	IT VISIDIE	=	
	65				BRICK BETY	VEEN BRICKS. GI	REEN STAINING	N GROUT AT 4'		
4										
*]										
	\Box]		/	CLAY	YEY SAND, OLIVE	GRAY 5Y 4/1.	MOIST	5,	
6 -		-0016B&C			sc					SAMPLES AT 6'6"
	100			·/. · · ·	30					
B -	ψ <u></u> –			<u>/</u>						
					CLAY	STONE, BROWN	10YR 6/3, SLIG	HT MOIST	8,6	
)	$\vdash\vdash$	0016D			LIGH	T OLIVE GRAY 5	Y 6/1		, a	SAMPLE AT 10'
		0016			pro	EABILITY SAMPL	F AT 11-13'			
2 –	-15	11'-13'			FERM	ILADILII JAMFL	L WI 11-12	-		
	100				IDO	CTAINING IN C	DACTURES		. '	1
4 -	-				IKUN	STAINING IN FF	KACIUKES			
					WEA.	THERED CLAYSTO	NE FROM 8'6"	то .	1	
					APP	ROXIMATELY 20'		•		
5 -										
	5-20									
3 -	5 -	·			cs					
									}	
□						•				
	4				:- 					
2	20-24 125				-					
	2	[
4										•
٠٦										
	28									
6 -	24-28 105									
	2							·		
В	$\vdash \vdash$	1		A	REFU	ISAL AT 28" BEL	OW GROUND SU	RFACE	-8	
				+					28	
0—						7				
				REFUSAL						
,										
2 -						SAMPLES:				
}						SAMPLES: SEATE BLANK				
4 -										

ogged By:					Start Date:	03-1-411	Boring No: 1 Completion Date		Sheet 1 of
Ogged By: A Depth		Rig					Completion Date	<u>::</u>	12/11/03
0	CAJ		Type: DIRECT	T PUSH	Ground Elev:	5221.34	NORTHING .		EASTING
0		AJ			Water Depth: N	ot Encountered	1710183.81		3142285.96
0							•		•
0	SOIL	IL CORE						E	
0	22	gu!		٨	DE:	SCRIPTION		DEPTH	FIELD
0	peg	9 (m	id B	ا ذ	DE.	3CRIF HON			NOTES
0	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	2				CONTACT	
2 -	מנ	<u> </u>						응	
2 - S-0 SS O01 O			$\times \times$	2" A	SPHALT, ABOVE	6" GRAVELLY CI	LAYEY SAND,		
4 - 001 6 - 001 10 - 001 12 - 01 14 - 001 14 - 001 16 - 001 18 - 51 20 - 22 - 24 - 26 - 28 - 28 -	1 /A	k	FI	ABOV MOIS	E 1'6" OF GRAV	ELLY SAND (BL	DCK, CINDER),		0-5' TUBE COMPRESSED TO
4 - 001 6 - 001 10 - 001 12 - 01 14 - 001 14 - 001 16 - 001 18 - 51 20 - 22 - 24 - 26 - 28 - 28 -			\times \times $''$	L MOIS	•				2'7"
6 - 001 8 - 10 10 - 001 12 - 001 14 - 001 16 - 001 18 - 27 20 - 22 - 24 - 26 - 28 - 28 -			\searrow						
6 - 01 001 10 - 001 12 - 001 14 - 001 18 - 001 18 - 001 20 - 001 22 - 24 - 26 - 28 - 28 - 28								.4	
8 - 001 -001	78			CLAY	EY SAND, LIGHT	BROWN 10YR R	/3. TO BROWN		SAMPLE AT 5'
10 001 12 001 14 - 001 16 - 001 18 - 22 22 - 24 - 26 - 28 - 28 -			/	10YR	6/3 MOIST, G	RANITIC GRAINS,	MICACEOUS.		
10—			s		-				· <u>-</u>
10 001 12 - 001 14 - 001 18 - 01 20 - 001 22 - 24 - 26 - 28 -		1 .							
10 001 12 - 001 14 - 001 18 - 01 20 - 21 22 - 24 - 26 - 28 -	7C		/		·				SAMPLE AT 9
12 - - - - - - - - - -	-								
12 - - - - - - - - - -								9,0	SAMPLE AT 11
14 - D D D D D D D D D	ן טלו			ĺ		•			SAMPLE AT TE
16 - 07-51 18 - 120 20 - 22 - 24 - 26 - 28 - 28 -				WEAT	HERED CLAYSTOI	NE, OLIVE GRAY	5YR 4/1 IRON		
18 -			- 1	SIAIR	ING IN PRACTOR	ES, SLIGHTLI M	0121 .		
18 -		•	c	<		•			
18 - 10 - 20 - 22 - 24 - 26 - 28 -			· ·	٦	·			11	
18 - 10 - 20 - 22 - 24 - 26 - 28 -									•
20— 22 — 24 — 26 — 28 —								1.1	
22 24 26 28				1				1 1	
22 - 24 - 26 - 28 -				BORII	IG TERMINATED	AT 20' BELOW (GROUND SURFACE	Ш	
24 – 26 – 28 –				SONI	TERMINALED A	20 DELON (SHOOMS SOM ACE	20,	
24 — 26 — 28 —									
26 -									
26 –									
28 -									
28 -									
	.						•		
30									
30	1		1						
	!								
1111						4			
32		1 1							
		1 1						1 1	
34 -				}	•				!
									,

roject	Name	e: VB	& I-70			Project No.	03-1-411	Boring No: 18	8	Sheet 1 of 1
		ion: SEE S				Start Date:		Completion Date		12/11/03
Oriller:		ZACK ENS			CT PUS	H Ground Elev:	5220.63	NORTHING		EASTING
-ogged	By:	CA	j			Water Depth:	Not Encountered	1710162.77		3142369.35
·	 	SOIL	CORE			 			Ī=	
	I≩		·						HT430	
£	EXTENT RECOVERY	of a	渡	Graphic Log	U.S.C.S	DE	SCRIPTION			FIELD
Depth, feet	A S	or or	P P	63	S.				TAC	NOTES
□ -		Laboratory Sample ID	PID Reading (ppm)	9					CONTACT	
0-	%		-	$k \times 7$	- C	VCIIV CAND TO	1110" 0479 61	AYEY SAND WITH	۲	BLACKENED SAND
				XX	CIN	DERS, SLAG, CHA	RCOAL, GLASS,	AND IRON		CINDERS,
2 -	က်လ	-0018A	}	\searrow	ST/	INING FROM 1'10	" TO 4' ABOVE	CLAYEY SAND	1	CHARCOAL, IRON
	0-5 45		}	(XX)	VE	RY MOIST AT 5"				STAINING, AND GLASS FRAGMENTS
4 -				X X						
		-00188		$F \rightarrow$	C	100 CLAV 11017		E/1	-	SAMPLE AT 2'
6 -		-0018C&D			UL SA	IDY CLAY, LIGHT	OLIVE GRAT SY	0/1	-	SAMPLE AT 5' SAMPLE AT 6'
	1 1 1									
8 -	5-10 100									
						·				
10-					WE	ATHERED CLAYSTO	NE, OLIVE GRAY	5Y 4/1		1
.			·			GHTLY MOIST		·		
12 —	2		}							
127	0-15 100				DA	K GRAY BETWEEN	1 14' AND 17'	-		
1 1	=		1			,				
14 -										·
_						RY SANDY CLAYST		19' AND 19'6" IRON STAINING IN		
16 -					FR.	CTURES BELOW	NNU 27 HEAVE	IRUN STAINING IN		· ·
	5-20 95				CS					}
18 –	5 0		1							
			}							
20—	\vdash		l		FPI	SH CLAYSTONE B	FLOW 16' IS N	OTICEARI Y		
					DE	ISER THAN WEAT	HERED CLAYSTON	NE		
22 -	100									
	2 5									
24 -										
1	┝╌┼╌┤	·								
26 -	125 125		ļ				•			
	12									
28 –			1		REF	USAL AT 28' BEL	OW GROUND SU	RFACE	-	
				A			•			
30									-	
				REFUSAL						
32 —										
,			}							
34 –						•		. •		
1	1 1 1		1	1	1				1	l .

S	<u> </u>	 [BORING	LOC	·				KUM	AR & ASSO	CI	ATES
Project				<u>% 1−70</u>				Project No.	03-1-411	Boring No: 1	9	Sheet 1 of 1
Boring	Loc		· · · · · · · · · · · · · · · · · · ·	ITE PLA				Start Date:		Completion Date	::	12/10/03
Driller:	_		ZACK ENS		Type: DIRI	ECT		Ground Elev:	5222.27	NORTHING		EASTING
Logged	Ву	<u>':</u>	CAJ					Water Depth: 1	Not Encountered	1/10142./6		3141846.31
	L		SOIL	CORE		1	7				DEPTH	
Depth, feet	EXTENT		Laboratory Sample 10	PID Reading (ppm)	Graphic Log	U.S.C.S		DE	SCRIPTION		CONTACT DE	FIELD NOTES
0_	\vdash	Ж		<u>a</u>		-	CLAYE	Y SAND-SAND	CLAY, MOIST.	BRICK AND SLAG	13	
2 -	0-5	65	·	·		FILL	ROCK OLIVE 6/8	OBSERVED IN GRAY 5Y 4/1	FILL 0-8" MOTT TO YELLOWISH NSES OF LIGHT	LED APPEARANCE BROWN 10YR		BLACKENED NODULES FROM 0-8"
6 –					(\times)	1						
	5-10	٥			XX	Ì						. ,
8 –	5-	뮈	-0019A			1						
10—		-		·			WEAT! MOIST	HERED CLAYSTO	NE, OLIVE GRAY ON FRACTURES	5Y 4/1 SLIGHT		
	5	1	-0019B									SAMPLE AT 11'
12 -	10-15	100	0019 © 12'-14'			CS	PERMI	EABILITY SAMPLI	E AT 12-14'			BLACK MINERALIZATION
16		7					WEAT	HERED CLAYSTO	NE FROM 8'-23	,		
18 -	15-19	125										
20—	19-23	125				cs-ss			NE IS VERY SAN D SAND IS MIC	DY APPROACHES ACEOUS.	20.	
22 –	\square	_				 ຊ	REFUS	SAL AT 23' BEL	OW GROUND SU	RFACE	3:	
24 –					REFUSAL						23	
26 –					MERUSAL							
28 -					·							
30—					!					•		
32 –										·		-
34 —				,								
36												

roject			BORING	& 1-70			Project No.	03-1-411	AR & ASSO	20 20	Sheet 1 of 1
oring				SITE PLA			Start Date:	12/10/03	Completion Dat		12/10/03
riller:			ZACK ENS			ECT PUSI	Ground Elev:	5222.73	NORTHING		EASTING
ogged	В	/:	CA	J			Water Depth:	Not Encountered	1710123.53		3141924.92
	Γ		SOIL	. CORE		·				ı	
•		≿								DEPTH	
₹.	EXTENT	KE	Laboratory Sample 1D	PID Reading (ppm)	Graphic Log	C.S	DE	ESCRIPTION		ı	FIELD
Depth, feet	X	ည	m p	2 2	p 5	U.S.C.S				CONTACT	NOTES
	۳	8	Sa	윤		-				်	
0-		-	·	-		FILL GRA	ELLY, SANDY CL	LAY - CLAYEY	SAND BRICK AT		
					$\times \times$	8"-	10"			10	
2 -	0-5	75	-0020A		(X)						SAMPLE AT 2'
- 1	0				XX						
4 -					\searrow	FILL	DY CLAY-CLAYEY	SAND LIGHT B	ROWN 10YR 8/3	-	
1		П			(XX)				•		
6					XX						
	5-10	100						•			HEAVY IRON STAINI
8 -	က်		-00208	1						L	AT 8'6" SAMPLE AT 8'7"
		1					THERED OF AVETO	DDAWN 40	40 c /2 to 11014	8.6	ì
10—	H	-				WEA	THERED CLAYSTO E GRAY 5Y 7/1	INE, BROWN 101	YR 6/3 TO LIGHT		
						INCR	EASED SAND BE	LO₩ 13'6"	•		
12 -	10-15	5				cs					·
- 1	Ö	=									
14 -		- {									
ł		\dashv				BOR	NG TERMINATED	AT 15' BELOW	GROUND SURFACE	15.	·
16				}						-	
1		1									
18 –											
									•		
20-											
1.									•		
22 -											
				ĺ	1			•			
24 —								•			
									•		
26 –	}			1							
1											İ
28 –									•		
				1				•			
									•		·
30-											
30-	4 '	. 1			1						
		ļ						-	•	- 1	•
					İ						
32 -					į į					1	

roject	Nam		& I-70			Project No. 03-1-411 Boring No: 21 Sheet 1	of 1
		lion: SEE S			,	Start Date: 12/11/03 Completion Date: 12/11/03	
riller:		ZACK ENS		Type: DIRI	ECT 1	PUSH Ground Elev: 5222.05 NORTHING EASTING	
ogged	Ву:	CA	<u></u>			Water Depth: Not Encountered 1710070.45 3142248.60	1
	, <u>-</u>	5011	CODE				
	≿		CORE	· · · · · · · · · · · · · · · · · · ·	\Box	DESCRIPTION EIELD	
Ę.	Z Z	10 e	ğ.	얼ㅠ	S	I DESCRIPTION I I FIELD	
Depth, feet	EXTENT RECOVERY	Laboratory Sample ID	Rec	Graphic Log	U.S.C.S	NOTES	
Δ.≠	% ⊡ ≊		PID Reading (ppm)	ပ	>		
0-7	1 38	-0021A			1-1	0-6" ASPHALT, OVER GRAVELLY CLAYEY SAND, SAMPLE AT	6"
						ABOVE SANDY CLAY, ABOVE, GRANITIC GRAVELLY	-
2 -	0 - 5			$\times \times$		SAND, ABOVE SILTY SAND, ABOVE SANDY CLAY AT 4' AND 4'6" WHITE MINERILIZATION	
11	li			$\langle \chi \chi \rangle$	FILL	SAMPLE AT	4'6"
4 -		-0021B		(\times)		FILL FROM 5	
		1]	$\times \times$		MOTTLED GREEN-BROV	ΝN
6 –				X_{-}	1	WHITE CLAYI ق BLOBS AT C	ΕY
	5-10 105	-0021C		i de	·	l (o)	
8 -	5	F0021C		100		WEATHERED CLAYSTONE, LIGHT OLIVE GRAY 5Y 6/1 SAMPLE AT SLIGHTLY MOIST, DECREASING MOISTURE WITH	٥
10—						DEPTH	
اات					cs		
12 —	5						
"]	10-15 80					MINOR IRON STAINING IN FRACTURES	
14	=					OCCASIONAL BLACK, SOFT, NODULE, ORGANIC	
						BORING TERMINATED AT 15' BELOW GROUND SURFACE	
16 –						1.5	
18 -						·	
20-							
	│			·			
22 -		•					
				:			
24 -							
26 -							
28 –							
_							
30-						,	
_							
32 -							
.							
34 -							

roject			k 1-70			Project No. 03-1-411 Boring	No: 22	Sheet 1 of 1
		ion: SEE Si					etion Date:	12/12/03
riller:		STEVE ENS		Type: DIR	ECT PL	SH Ground Elev: 5217.51 NORTH		EASTING
ogged	Ву:	CAJ				Water Depth: Not Encountered 17101	01.85	3142575.98
	1	SOIL	CORE	<u> </u>			1-	· [
		1		1			HIGHT	<u>.</u>
ځ	EXTENT RECOVERY	Laboratory Sample ID	adir (T	Graphic Log	C.S	DESCRIPTION		1 FIFTO
Depth, feet	EXTENT RECOVE	mpl	8 g	53	U.S.C.S		TAT.	NOTES
<u></u>	% ™ &	Salt	PID Reading (ppm)	5			CONTACT	
<u></u>						SPHALT 0-3" OVER GRAVEL, OVER CLAYE	Y SAND	
				(X)		VER BRICK		
2 -	0-5	-0022A		$\vdash X - X$	l R	RICK FROM 2'6" TO 6'	: C	-
					1		9,6	
4				-	BRICK			
6 -		-0022B				•		1
	1 1			$\times \times$	c	NDER/SLAG FROM 6' TO 8'	-	·
8	5-10			$\langle \mathcal{N} \rangle$	FILL S	ANDY CLAY-CLAYEY AND FILL, BROWNISH	YELLOW	
				(X)		OYR 6/8		
0—	$\vdash \vdash \vdash$	-0022C	,	XX] .			CUADO DOMOS
İ		30220	-				<u>.</u>	SHARP BOUNDAR
2 -	-15 75				l w	EATHERED CLAYSTONE, OLIVE GRAY 5Y 4/	/1 MOIST,	2
	10-1 75				. If	ON STAINING IN FRACTURES N3/ BETWEE!		
4					^	ND 12'6"		
	H							
6 -			•					
	5-20 100							
8								
					cs	ANDY CLAYSTONE BELOW 20'5"		
20-					3	ANDY CLAYSTONE BELOW 22'6"		
	ြို့	-00220				ARKED COLOR CHANGE IN CS AT 22'6" LI		
22 –	100					LIVE GRAY 5Y 5/1, CORRELATES WITH SA LAYSTONE	זטא	22'6" TO 26' IS
	2					ANY ORGANICS AT 22°6" TO 24' IN VERTI	CAL AND	MOISTER THAN
24 -					l H	DRIZONTAL FRACTURES? ORGANICS ARE BL	ACK WITH	SURROUNDING CLAYSTONE
	-27					LY LUSTER, CLAYSTONE NEAR ORGANICS I DLORED LIGHT BROWNISH YELLOW 10YR 8		
§6 –	25-27 110					FUSAL AT 27° BELOW GROUND SURFACE	, -	
28 -				A	R	LOSAL AL ZI BELOM GROUND SURFACE	7.2	
~ 7						·		
30				REFUSAL		•		
~]								
32								
		RIN~0003]		C SAMPLES:		•
34 —		SB-0022E				INSEATE BLANK E SOIL 1-2	į	ŀ

S	<u>01</u>	L	BORING	LOC	<u>}_</u>		KUMAR & ASS	CI	ATES
roject				& I-70			Project No. 03-1-411 Boring No:		Sheet 1 of 1
			on: SEE S			-07	Start Date: 12/19/03 Completion Da	e:	
riller:	_		TEVE ENS		Type: DIKI	LCI	PUSH Ground Elev: 5199.82 NORTHING Water Depth: Not Encountered 1709967.00		EASTING 3142630.42
ogged		<u>y:</u>	CA	J			Water Depth: Not Encountered 1705307.00		3142630.42
	L	1	SOIL	CORE	1			DEPTH	
	-	RECOVERY	Laboratory Sample 1D	PID Reading (ppm)	ي ا	v	DESCRIPTION	ㅂ	FIELD
Depth, feet	EN EN	ဒ္ဓါ	ple .	0 E	Graphic Log	U.S.C.S	DESSAIL TOX	ACT	NOTES
200	X	RE	od B.	50	25	2.0		CONTACT	·
0-	╁	136	-0023A	_ =	<u></u>	<u> </u>		ြ	L
			-0023A		\times	FILL	TOPSOIL 0-2" ABOVE SLIGHTLY GRAVELLY SANDY CLAY, DRY-SLIGHTLY MOIST	-	RARE BRICK GRAVEL IN 0-6'
2 -	S		-0023B					.9	SAMPLE AT 1"
1	6	2	-0023B				·	1-	SAMPLE AT 2'
4							WEATHERED CLAYSTONE, OLIVE GRAY 5Y 4/1,		
	-	Ц					SLIGHTLY MOIST	1	
6 -]				1	
ı	0						IRON STAINING IN FRACTURES BELOW 10'		
8	5-10	5					DARK GRAY N3 AT 13'6" TO 13' 11"	ļ]
						′			
10-	\vdash		-0023C] .			STIFFENS WITH DEPTH TO 9' CONSTANT BELOW 9'	-	SAMPLE AT 10'
					:	·CS			
12 -	0-15			·		1.			
	0	80							
14 -				<u> </u>					
	-	\vdash				'			
16 -									
1	2	80		}					
18 –	5	8	•						-
1				ļ					
20-	\vdash	H					BORING TERMINATED AT 20" BELOW GROUND SURFAC	<u></u>	1
	1				<u> </u>			7	}
22 -								}	
							•		
24 -				ļ					• •
26 –					·				1
28 –				{				1	
1					·				
30-									
.									1
32 –			*						1
					ļ				
34									
	į .	ιl		1	ì	1		- 1	1

roject	Name	: VB &	k 1-70			Proje	ect No.	03-1-411	Boring No:	24	Sheet 1 of 1
		on: SEE S		.N			t Date:		Completion Da		12/19/03
Oriller:		TEVE ENS	Rig	Type: DiRE	CT .			5219.36	NORTHING		EASTING
ogged	Ву:	CAJ				Wate	er Depth: N	lot Encountered	1709776.56		3141864.92
										·	
	15.1	SOIL	CORE							DEPTH	
Depth. feat	EXTENT % RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S		DE	SCRIPTION		CONTACT DE	FIELD NOTES
0	100 %	0024A&B		XX				CLAYEY SAND T, BROWN 10YR			SAMPLE AT 6"
	30 1			$\langle \rangle \langle$		MANY LOC. AROUND O		NES OF HEAVY	IRON STAINING		WHITE MINERALIZATION
6 -	7 3	0024D		$\langle \rangle \langle$		MANY FRA	GMENTS OF	YERS OF SANDS BLACK-GREEN BUT STILL CO	CLAYSTONE,		AT 4'
	12(0024D		\searrow			E CLASTS I				SAMPLE AT 6'6"
8 –				#		REFUSAL A	NT 7.5' BEL	OW GROUND S	JRFACE		
10-				REFUSAL			·				
12 -											
14 -							•		·		-
16 –											
18 -											
20-											
22 -								·			
24 -											
26 -											
28 -			:								
30—											
32 –						Qc SAMP	LES:				
34 —		0024C				PE SOIL 1].

SOIL BORING LOG KUMAR & ASSOCIATES Project No														 -				 		.—												•
Solid Corpe Steve ENS						R																						ΑT	ES			
Description STEVE ENS Rig Type: DIRECT PUSH Ground Elev: \$220.99 Water Depth: Not Encountered 1709724.64 SOIL CORE FIELD NOTES SAMPLE AT 2" SAMPLE AT 2" SAMPLE AT 2" SAMPLE AT 3"																														`		1
SOIL CORE SOIL CORE			00								DII	DECI	T D						_							Dat	e:				3	
SOIL CORE SOIL CORE			av:		EV		<u> </u>		INIG	Typ	e. Dii	(LC	1 F													4					7	
TOPSOIL O-S' ARDVE CLAYET SAND WITH CLASTS OF DARK CRAY-CREEN CLAYSTONE, LIGHT BROWN 10YR 8/3 TO BROWNISH YELLOW 10YR 6/8 SLIGHTLY MOIST, STIFF SAMPLE AT 5'6' SAMPLE TUBE REFUSAL AT 6' BELOW GROUND SURFACE RE		_	<u>-7·</u>					-	_													1				<u> </u>		10.				
TOPSOIL O-S' ARDVE CLAYET SAND WITH CLASTS OF DARK CRAY-CREEN CLAYSTONE, LIGHT BROWN 10YR 8/3 TO BROWNISH YELLOW 10YR 6/8 SLIGHTLY MOIST, STIFF SAMPLE AT 5'6' SAMPLE TUBE REFUSAL AT 6' BELOW GROUND SURFACE RE																												 -				
TOPSOIL O-5' ABOVE CLAYEY SAND WITH CLASTS OF BAMPLE AT 2" NOTES SAMPLE AT 2" SAMPLE AT 2" SAMPLE AT 2" SAMPLE AT 5'6' BELOW GROUND SURFACE REFUSAL AT 6' BELOW GROUND SURFACE REFUSAL AT 6' BELOW GROUND SURFACE REFUSAL AT 6' BELOW GROUND SURFACE SAMPLE AT 5'6' SAMPLE TUBE REPEATEBLY STU-IN PIPE 10- 12- 14- 16- 18- 20- 22- 24- 26- 28- 30- 30- 32-		-	-15										_														H				,	
TOPSOIL 0-5' ABOVE CLAYEY SAND WITH CLASTS OF DARK GRAY-GREEN CLAYSTONE, LIGHT BROWN 10YR 8/3 TO BROWNISH YELLOW 10YR 6/8 SLIGHTLY SOLUTION OF THE PROPERTY O	Depth, feet	EVTENIT	EALEN!	אברטענא		aboratory		-	(ppm)		Graphic Log	000	0.3.0.3					D	ESC	RIPT	ION							1				
DARK GRAY-GREEN CLAYSTONE, LIGHT BROWN TOYR 8/3 TO BROWNISH YELLOW TOYR 6/8 SLIGHTLY DARK GRAY-GREEN CLAYSTONE, LIGHT BROWN TOYR 8/3 TO BROWNISH YELLOW TOYR 6/8 SLIGHTLY BY TO THE PROPERTY OF THE PROPERTY	0-	4	19	e			· 	à			_	_	\perp															_				
## 10 -	2 —	0-2'6"	2 2 2		,02.	JA				X	\times		8	DARK B/3	GR/	AY- BRO	GRE WNI	EN	CLA	YSTO	NE, LI	GHT	BF	ROW	N 10			SA	MPLi	E AT	2"	•
SAMPLE AT 5'6" SAMPLE TUBE REFUSAL REF	4-	83	0 2	C7						\searrow	X)FII	ഥ	I	, ა	1																
8 - 10 - 12 - 14 - 16 - 18 - 20 - 22 - 24 - 26 - 28 - 30 - 32 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	6 –	K-63	2 6	1	02:	5 8	·			\geq	$\stackrel{\textstyle >}{\downarrow}$		F	REFUS	SAL	ΑT	6,	BEL	οw	GROU	JND S	URF	ACE					SA	MPLE	: TU	BE	
12 -	- 8 -									REF	TUSAI																				. 51	UCF
14 — 16 — 18 — 20 — 22 — 24 — 26 — 28 — 30 — 32 — 32 — 32 — 32 — 30 — 32 — 32	10-	-									i																					
16 - 18 - 20 - 22 - 24 - 26 - 28 - 30 - 32 - 32 - 32 - 32 - 32 - 32 - 32	12																															
18 – 20 – 22 – 24 – 26 – 28 – 30 – 32 – — — — — — — — — — — — — — — — — — —	14 -																															
20— 22— 24— 26— 28— 30— 32—	16 –																															
22 -	18 -																															
24 -	20-																									•						
26 -	22 -										,									•												
28 – 30 – 32 – 32 – 32 – 32 – 33 – 33 – 33	- 1																															
30—																																
32 –																								•						•		
	1														٠																	
34								-																						•		
	34 -																						•.							-		;

Project Nar		& 1-70	N		Project No.	03-1-411		26	Sheet 1 of 1
loring Loci Oriller:	stion: SEE S			CT PUSH	Start Date: Ground Elev:	12/19/03 5197.93	Completion E	ore:	12/19/03 EASTING
ogged By:			7,50. 2				d 1709810.75		3142661.14
		CORE						DEPTH	
	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S	DE	ESCRIPTION		CONTACT DE	FIELD NOTES
	0026A -0026B&C			FILL CLAY 1'8" WEA GRAY IRON ORG	VELLY CLAYEY S Y FROM 2'-3' () TO 2' THERED CLAYSTO Y 5Y 4/1 STAINING IN FI ANICS BELOW 6' Y 5Y 6/1 BELOW	BLACK), CINDER ONE, SLIGHT MO RACTURES, MAN , VERY STIFF I	R, SLAG, FROM	3.	SAMPLE AT 3' SAMPLE AT 3' SHARP COLOR CHANGE
12 - 51 - 51 - 51 - 51 - 51 - 51 - 51 -	671		A		ISAL AT 14' BEI		URFACE	14.	
18 -			REFUSAL						
22 -									,
26 -									
30—									
32 -									
34 -			']				1	1

		BORING e: VB	& I-70			RUMAR & ASSO Project No. 03-1-411 Boring No: 2		Sheet 1 of
		lion: SEE S				Start Date: 12/11/03 Completion Date		12/11/03
riller:		ZACK ENS	Rig		ECT	PUSH Ground Elev: 5225.04 NORTHING	-	EASTING
ogged	Ву:	CA	<u> </u> 			Water Depth: Not Encountered 1709505.38		3142154.89
	 	 	CORE			1	DEPTH	
٠	EXTENT RECOVERY	Laboratory Sample ID	PID Reading (ppm)	ië	N.	DESCRIPTION	1	FIELD
Dapth. feet	EXTENT	ora	Red	Graphic Log	U.S.C.S		ACT	NOTES
ბ*	l I	1 7.10	ق ع	5	÷	٠.	CONTACT	
0-7	%	-0027A	1			TOPSOIL 0-2", GRAVELY SANDY CLAY WITH CINDERS		=
				XX		AND PEBBLES OF SLAG TO 4'6" BRICK FROM 4'6"		
2	60			$\times \times$		TO 7' GRAVELLY SANDY CLAY WITH CINDERS/SLAG		
	٥١٩			$\langle X \rangle$	1	FROM 7'-11'		
4								
	-	-0027B		XX				
6				$\langle \chi \chi \rangle$,		r 40 ====
	30			$\langle \times \rangle$	1	,		5-10 FEET SAMPLE IS VER
8 –	S			$\times \times$		CLAYEY SAND, ORGANICS AT 11'-6" -12'6" FROM		COMPRESSED/C
10—				\times	FILL	11' TO 15'6"		MISSING
ו רטי				$\langle \times \rangle$		LAYER OF SANDY GRAVEL WITH BRICK AND SLAG		HEAVY JRON
12 -	<u>~</u>			XX		FROM 15'6" TO 16'6"		STAINING IN
``-	100	-0027C		$\times \times$				HORIZONTAL BANDS FROM 1
14	-			$\langle X \rangle$				TO 15'
	Щ.			$\langle \rangle \langle \rangle$		•		
16	45	٠.		$\times X$		· · · · · · · · · · · · · · · · · · ·		
	15-	-00270		\times				
18 –	\vdash			$\langle X \rangle$				
	2.5						8'6"	
20—	125	-0027E				CLAYSTONE, DARK GRAY N3/ MOIST	=	,
	-					IRON STAINING IN FRACTURES, STIFF		,
22 –	2				cs	MOR SIMILING IN FRACTORES, SHIT		ORGANICS AT
	200				"	,		22'6"
24 —	22							
ا أ أ	-27				·	VERY SANDY AT 26'6"-27'		
26 -	25-	,				REFUSAL AT 27' BELOW GROUND SURFACE		٠.
28 -				A		INCLISSAL AT 27 BELOW GROUND SURFACE	27	
						·		
30				REFUSAL				
32 —								
_) :						
34								
-	1 1	1			J		1	

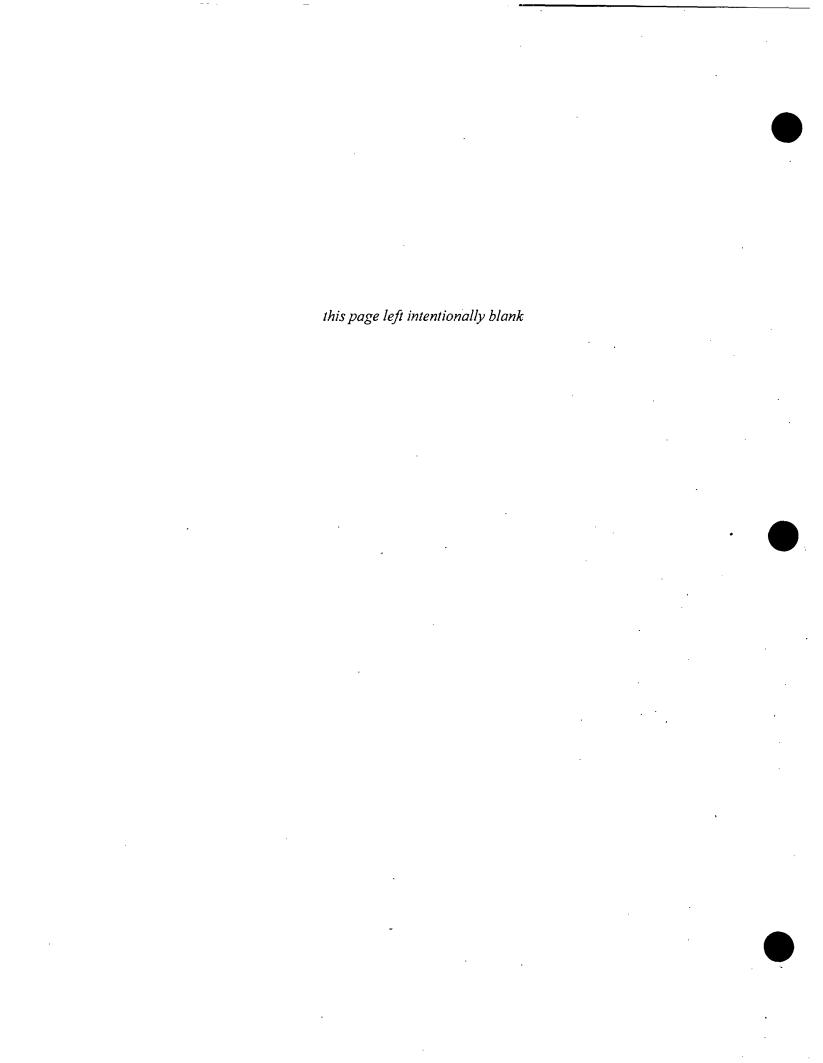
Solid Core See Site Plan Start Date: 12/10/03 Completion Date: 12/10/ Driller: ZACK ENS Rig Type: DIRECT PUSH Ground Elev: 5218.68 NORTHING Longed By: CAJ Water Depth: Not Encountered 1710885.48 S141388. Solid Core See Site Plan Water Depth: Not Encountered 1710885.48	03-1-411 Boring No: 28 Sheet 1 of 1	Project No.		<u>-:</u>	& LOC	e: VB	Name		roje
SOIL CORE SOIL CORE				N					
SOIL CORE Soil Core Soil			CT P	Type: DIRE	Rig	ZACK ENS		r:	riller
DESCRIPTION THE INTERPRETATE OF THE INTERPRET	: Not Encountered 1710885.48 3141388.12	Water Depth			J .	CA.	Ву:	ed	ogge
EASE DESCRIPTION DESCRIPTION	프	·			CORE	SOIL			
FILL ASPHALT 0-3" FILL GRAVELLY CLAYEY SAND SAMPLE AT SANDY CLAY, OLIVE GRAY, 5Y 4/1 SLIGHTLY MOIST CLAYEY SAND TO SANDY CLAY, BROWNISH YELLOW 10YR 6/8, MICACEOUS. CLAYEY SAND, LIGHT OLIVE BROWN 5Y 5/6 MOIST VERY MOIST—WET AT 10'-10'8" CLAYEY SAND, LIGHT OLIVE BROWN 5Y 5/6 MOIST VERY MOIST—WET AT 10'-10'8" SAMPLE AT CLAYSTONE, OLIVE GRAY, 5Y 4/1 - LIGHT BROWN GRAY 5YR 6/1 CS CLAYSTONE, OLIVE GRAY, 5Y 4/1 - LIGHT BROWN GRAY 5YR 6/1 CS REFUSAL AT 26' BELOW GROUND SURFACE SAMPLE AT	JESCRIPTION I I FIELD	I	U.S.C.S	Graphic Log	PID Reading (ppm)	Laboratory Sample ID	- 1 - 1	feet	Depth,
CLAYEY SAND TO SANDY CLAY, BROWNISH YELLOW 100 0028B SC CLAYEY SAND, LIGHT OLIVE BROWN SY 5/6 MOIST VERY MOIST—WET AT 10'-10'8" 11'-1'-13' WEATHERED CLAYSTONE SANDY CLAY, LIGHT OLIVE BROWN SY 5/6 MOIST CLAYSTONE, OLIVE GRAY, SY 4/1 - LIGHT BROWN GRAY SYR 6/1 CS CLAYES SAND TO SANDY CLAY, BROWNISH YELLOW 11'-1'-13' WEATHERED CLAYSTONE SAMPLE AT CCAYSTONE, OLIVE GRAY, SY 4/1 - LIGHT BROWN GRAY SYR 6/1 CS CRAYEY SAND TO SANDY CLAY, BROWNISH YELLOW SAMPLE AT CAYEY SAND TO SANDY CLAY, BROWNISH YELLOW STUCK IN F CASER DRING MOEB AT CLAYSTONE, OLIVE BROWN SY 5/6 MOIST CLAYSTONE, OLIVE GRAY, SY 4/1 - LIGHT BROWN GRAY SYR 6/1 SAMPLE AT CS CLAYEY SAND TO SANDY CLAY, BROWNISH YELLOW STUCK IN F STUCK IN F STUCK IN F SAMPLE AT CASER DRING MOEB AT SAMPLE AT SAMPLE AT SAMPLE AT CS CLAYEY SAND TO SANDY CLAY, BROWNISH YELLOW STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F STUCK IN F	L GRAVELLY CLAYEY SAND SAMPLE AT 11"-1'S	ALT 0-3" FIL	FILL .	XX,					0-
CLAYEY SAND TO SANDY CLAY, BROWNISH YELLOW 10	E GRAY, 5Y 4/1 SLIGHTLY MOIST	Y CLAY, OLIVI	CL S			- 0028A	75		
SC CLAYEY SAND, LIGHT OLIVE BROWN 5Y 5/6 MOIST VERY MOIST—WET AT 10'-10'8" 11'-1"-13' WEATHERED CLAYSTONE SAMPLE AT CLAYSTONE, OLIVE GRAY, 5Y 4/1 — LIGHT BROWN GRAY 5YR 6/1 CS CS CS CLAYEY SAND, LIGHT OLIVE BROWN 5Y 5/6 MOIST VERY MOIST—WET AT 10'-10'8" 11'-1"-13' WEATHERED CLAYSTONE SAMPLE AT CLAYSTONE, OLIVE GRAY, 5Y 4/1 — LIGHT BROWN GRAY 5YR 6/1 CS CS CS CS REFUSAL AT 26' BELOW GROUND SURFACE SAMPLE AT			יכ-כר				0 0		
CLAYSTONE, OLIVE GRAY, 5Y 4/1 - LIGHT BROWN GRAY SYR 6/1 CS CLAYSTONE, OLIVE GRAY, 5Y 4/1 - LIGHT BROWN GRAY SYR 6/1 CS CLAYSTONE, OLIVE GRAY, 5Y 4/1 - LIGHT BROWN GRAY SYR 6/1 SAMPLE AT REFUSAL AT 26' BELOW GROUND SURFACE REFUSAL AT 26' BELOW GROUND SURFACE	AT 10'-10'8" ERED CLAYSTONE SAMPLE AT 10'-10.	MOIST-WET /	SC (-0028B	2		
8 -		STONE, OLIVE				-0028C	-ിശി		
20 - 0028D 22 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -							110		
SAMPLE AT 26 - 27 - 0028E REFUSAL AT 26' BELOW GROUND SURFACE REFUSAL			CS			- 00280	101	- I	
REFUSAL AT 26' BELOW GROUND SURFACE REFUSAL REFUSAL							105		
REFUSAL	SAMPLE AT 24'-25.	SAL AT 26' D				- 0028E	100		
SO	LEGIT GROOME SURFACE	uni Al 20 D		A					
				REFUSAL					28
32 -									50
								$\left \cdot \right $	i2 -
34 -								+	34 -

											
<u>S</u>	01	L	BOR	ING	LOC	<u>; </u>		KUMAR & ASSO	CĹ	ATES	
Project					k 1-70			Project No. 03-1-411 Boring No: 29		Sheet 1 of 1	1
Boring Driller:		oca.	ion: S				СТ	PUSH Ground Elev: 5216.99 NORTHING		12/10/03 EASTING	
Logge		3v:		CAJ		Type: DIKE	.01	Water Depth: Not Encountered 1710640.99	i	3141410.43	
35		<u> </u>			************			1.0.0.			
	\vdash	1>		 i	CORE	1	r	1	DEPTH		
Depth, feet	FYTENT	RECOVERY	Laboratory	Or eldino	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION	CONTACT DE	FIELD NOTES	
0-7	+	%	٥ ــــــــــــــــــــــــــــــــــــ	,				OF AVEL FILL POLINDED CRAINE FROM 0.2" ADOVE	ŏ		
			-0029A			XX	FILL	GRAVEL FILL, ROUNDED GRAINS FROM 0-2" ABOVE			•
2 –	2-5	65	1				C1	GRAVELLY CLAYEY SAND	1,10,	SAMPLE AT 1'1	0
4					-	. , '	CL	SILTY SANDY CLAY, OLIVE GRAY 5Y 4/1 SLIGHT MOIST			
	-	-	0029B					CLAYSTONE, OLIVE GRAY 5Y 4/1 FROM 4'-9'	4.	SAMPLÉ AT 5'	
6 -								WEATHERED CLAYSTONE FROM 4'-10'			
8 –	7.1.7	98						BROWNISH YELLOW FROM 9'-10' INCREASED SAND IN CLAYSTONE BETWEEN 9'-10'			
10-			-0029C				7	OLIVE GRAY 5Y 4/1 TO BROWNISH GRAY 5YR 4/1 BELOW 10'		SAMPLE AT 11'	ı
12 -	10-15	100					cs				
14 -		_									
16 -	0	2 10	-0029D		-					SAMPLE AT 15'	5
18 –	15-1)					-				•
	\vdash	1						IRON STAINING IN FRACTURES			
20-	-25	i s	-0029E							SAMPLE AT 20'	
22 –	0	100									
24 —			 			A		REFUSAL AT 23' BELOW GROUND SURFACE	23		
26						REFUSAL					
										·	
28 –						·		·			
30											
32 –										•	
34 –				·							
36											

		BORING	LOC	<u>-</u>						AR &					
Project			& I-70				Project No.			Boring 1				1 of	_1
Boring Driller:		on: SEE S			CT	DIICLE	Start Date: Ground Elev:			Completion NORTHING			2/11, ASTING		
Driller: Logged		CA.		rype: Dike	-01	rusm	Water Depth:						41430		
rogued	Δγ.						water paping	Life			-·				
		SOIL	CORE	1		1						DEPTH			
	<u></u>	≥ے	ii (U	S		r	ESCRIPT	ION			님	E II	ELD	
Depth, feet	EXTENT RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S		L	FOCKIL I	1011		1	ادِ		TES	
Dej fea	X H	ogr dub	E G	5	U.S						ļ	ONTACT		-	
	36		띪	!		<u>L</u> .					1	8			
ا ۲۰۰	F	0030A 0030B			FILL	TOPS	DIL 0-2", SAN	DY CLAY	WITH F	RAGMENTS	OF			AT SUR	FA
		00308				BRICK				٠	'	s اص	AMPLE	AI 6"	
2 –	50												•		
						WEAT	HERED CLAYST	ONE, BRO	OWN 10Y	R 6/3 SL	IGHTLY				
4					cs		, WHITE BLEB				. = .				
l	HH									•					
6 -						VERY	SANDY-SILTY	FROM 5	-9' (BR	OWNISH YE	LLOW				
	20					10YR	6/8)		5 (5						
8 –	100					ľ	•					_			
	1 1 1	0030C		•,	-	SAND	STONE, WEEKL	Y CEMEN	TED. CLA	YEY. LIGH	,	S	AMPLE	AT 9°	
10-			1			BROW	N 10YR 8/3 (CCASION	IAL IRON	STAINED	BAND,				
.				• • • • • • • • • • • • • • • • • • • •		LOOSE					-		•		
,,	က											8			
12 –	78											-			
	9-				ŀ	WEAT	HERED CLAYST	ONE, OLI	VE GRAY	5Y 4/1.					
14 -		•	1		. :	SUGH	TLY MOIST, IR	NIATZ NO	ING LON	G FRACTÚ	RES,				
	H				LZZ.	STIFF.					1	}			
16 -	<u>o</u>					İ			••		}				•
	125		ł			 									
18 -	- -		1	•											
						BORIN	IG TERMINATED	AT 19'	BELOW	GROUND S	URFACE	_			
20-		•	1					• • •				19			
						}									
22]		1					•					
22 –			1	1											
]					ļ				
24 -						1					ļ				
											ļ				
26 -		•		1				•							
						1									
28 -]		J]				•		ļ			
							•				ſ	ŀ			
30-						ļ				•					
											ļ				
70									•		.				
32 -														-	
			1			}									
34 —				ļ		1									
	1		1	ı	1 '	1									

Project			& i-70			Project No. 03-1-411	Boring No: 31		Sheet 1 o
		lon: SEE S					Completion Date:		12/11/03
Driller:		ZACK ENS		Type: DIR	ECT P	USH Ground Elev: 5224.38	NORTHING .	,	EASTING
Logged	Ву:	CAJ	J			Water Depth: Not Encountered	1709530.36	!	3141412.83
			CORE					Ξ	
	EXTENT RECOVERY	25	PID Reading (ppm)					DEPTH	
Depth, feet	28	Laborotory Sample ID	3,5	Graphic Log	U.S.C.S	DESCRIPTION		1. 1	FIELD NOTES
De p feet		bor	& g	ĒZ	J.S.			Ž	110123
	ж ж	La Sa	윤	9	7			CONTACT	
0-		-0031A	 		FILL	" TOPSOIL OVER GRAVELLY CLAYEY	SAND BITS OF	-	CALIE: 5 : -
				· Y		RICK AT 8"-10"	SAILD DIES OF	\sqcap	SAMPLE AT
2 -	က်က	,			Ì				
	0-5					VEATHERED CLAYSTONE, BROWN 10'	R 6/3 TO OLIVE		
4						RAY 5Y 4/1			
		-0031B			A	IOIST IRON STAINING IN FRACTURES			SAMPLE AT
6-		30010							
٦									
1	5-10 100				l	INWEATHERED, "FRESH" CLAYSTONE	AT 17' DARK		
8 -	4					RAY N3/ DRY -SLIGHT MOIST			
- 1						·			
10-		-0031C							SAMPLE AT
							•		
12 -	5 0								
	100					·			
14	-								•
					cs				
					. "	•	•		
16 —	19					·			
	5-1 125								APPROXIMATE
18 –	-								BOUNDARY O
		-							UNWEATHERE
20-	M					•		'	CLAYSTONE
)-23 95								
22	19				:				
								•	•
24 -									
477	-25 95					OLOR RETURNS TO BROWNISH YELL	OW 10YR 6/8		
. 1	23-2 95				E	ELOW 28'.			•
26 –					,	NCREASED IRON STAINING THROUGH	OUT SAMPLE AT		
1	<u> </u>		1			8'			
28 –	25-29 105					•			
	7				R	EFUSAL AT 29' BELOW GROUND SU	JRFACE	H	
30-				+		•			•
				j			•		
32 –	.		[1	REFUSAL		•			·
7						C SAMPLES:			
		-RIN-0002				INSEATE BLANK		-	• •
34 -		Į į			1 [i	1	

S	OIL	BORING	LOG	,		KUMAR & ASSO	CL	ATES
Project			£ 1−70			Project No. 03-1-411 Boring No: 3	2	Sheet 1 of 1
Boring			ITE PLA	N		Start Date: 12/12/03 Completion Date	:	12/12/03
Driller:		ZACK ENS		Type: DIRE	CT F	USH Ground Elev: 5214.01 NORTHING		EASTING
Logged	Ву:	CAJ	<u> </u>			Water Depth: Not Encountered 1710598.25		3142818.46
		SOIL	CORE			<u> </u>	ĪΞ	
	2	>0	B				CONTACT DEPTH	
ڋ	EXTENT	Laboratory Sample ID	Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION	1	FIELD
Depth, feet		i de la la la la la la la la la la la la la	8 d	53	S.	·	ITAC	NOTES
	9		₽)	9			8	
2 -	0-5	-0032A			↓	SPHALT 0-4" ABCYE GRAVEL, ABOVE GRAVELLY ANDY CLAY, CINDERS/SLAG, CHIPS OF RUSTED SETAL FROM 6' TO 8'6" STAINED ORANGE-BLACK		SAMPLE AT 4"
4 -					FILL	·		,
	\vdash			$\times \times$		• • •		
6 -		-0032B			1			SAMPLE AT 6'
	5-10	2]]		1	
8 –	ψ,	-0032C		$\times \times$				·
10—		-			sc	SLIGHTLY SANDY CLAY, MOIST, LIGHT OLIVE BROWN BY 5/6		SAMPLE AT 9'
12 -	10-15	-0032D				VEATHERED CLAYSTONE, MOIST, OLIVE GREEN 5Y /1 STIFFENS WITH DEPTH, MINOR IRON STAINING IN		SAMPLE AT 13'10"
16 –						RACTURES		
	07-70							· •
18 –	5				cs			
		1						1 . 1
20—		-		- '				
22 -	52				.		ŀ	· !
	20-25	2						
24 -	2	-0032E						SAMPLE AT 24'
-	\sqcup					BORING TERMINATED AT 25' BELOW GROUND SURFACE		
26 -						TERMINATES AT 20 DECOR GROUND BONT MOL		. [
1				,				[
28 -					•			1.
30-						•		
32 -	_			}				
]				
34 -								
36	Ц	1	L	L		· · · · · · · · · · · · · · · · · · ·	<u></u>	1


			· · · · · · · · · · · · · · · · · · ·				·					
S	OI:	L	BORING	LOC	<u>;</u>				KUM	AR & ASS	QCI	ATES
Project	No	me	: VB &	& I-70				Project No.	03-1-411	Boring No:	33	Sheet 1 of 1
Boring				ITE PLA				Start Date:	12/18/03	Completion Da	te:	12/18/03
Driller:			ZACK ENS		Type: DIR	ECT		Ground Elev:	5198.94	NORTHING		EASTING
Logged	B	<u>/:</u>	CAJ	<u> </u>				Water Depth:	Not Encountered	1710284.93		3143031.77
· · · · · · · · · · · · · · · · · · ·		_	· .		·							
	_	<u> </u>	SOIL	CORE	, .	1	ר				PTH	
Depth, feet	EXTENT	% RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S		D	ESCRIPTION		CONTACT DE	FIELD
0	-	•	-0033A			1	ASPHA	ALT D-4". ARC	VE GRAVEL, ABO	OVE CLAYEY	+	SAMPLE AT 4"
2 -	0-5	75	-0033B			FILL	SAND.	•	BROWN 10YR		" 2,6"	STIFFENS AND DARKENS AT 2'-6" SAMPLE AT 3'
6 –											4,6	
8 -	5-10	75		·								
10-			-0033C			SP-SM			D, MOIST BROWN THAN THE SC I			SAMPLE AT 9'
12 -	10-15	125							. • •	·		
16 –	20		-0033D		0 0	SP-GP	TO LI		SANDY GRAVEL, GRANITIC GRAINS) 17'3"		14,10"	SAMPLE AT 15'
18 -	15-	06	-0033E			cs		HERED CLAYSTO TLY MOIST	ONE, OLIVE GREE	N 5Y 4/1	17	SAMPLE AT 18' ORGANICS AT 18'
20-		Н	-	,	A		REFUS	SAL AT 20' BE	LOW GROUND SU	RFACE	20,	
22 -					REFUSAL							
24 -												
26 -			·						·			
28 -												·
30												
32 -			-RIN0004					SAMPLES: EATE BLANK	•			:
34 -												
_36												

oject	Nom	BORING	& I-70			Project No	03-1-41	Boring No:	34	Sheet 1	of 1
			ITE PLA	.N		Start Date		 		12/18/03	
iller:		ZACK ENS	Rig	Type: DIR	ECT P	USH Ground El		NORTHING		EASTING	
gged	By:	CAJ	<u> </u>			Water Dep	oth: Not Encounter	ed 1710567.65		3143284.37	<u></u>
							·				•
			CORE	1					Ä		
_	EXTENT	2⊆	Reading (ppm)	U	S		DESCRIPTION		HEPTH	FIELD	
Depth. feet		Laboratory Sample ID	Page (m)	Graphic	U.S.C.S		DESCRIPTION		I S	NOTES	
9		oge G H	PIO PIO	55	U.S		-	•	TONTACT		
0	36		<u> </u>						٥ ا	·	
		-0034A		$\times \times$			ABOVE 3" OF GRA		SUM .	SAMPLE AT	4"
2	S .				1	4'6" TO 5', ABO	OVE CLAYEY SAND			1" OF BLAC	CK AN
	55			(X)		10YR 8/3				AT 7'6"	
4-		-0034B		XX	FILL	•		•		CAUS: 5 :=	, 1 - 21
	-	1			1					SAMPLE AT	4 6
6 -				(X)							
	5-10 48			XX		-				DENSE AT	CONTA
8	7 4								7,6	POSSIBLE G	
						SILTY SAND, LIG	HT BROWN 10YR	7/3. MOIST. LO	1	SURFACE	
0-	-	-0034C&D		/· : :		TO MEDIUM DEN		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		0054005			3					SAMPLE AT	11'
12 -	-15				SP-SM						
	2] " [•			.		-
14											•
				·/		•		•			
16 -	0			<u> </u>	흥	GRAVELLY SAND,	LAYERS OF SANS	Y GRAVEL,	16	SHARP CON	ITACT
18 –	5-20	-0034E		0 0	SP-GP	GRANITIC GRAINS	S. SUBANGULAR, S	LIGHTLY MOIST	2	SHARP CON	
	=	F0034E						•	1716	SAMPLE AT	18'
20-									F	1	
20		-0034F					YSTONE, SLIGHTLY		/ISH	SAMPLE AT	21'
22	-24 25					GRAY 5Y 8/1, I RONSTAINING IN	LIGHT OLIVE BROW	N 5Y 5/6			
_	2					NONSIAMME IN	FRACTURES				
24]				REFUSAL AT 24'	BELOW GROUND	SURFACE	Ļ	_	
				 ♣					24		
26 -				מבנייביי					İ]	
				REFUSAL				•	.		
28 -								•			
							•				
30-										1	
								•			
32											
			}								
34 -										1.	
	1	1	1	l					1	Ī	

roject		BORING	& I-70	<u></u>		RUMAR & ASSOC	
		ion: SEE S		N		Project No. 03-1-411 Boring No: 35 Start Date: 12/18/03 Completion Date:	
riller:		ZACK ENS			CT	PUSH Ground Elev: 5177.70 NORTHING	EASTING
ogged		CAL				Water Depth: Not Encountered 1710798.60	3143964.16
	г	SOIL	CORE				-
	<u></u>					DESCRIPTION	
Depth, feet	EXTENT % RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION	
0		-0035A				ASPHALT 0-3" ABOVE GRAVEL CLAYEY SANDS,	SAMPLE AT 6"
2 -	0-5					OCCASIONAL GRAVEL, DARK BROWN 10YR 3/3	VERY MOIST BETWEEN 4' &
8 -	5-10	-00358 -0035C			SP	COARSE SAND, OCCASIONAL GRAVEL, MOIST 9'2"	SAMPLE AT 9' SAMPLE AT 9'1 SHARP CONTACT
12 -	10-15				cs	WEATHERED CLAYSTONE, SLIGHTLY MOIST, LIGHT OLIVE BROWN 5Y 8/8, WHITE MINERALIZATION FROM 9'8" TO 11' VERY STIFF	
16 -						BORING TERMINATED AT 15' BELOW GROUND SURFACE	2
'67						·	
18 -							· ·
1							
20-				·			1
						}	}
22 -							1
24 -							1
20							
26 –						<u> </u>	
28 –						 .	
						·	
30-					1	1	
_					İ		
32 -					ļ		
					ļ		
34 -						•	· -
-			·				
36				i	i		1

2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Project			& I-70			Project No. 03-1-411 Boring No:	36	Sheet 1 of 1
SOIL CORE SOIL						COT		Date:	
SOIL CORE SAMPLE AT 3" SAMPLE AT 3" SAMPLE AT 11' SAMPLE AT 3'' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE AT 11' SAMPLE					iype: Dik	ECI			1
THE PROOF OF THE P								: 1.	
## 0036A 0036B		1>	.1		1	T			I I
TOPSOIL 0-3" ABOVE CLAYEY SAND, OCCASIONAL GRAVEL, IRON STAINING FROM 0 TO 7" BROWN 10YR 10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	Depth. feet			ID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION		
2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-7	- 3	31	٠,٠		┤	TORSOIL 03" ADOVE CLAYEY SAND OCCASIONAL		T.L
6 - 0 0036B 8 - 0 0036C 10 - 0036C 11 - 0 0036C 12 - 0 0036C 14 - 0 0036C 15 - 0 0036C 16 - 0 0036C 17 - 0 0036C 18 - 0 0036C 18 - 0 0036C 20 - 0 00		0-5				X	GRAVEL, IRON STAINING FROM 0 TO 7' BROWN 18		ROOT AT 2'6" 8
8 - 0 0 0 0 0 0 0 0 0			0036B			FILL			SAMPLE AT 5'
GRANITIC GRAVEL FROM 10' TO 11' 12 - 10	1 '	-10			\times				ROCK IN NOSE (SAMPLER 1' RECOVERED FRO
12 -		2			$\langle \rangle \langle \rangle$		GRANITIC GRAVEL FROM 10' TO 11'		5'-10'
12 -	10		-0036C		(\times)	k			SAMPLE AT 11'
16 -	12 -	0-15 95	1				CLAYSTONE SLIGHT MOIST-DRY, OLIVE GRAY 5Y 5	[7	7
BORING TERMINATED AT 18' BELOW GROUND SURFACE 22 - 24 - 26 - 30 - 32 - 32 - 32 - 32 - 33 - 32 - 34 - 35 - 35 - 35 - 35 - 35 - 35 - 35						cs	VERY STIFF		
BORING TERMINATED AT 18' BELOW GROUND SURFACE 22 - 24 - 26 - 30 - 32 - 32 - 32 - 32 - 33 - 32 - 34 - 35 - 35 - 35 - 35 - 35 - 35 - 35	16 –	5-18					MOIST BELOW 15'6"		
20— 22 — 24 — 26 — 28 — 30— 32 —		-	<u> </u>			•			x 0
24 -	20								_
26 — 28 — 30— 32 — 32 — 32 — 32 — 33 — 33 — 33	22 -								·
28 – 30 – 32 –	24 —								
30—	26 –								
32 –	28 –								
	30-								
34 –	32 -						•		
	34 —								

S	ΩII	BORI	NG LO	<u>.</u>		KUMAR & ASSOCIATES
Project			VB & 1-70			Project No. 03-1-411 Boring No: 37 Sheet 1 of 1
			E SITE PL			Start Date: 12/18/03 Completion Date: 12/18/03
Driller: Logged		ZACK E	NS Rig CAJ	Type: DIRI	ECT I	PUSH Ground Elev: 5169.93 NORTHING EASTING Water Depth: Not Encountered 1709846.85 3143935.42
		-				
	1		OIL CORE			[]
Depth, feet	EXTENT	J	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION FIELD NOTES
0] '	-0037A	-	XX		CLAYEY SAND, OCCASIONAL GRAVEL, BROWN TO SAMPLE AT SURFACE
4 -	0-5	26			FILL	LIGHT BROWN DRY-SLIGHTLY MOIST
6 -	5-10	-0037B		XX	SP-GP	GRAVELLY SAND, MOIST, GRANITIC
10-	4	0037C			cs	CLAYSTONE, SLIGHTLY MOIST-DRY, BROWNISH GRAY 5Y R 4/1 FROM 6' TO 11', LIGHT OLIVE BROWN 5Y 5/6 BELOW 11', STIFF, WHITE MINERALIZATION FROM 6' TO 10'.
12 -	1-0-	8		:		IRON STAINING IN FRACTURES
14		5				VERY SANDY CLAYSTONE BELOW 13'
16 –	4-15	nc				BORING TERMINATED AT 15' BELOW GROUND SURFACE
18 -	14					
1						
20-						
22 –						
24						
26 -						
28 -						
30—						
32 -						
34 -						

ROUND 2 BORING LOGS APRIL 2004

S	OII.	BORING	LOC	·			KUM	AR & AS	SSOC	IATES
Project			& 1-70			Project No.	·	Boring No:		
Boring				Parking	Lot	Start Date:	04/08/04			04/08/04
Oriller:		stin / Kyle				Ground Elev:	5207.93	NORTHING	Daie.	EASTING
Logged		Derek Bo		71			Not Encountered		1.51	3142892.43
		SOIL	CORE		Y				I I	·
Depth,	EXTENT % RECOVERY	Well inner Casing – 2" pvc	Outer Sand Pack & Seal	Graphic Log	U.S.C.S	DE	SCRIPTION	·	CONTACT DEPTH	
2 -	55	1 1	ETE 0"-10" ENTONITE 10"-3'	\times	RU	PHALT 0-7", I ST STAINS AT RK BROWN				FLUSH MOUNT 0-10" BLANK 0"-3' SCREEN 3'-13'
4 -			COLO.	\times					ir	<u>-</u>
6 –	100		SILICA SAND 10/20 3' - 13'		DR	ATHERED CLAY Y AT 10° TO 1	15',	TO DRY,		
8 –			3 - 13				,			
.					cs					
10-	H	日								
12 -	100		ENTONITE							
16 -			13' -15'			RING BACKFILL NTONITE FROM		GS.	15.	
18 -										
20-										
22 -										
24 -							•		,	
26 -										
28 –			_							
30-										
32 -										
34 -										
36 -						·				<u> </u>

S		ВО	RIN	٧G	LOG	1					KUM	AR & ASSO	CI	ATES		
Project					1-70				Project No.	04-1	-247	Boring No: MW-	33	Sheet	1 of 1	\dashv
					SIDE C	F BEST V			Start Date:	04/0		Completion Date	_	04/08	/04	
Driller:		ustin		Kyle		Type: DIR	ECT I	PUSH	Ground Elev			NORTHING		EASTING	•	ł
Logged	By:		erek	ROM	man				Water Depth	: 10		1710322.68		314	3032.19	\dashv
		•														
	-	-1	S	OIL (CORE		T	 -			-	······································	DEPTH	,		7
تے ا	-	AECOVER 1	Casing – 2" pvc		Sand & Seal	. <u>e</u>	S			DESCRIPTI	ON	•		1 1	ELD	ļ
Depth, feet	EXTENT	3 =	gris g	.	ຼິສ	Graphic Log	U.S.C.S						CONTACT	. NO	TES	
D-F	1 1	\$ X	207		Outer Pack 8	O	ר						SON			.
. 0-	H	`		CONCR	TE 0"-10"				HALT 0-6"				\top	FLUSH M	OUNT 0-1	0"
2 -	N.	1				$\perp X$	FILL	FILL,	, SANDY CLA	Y, DARK	BROWN		5.	BLANK	0"-8'	
		2			ONITE - 6*	/	sc	CLAY	YEY SAND, D	ARK BROV	VN, 10	YR 4/2, MOIST		SCREEN	8' TO 18	.
4 -		ł			BENTONITE 10" – 6"			, i				•	*	4	•	
	$\vdash \vdash$	-								•						
6 -				-												
	-	2												ļ		- (
8 -	w,]					SM	SILT	Y SAND, DRY	C TO MOIS	T. 101	'R 7/4				- 1
40							SP-SM	LOO	SE		.,	// .				1
10	П	7			5,0°		1"		•							
12 -	15			1	10/20 16'9"											
	1 8	8	\exists		SAND 6' -											- }
14 -	위		H		J 07 W					_			-			1
		\dashv					-	CBA	VELLY SAND	MOIST TO) WET	PINK, 5YR 8/4	9	1		1
16 –	2	모	Ħ			0 0	SP PP	GRAI	VELLY SAND, NITIC GRAINS	, MO131 17	J WEI,	FIRK, SIK 0/4	19,			-
	1	3	Ħ	CD1	LLAPSEC '9"-18'						ASURE	D AT 16' 6"				ļ
18 –	5		-		NTONITE		cs	WEA	THERED CLAY	YSTONE I	IGHT C	LIVE BROWN.				1
20—	Ш	_		1	8'-20'			5 YI	R 5/6	1010KC, E		,				
22 –												•				
		ŀ								• •						
24 —										•						
														,		
26 –									•							
_																
28 -															•	-
30—																
													}			
32 -																
34 —																
36	<u> </u>							· · · · ·					_	٠		\exists

roject	No	me.	· VP	& I-70			Project No. 04-1-247 Boring No: MW-34 Sheet 1 of 1
oring					SEST WES	rern	
riller:			stin / Kyl				PUSH Ground Elev: 5199.15 NORTHING EASTING
ogged	Ву	:	Derek B	owman			Water Depth: Not Encountered 1710567.32 3143346.23
	т						
	 	<u></u>	SOIL	CORE	1		TECONOTION SIELD
Depth, feet		% RECOVERY	Well Inner Casing – 2" pvc	Outer Sand Pack & Seal	Graphic Log	U.S.C.S	DESCRIPTION FIELD NOTES
. 0-	П		60	HCRETE C'-6			FILL, CLAYEY SAND, MOIST, TWIGS, STICKUP STEEL RIS
2 -		90		ы Б	X		CONCRETE BRICK AT 6' 6"-7' 0" BLANK 0"-11'3" SCREEN 11' 3"-21
4 -				BENTONITE 6" - 9' 3"	X	FILL	
6 -							1-
8		8					SILTY SAND, DARK YELLOWISH ORANGE
					/		10 YR 6/6, MOIST, LOOSE 10 YR 5/4, MODERATE YELLOWISH BROWN
10-	П					MS-	AT 10'-16'
12		82				SP-	
14 -				4 0 m			
' ·	H	\dashv	Ħ	SIUCA 10/20 - 21' 3"			10
16 -				COLO. SAND 9' 3" -	0 0		GRAVELLY SANDS, SLIGHTLY MOIST, SOME
		8	H	, e		-GP	COBBLES GRANITIC GRAINS, MODERATE ORANGE PINK TO LIGHT BROWN
18 –						SP	5 YR 8/4 TO 5 YR 5/6
20	H	<u></u>			0 0		100 100 100 100 100 100 100 100 100 100
	H	300			-	cs	WEATHERED CLAYSTONE AT 20'2" 5Y 6/4
22 –							
24 -							21' 3" REFUSAL
26 –							
28 -							
30-							
32 –							
34 —	1						

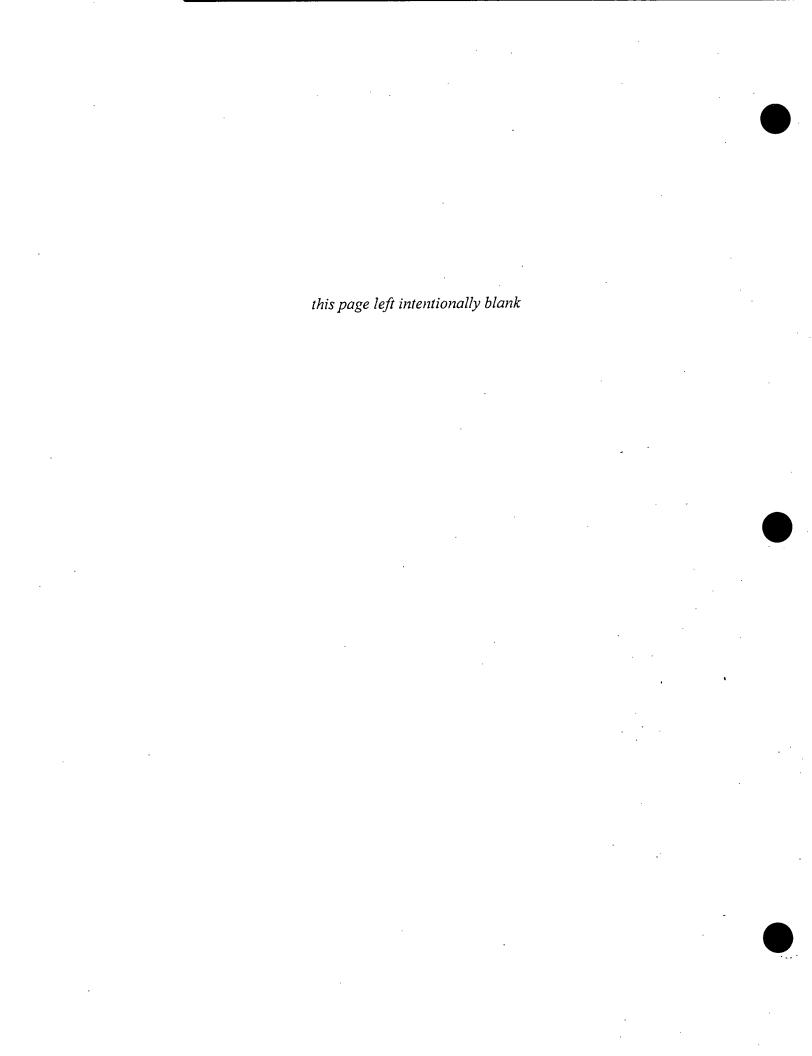
	Name:		& I-70			Project No.	04-1-247	Boring No: MW	-35	Sheet 1 of 1
				SALVATIO			04/08/04	Completion Da	te:	04/08/04
riller: ogged		tin / Kyl Derek Bo		Type: DIR	ECT P	USH Ground Elev: Water Depth:	5178.74 Not Encountered	NORTHING 1710792.03		EASTING 3143934.39
		SOIL	CORE						DEPTH	
Depth, feet	EXTENT % RECOVERY	Well Inner Casing – 2" pvc	Outer Sand Pack & Seal	Graphic Log	U.S.C.S	ום	ESCRIPTION		CONTACT DE	1 71711
0-		CON	PRETE C"-10"	/		ASPHALT 0-4" FILL, DARK BROWN	1 MOIST			FLUSH MOUNT 0-10
2 ~	ω C		H	LX.		FILL, DARK BROWL	4, MOIST		2,	BLANK 0"-7"
4 -	- 0		BENTONITE	0 0	0	SANDS, GRAVELLY MODERATE YELLOW	SAND 10YR	5/4		SCREEN 7' TO 12'
				0 0	8	GRAVEL LENS AT	APPROXIMATEL	Y 4' 6"		
8 -	5 - 10		COLO. SILICA SAND 10/20	0 0		GRAVELS AT 8' 6' DRY	· TO 11'	5 YR 8/4 TO 5YR 7/2		
	3,11	目	l Gw						=	
12 -	7				cs \	WEATHERED CLAYS		MED THROUGH SLICE IN LINER	=	.]
	0 0		BENTONITE 12'-13'11"			BORING BACKFILLE			13,	
14 -			BENT 12'-1			FROM 13'11" TO	12' BGS			
16 -						LINER PACKED FUI				
						FROM FRODE AT	.0 15 11			
8 -			}							
20-										
22 -										
24						•		•		
•										
26 -										
28 —										
so—							·			·
52 -										
- []				1	1					1

I			DODING				KUMAR & ASSOCIATES
	5'roject		BORING		<u>r</u>		
ł			on: S.E. C	& I-70	SALVATION	N .AR	
Ì	Oriller:		stin / Kyle				PUSH Ground Elev: 5175.32 NORTHING EASTING
	Logged	Ву:	Derek Bo	wman			Water Depth: Not Encountered 1710364.20 3143986.44
		,					
١			SOIL	CORE	ı		DESCRIPTION EIEI D
	Depth, feet	EXTENT RECOVERY	Well Inner Casing — 2" pvc	Outer Sand Pack & Seal	Graphic Log	U.S.C.S	DESCRIPTION FIELD NOTES
	. 0		CON	BENTONITE DE 10°-2'6"			TOPSOIL 0-3" FLUSH MOUNT 0-10"
	2 -	က		NTON 0 2	X		CLAYEY SAND, IRON STAINING, MINERALIZATION, 10YR 6/2 TO 10YR 4/2
١	-	65		<u> </u>		FILL	SCREEN 4'6" TO 9'6"
	4 -						
		H	H	SILICA 10/20 - 9' 6"			- To
ł	6 -	0	H	10, SI	0 0	급	GRAVELLY SANDS, SLIGHTLY MOIST
١		100		COLO. SAND 2' 6"		SP-GP	5 YR 8/4 TO 5 YR 7/2
١	8 –	2		7			WEATHERED CLAYSTONE, LIGHT OLIVE GRAY
ı	10-					03	5Y 5/2
	12 -	111					
1							
1	14 -						
١	16 -						
I	18 -	1					
I							
	20—						
Į	1				·		
İ	22 –						
	24						
	24 -				,		
	26 -						
	28 –						
1							
	30—						
	32 –				,		
	34 -				· 		
	36	Ш					

ROUND 3 BORING LOGS MAY 2005

roject	Name	e: VB & I-	70, OU3				Project No. 05-1-258	Boring No: f	PS-1	Sheet 1 of 1
		ion: I-70 c		<u> </u>			Start Date:	Completion D		5/2/05
riller:	Zac	h .	Rig	Type: Dir	ect Pu	ısh	Ground Elev:	NORTHING		EASTING
ogged	Ву:	CAJ					Water Depth: 12.8'	<u> </u>		
					<u>-</u>					
	151		CORE		т		•	•	DEPTH]
	EXTENT % RECOVERY	Laboratory Sample 10	PID Reading (ppm)	Graphic Log	U.S.C.S		DESCRIPTION		CONTACT DE	(F1F11)
2 - 4 -	0-5					FILL TO	: SANDY CLAY, MOIST, DARI MEDIUM GRAY NS	C GRAY N3		3" OF TOPSOI FRAGMENTS OF BRICK 0-1', FRAGMENTS OF CS 6"-1'
8 -	5-10	·				GRA	SHTLY SILTY SAND WITH OCC VEL, DRY-MOIST 6'-12'6", 6", LIGHT BROWN 10YR 8			
12 -	10–15				!	BROV 14'-	THERED CLAYSTONE, SLIGHTL VNISH YELLOW 10YR 6/8 FF 14'6", DARK GREENISH GRA 1 14'6"–15'	ROM		KNIGHT PIESOL STOPPED BORII AT 15'
18 -										
22 -								·		·
24 -										
26 -										
.50-										·
32 -										
.34 -										
				1					- }- }	

KUMAR & ASSOCIATES SOIL BORING LOG Project Name: VB & I-70, OU3 Project No. 05-1-258 Boring No: PS-2 Sheet 1 of 1 Boring Location: 1-70 and 1-25 Start Date: Completion Date: 5/2/05 NORTHING **EASTING** Driller: Zach Rig Type: Direct Push Ground Elev: Logged By: CAJ Water Depth: NE SOIL CORE DEPTH Reading (RECOVERY Laboratory Sample 10 U.S.C.S DESCRIPTION FIELD NOTES 5 0-3" OF TOPSOIL FILL: SANDY CLAY, DRY-MOIST, DARK GRAY 2 -6 SLIGHTLY SILTY GRAVELLY SAND, DRY 2'-11'6", 5-1 MOIST 11'6"-12', BROWN 10YR 6/3 TO BROWNISH YELLOW 10YR B/4 10-12 -NO STRUCTURE VERY WEATHERED CLAYSTONE, MOIST, SLIGHTLY 14 -SANDY-SANDY, MEDIUM GRAY NS KNIGHT PIESOLD STOPPED BORING 16 AT 15' 18 -20-22 -24 -26 28 -30-32 34


I											
	<u>S</u>	<u>01</u>	L	BORING	LOC	3_	. =-		KUMAR & ASSC	CI	ATES
				e: VB & I-7				Project No. 05-1-258	Boring No: PS-	_	
	<u></u>		cat (acl	ion: 1-70 a				Start Date:	Completion Date	e:	5/2/05 EASTING
ŀ	Driller: Logged		_		[Kig	Type: Dire	eci	Push Ground Elev: Water Depth: 14.3'	NORTHING		EASTING
	Loggeo	<u> </u>	/·	CAS				rader Depili. 14.3			
		L	_	SOIL	CORE	,		7		표	
	Depth, feet	EXTENT	% RECOVERY	Laboratory Sample iD	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION		CONTACT DEPTH	1 PIELU
	2 -	0-5	35					FILL: SANDY CLAY, MOIST, 10YR 3/3 AT 0-1' TO OL BELOW 1'			MOTTLED
	6 -							SHOUTH SHAVEY CAME WITH	T	-	
	8 –	5-10	40					SLIGHTLY CLAYEY SAND WI GRAVELS, DRY 5'6" TO 14 LIGHT BROWN 10YR 8/3, I	', WET BELOW 14',		
	10-	-15									•
	14 -	10-	2								
	16 -	15-20	80	JAR SAMPLE APPROX. 16'-6"				SANDY LEAN CLAY, MOIST, I SLIGHTLY CLAYEY SAND, WE			
	20			JAR ,				SANDY LEAN CLAY, MOIST, I			
	22 -	20-23	130	SAMPLE 20'-21'	Į	/: : · ·		SLIGHTLY CLAYEY SAND, MOI BELOW 21' BROWN 10YR 6/	'3		
	24 -	2	-					CLAYSTONE, SLIGHTLY MOIST BLUISH GRAY SB 4/1	, HARD, MEDIUM	H	REFUAL AT 23'
	26 -										
	28 -										
	1.0								*		
	32 -										
	34 -										
	2,6										

KUMAR & ASSOCIATES SOIL BORING LOG Project No. 05-1-258 Project Name: VB & 1-70, 0U3 Boring No: PS-4 Sheet 1 of 1 Boring Location: 1-70 and 1-25 Start Date: Completion Date: 5/2/05 NORTHING Driller: Zach Rig Type: Direct Push Ground Elev: EASTING Water Depth: 12.1' Logged By: CAJ SOIL CORE Reading (ppm) Laboratory Sample 1D Graphic Log U.S.C.S **DESCRIPTION** FIELD Depth, feet NOTES 윤 4" OF TOPSOIL. 2 -6 -5-1 SLIGHTLY SILTY TO SLIGHTLY CLAYEY SAND, 10-OCCASIONAL GRAVELS 6'-20', COMMON GRAVELS 20'-28'6", SLIGHTLY MOIST TO MOIST 6'-14'6", WET BELOW 14'6", LIGHT BROWN 10YR 8/3 12 -JAR 14 -SAMPLE 15'-16' 16 -15-20 18 -20-MORE CLAY AND DISCOLORATION (DARK BROWN 10YR 3/3 AT 17') 22 -24 -26 -28 -WESTHERED CLAYSTONE, MOIST, IRON STAINED, DRILLER CALLED MEDIUM OLIVE GRAY 5Y 5/1 HOLE AT 29' 30-32 -34

!	SC)II.	BORING	LOG			KUM	MAR & ASSO	CIATES
			e: VB & 1-7				Project No. 05-1-258	Boring No: PS-	5 Sheet 1 of 1
			ion: 1—70 aı				Start Date:	Completion Date	
	Driller:					ect Pu	sh Ground Elev:	NORTHING	EASTING
	Logged						Water Depth: 11.25'		
	O Depth,	60 % RECOVERY		PID Reading OO (ppm)	Graphic] :	DESCRIPTION' OUT OF THE PROPERTY OF THE PROPE	ONAL GRAVEL, SH GRAY 5YR	FIELD NOTES CHARCOAL FRAGMENTS AT 1'
	8 -	5 5-10					LIGHTLY SILTY SAND, OCCASION OIST 5'6"—11', WET BELOW 11	NAL GRAVELLY,	
·	14 -	15-20 10-15 60 25	JAR SAMPLE 13'-14'				RAY 5YR 6/1 TO LIGHTLY BRO	WN 10YR 8/3	
2) 4 24 4 25 4 4 5 4 5 4 5 5 5 5 5 5 5 5 5	24 -	25–27'6" 20–25					OTENTIALLY BEDROCK, SANDSTO O RECOVERY	NE	— DRILLER CALLED HOLE WHEN IT ABRUBTLY STIFFENED

Project	No	me	: VB & I-7	o, ou3			Project No. 05-1-258	Borin	g No: PS-	6	Sheet 1 of 1
			on: I-70 a				Start Date:		letion Date:		5/2/05
Oriller:	Z	act	1	Rig	Type: Dir	ect f		NORTI			EASTING
ogged	В	:	CAJ				Water Depth: 11.8'				
							Under Artesian Pressur	e			
·—	<u> </u>		SOIL	CORE	<u>.</u>		 		· · · · · · · · · · · · · · · · · · ·	-	
		≿ा			Γ	Τ]			DEPTH	
£.	EXTENT	Ž	Laboratory Sample 10	PID Reading (ppm)	5. L	S	DESCRIPTION	N			FIELD
Depth, feet	X	읾	npi	Rec	Graphic Log	U.S.C.S				TAC	NOTES
D 4±	ū	%	Lat Sar	을 일	Ö) >				CONTACT	
0	 	*									
1							FILL: MIXED CLAYEY SAND	AND SANDY	CLAY.		CHARCOAL FRAGMENTS AT
2 –	0-5	8					SLIGHLTY MOIST-MOIST, DA	RK BROWN	10YR		1'-2'
	0				$\langle \rangle$		3/3 FROM 0'-3', BROWN 1 3'-6'	10YR 6/4 F	ROM '		•
4 -					$\mid \times \mid$		J -0		,		
	H	\dashv									
6 —					· · · /				İ	H	
	5-10	8					SILTY GRAVELLY SAND, DRY	'. LIGHT RP	own		
8 -							10YR 7/3	, 2.5111 510			
10_											*DUBUS
		\neg									≠DURING DRILLING WAT
12 —	2										WAS NOT
``~]	0-15	22									ENCOUNTERED ABOVE
14 -	-				. /						16'6"/AFTER
	_	╝					SANDY CLAY, MOIST, OLIVE	DDOWN 7 F	VD 5/6		DRILLING WAT
16		1					SANDI CLAI, MOISI, OLIVE	DROWN 7.5	71K 3/6		SUGGESTS TH THE SP-SC
	5-20		JAR							-	UNIT WAS
18 -	5	∞ [SAMPLE 17'-18'		· . /		SLIGHTLY CLAYEY SAND WIT				UNDER ARTASIAN
			17 10		/		LENSES OF SANDY CLAY, G 20'-21'6", WET, BROWNISH				WATER
20—	9	\dashv					TO BROWN 10YR 6/3		•		PRESSURE
	22,6	S.								-	
22 -	20-22,		ļ		· · · ·		SILTY TO CLAYEY SANDSTON	NE, MOIST,	LIGHT	\dashv	REFUSAL AT
		٦					BLUISH GRAY 5B 7/1				22'6"
24 -											
											•
26 -											
			.	Ì			. '				
28 -											
_				-							
30-											
,			ŀ	1							
32 -									-		
_									İ		•
34 —			1	İ	İ				1		

	<u>s(</u>	OIL	BORING	LOG	<u> </u>	,	····	KU	JMAR & AS	SOC	ATES
_	Project	Name	: VB & 1-7	70, OU3	······································			Project No. 05-1-258	Boring No:	PS-7	Sheet 1 of 1
			on: 1-70 a					Start Date:	Completion D		
	Driller:	Zoch)	Rig	Type: Dire	ect Pi	ısh	Ground Elev:	NORTHING		EASTING
	Logged	Ву:	CAJ				J	Water Depth: 12.7'			<u> </u>
			SOIL	CORE				· .		Ē	
		EXTENT RECOVERY	Laboratory Sample ID	PID Reading (ppm)	Graphic Log	U.S.C.S		DESCRIPTION		CONTACT DEPTH	FIELD NOTES
	2 - 4 -	50					MOIS 6/3	MIXED CLAYEY SAND AN T, OCCASIONAL GRAVEL, FROM 0'-5', DARK BROW FROM 5'	BROWN 10YR	ļ	·
	8 —	30						STAINING 5'-8'	AND. DRY		·
		0				8	B '- 1	2.7', WET BELOW 12.7', 8/3	LIGHT BROWN		STIFFENS BELOW 10'
	16 -	9			•		SILTY N4	-CLAYEY SANDSTONE, MC	DIST, DARK GRAY	,	REFUSAL AT
	18 -	15-15									
	22 -		·								
	26 -										
6.32.50	28 -										
Baring Leg-PS-11Fr	32 —								·		
K\wwr.\051256\50il	36								· · · · · · · · · · · · · · · · · · ·		

ROUND 4 BORING LOGS SEPTEMBER 2005

<u>sc</u>	OIL B	ORING	LOG	<u>. </u>		KUMAR &	ASSOC	CIATES
Project	Name:		ARGO S	MELTER		Project No. 05-1-460 Boring	No: PS-1	1 Sheet 1 of 1
Boring	Location	ı: 51:	st & WA	SHINGTON	1	Start Date: 09/20/05 Complet	ion Date:	09/20/05
Driller:	JUST	IN/ESN	Rig	Type: DIRE	CT F	USH Ground Elev: NORTHIN	1G	EASTING
Logged	By:	CAJ				Water Depth: 9.62'		
		SOIL	CORE				ļ	E :
L	EXTENT % RECOVERY	Laboratory Sample 10	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION	1	CONTACT DEPTIF
						ASPHALT	. (4.25"
	.			\ <u></u>	FILE	CLAYEY GRAVELY SAND, DARK BROWN 10YR3/3 TO	BROWN	CONTAINS CHARCOAL FRAGMENTS
2 -	55 0-5					10YRE/3, MOIST		3'
4 -	5			,	SP	POORLY GRADED SAND, BROWN 10YR6/3, MOIST		4. FINE TO COARSE GRAINED SAND
		•		/	CL	SANDY CLAY, MOIST, BROWNISH GRAY 5YR4/1, IRO	NSTAINEO.	6' FINE SAND
6 -	5-1					CLAYEY SAND, MOIST, IRONSTAINED, THIN LENSES C CLAY		FINE SAND
δ-	10			0 0/	GC	CLAYEY SANDY GRAVEL, MOIST, LIGHT BROWN 10YR PINK 5R7/4		FINE TO COARSE GRAINED SAND
10—						•		
			} .		SP-		ì	
12	5				1	SLIGHTLY CLAYEY GRAVELY SAND, WET, BROWN 10Y OCCASIONALLY LAYER OF POORLY GRADED SAND	/R6/3.	
	40			<i>.</i>		OCCASIONALLI LATER OF FOURLY GRADED SAND		
14-								
			ł				į	
16 -				/	1		j	• • •
	-5				-			FINE TO COARSE
18 -	75 20		[<i>f</i>				GRAINED
"								
20_								
20—								·
22 -	2			/				
	0			· /		•		
24	25			/		·		
``								
26 -								
-37	25							
20	10	٠						
28 -	30							SCREEN 9 30'-10'
7.				·/				020
30			,	-4	'		Ī	BOTTOM 6.2' FEET OF SCREEN
	.							FILLED WITH
32 -								FLOWING SAND
	:					•		
34 —					·		.	
							ļ	
36 📙			L					

	Name:	BORING	ARGO SI				Proi	ect No		05-1	-460	Bor	ina Nr	o: PS-1	12	Sheet 1 of 1
 _	Locatio		MASHIN					1 Date			0/05			n Date:		
riller:		USTIN	Rig	Type: DIR	CT F	NSU							THING			EASTING
ogged	By:	CAJ					Wai	er Dep	th:	10.	23'					<u> </u>
	12-1		CORE		ì	l							. •		PTH	
Depth, feet	EXTENT % RECOVERY	Laboratory Sample 10	PID Reading (ppm)	Graphic Log	U.S.C.S				DES	SCRIP	'ION				CONTACT DEPTH	FIELD NOTES
6			 			TOPS	OIL		-:							† 4"
2 -	60				FILL	CLAY 4"-1 10YR TO V	EY S 1' SL :7/3, /ERY	IGHTL' FROM	Y CLA A 1'- I, DA	YEY 1'6"	CWN 1 SAND, CLAYEY ROWN 1	TZIOM NAZ	, BRC	WN .	٤,	FRAGMENTS OF CHARCOAL, FINI TO COARSE SAND LENSE OF
6 -				/	CL	SANE TO E	OY C DARK	LAY, N GRAY	TZION EM	, BRC	WNISH	GRAY	5YR4	1/1.	7'	CLAYEY SAND AT 5'6"
8 -	50							SAND, 4/6, 1			DACEOU	IS, YE	LLOW	HZH	Ė	7'6" FINE SAN
10-					SP											
12 -						BELC)W 1		CASI	ONAL	OIST 7					10-20' STUCK
14 -	20 10-;															BARREL, LINER LOST, LITHOLOGY ESTIMATED
16 -	20									•	-					FROM CUTTINGS
18																
20	2							•								
22 -	0 20-25														1 1	SCREEN FROM
24 -				•							•					3.9' OF SCREEN
28 -	20-2	.•		· ·											3	CUT OFF DUE TO SAND FLOWING UNDER
30-	25															END CAP AT BASE OF SCREEN
32 -											•		· .			.· ·
34 -																

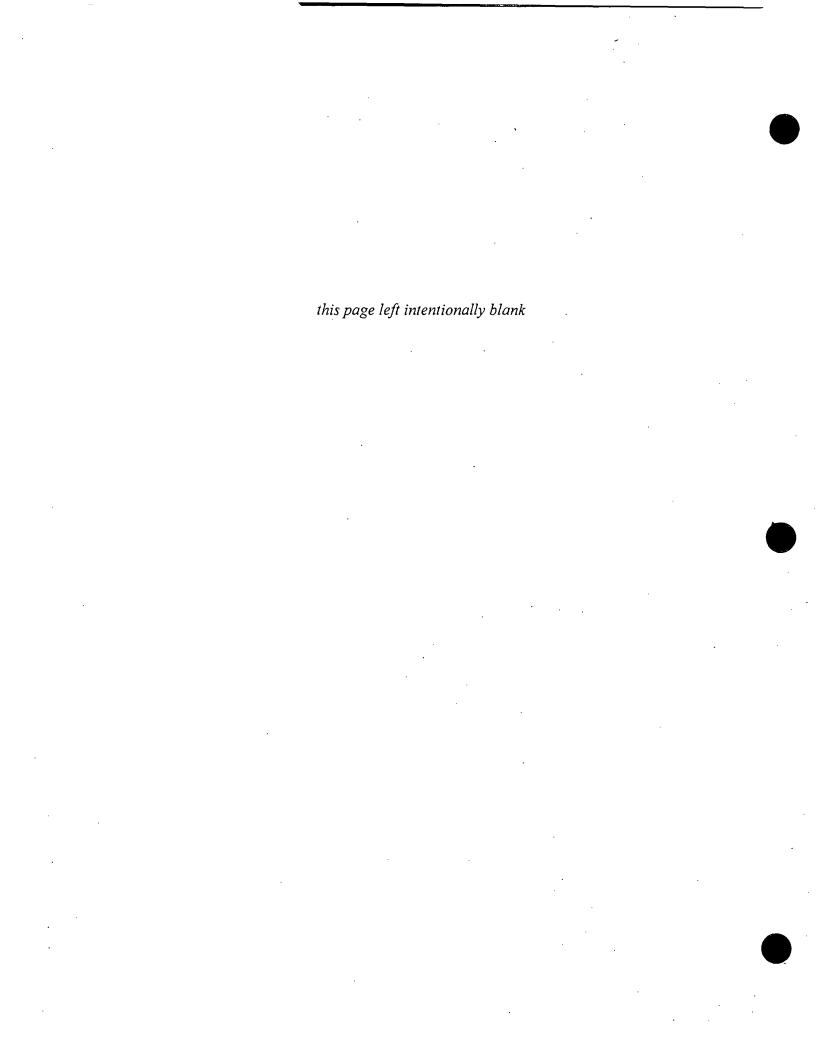
Project		ORING	ARGO S			Project No.	05-1-460	Boring No: PS-	13	Sheet 1 of 1
<u>-</u> -	Location	. W	SHINGTO	N & 50th)	Start Date:	09/20/05	Completion Date	 ::	09/20/05
Driller:	JUSTI	N/ESN	Rig	Type: DIRE	CT PUS	Ground Elev:		NORTHING		EASTING
Logged	By:	CAJ				Water Depth:	8.86			
'			CORE	 					DEPTH	
	EXTENT RECOVERY	Laboratory Sample ID	Reading (ppm)	ပ္	S	Г	ESCRIPTION	•	B	FIELD
Depth, fact	EXTENT	prof ple	ea bm	Graphic Log	S.C.	_			Ç	
o G	X 원	abc	9 014	22))				CONTAC	İ
	%		<u>a</u> .							1
		• •			FILLFIL	PSOIL L: CLAYEY SAN	D, MOIST, DAR	K EROWN	"	FINE TO COARS
2 –					10	7R3/3				
_	50		1.		CL SA	NDY CLAY WITH	OCCASIONAL	LAYERS/LENSES		FINE SAND
4 -					OF	SC, MOIST TO	VERY MOIST.			
- }					<u> </u>	CUTIV CLAYES	CAND WET Y	ELLOWIER DED	5,	PERCHED WATE
6 ~		•			<u> </u>	A/E WITH THE	N LENSES OF	ELLOWISH RED CLAYEY SAND.	5'	FROM IRRIGATIO
	υ 1 ->				OC LV.	CIAY VERY 1	MOIST DLIVE S	RAY SYA/1	8,	b" FINE TO COARS
8 –	5 5			0 0/	GC SL	GHTLY CLAYEY	SANDY, GRAVE	L, MOIST, PINK	8,	SAND
•) SK	74 TO BROWN	i luiko/3	•		1
10-						•		•		FINE TO COARS
.5			j		SP					
12 -							GRAVELLY SANI	D, LIGHT REDDISH	1	10-20
'-		•			UK	ANGE 10R6/6				ADVANCED TOGETHER
14-		•			MC	IST: 8'-9'				IOGETHER
'	30 10-20		İ		w	T BELOW 9'		·		
16	20		İ	.						
					00	CASIONAL LAYE	R OF GP & SI	2-SM		
18					GR	AVEL=GRANITE,	QUARTZITE, A	ND GNEISS		
								•		
20—		-								
	{								.	
22 -	0				.	-	•			
	25									
24 -										
	- -	•								SCREEN FROM
26	25-								1	28'-8' SCTTOM 3.6'
	0								-	OF SCREEN
28 -		•		<u>[</u>]	ST	OPPED BY KNIG	HT PIESOLD		28	FILLED WITH
.				•						SAND
30-							•			
32 –										
							•			
34 -										
				•						
36 -			1			•				

roject	Name:		ARGO S	MELTER		Project No. 05-1-460	Boring No: PS-1	4 Sheet 1 of 1
oring	Location		50				Completion Date:	
riller:		IN/ESN	Rig	Type: DIRE	CT P	USH Ground Elev:	NORTHING	EASTING
.ogged	Ey:	CAJ				Water Depth: 8.66'	<u> </u>	
		SOIL	CORE		,	•		HT.
_	EXTENT RECOVERY	Σ.Ω	PID Reading (ppm)	ပ	S	DESCRIPTION	·	CONTACT DEPTH
Depth. faot	EXTENT	Laboralory Samplo 10	ead pm)	Graphic Log	U.S.C.S	DESCRIPTION		NOTES
Pe	2 2	abo	≃ <u>a</u>	Gra	U.S			N N
<u>ن</u> —ن	%		<u>=</u>					
						CLAYEY SAND, DRY, DARK BROW	N 10YR3/3,	FINE TO MEDIUN
2 -				X	FILL	FROM 0-1' CONCRETE 1'-2'		
_	60			CLAYEY SAND, MOTTLED, BROWN 10YR5/3 TO				3'
4						BROWNISH YELLOW 10YR6/8, DR	Y, FROM 2'-3'.	
						CHARTIN CHTV CARD DEV LICH	T DEMWH	
6 -					SP-	SLIGHTLY SILTY SAND, DRY, LIGH 10YR8/3, IRONSTAINED (10YR6/	3) AT 6'-7'	FINE TO MEDIUS
-	ις <u>.</u>				3.5			*% RECOVERY
в -	- *							NOT RECORDED
					<u> </u>			9'
10-			.]			DODDLY COLDED CLUB LIGHT FO	1000 1000 /7	FINE TO COARS
			Ì]	POORLY GRADED SAND, LIGTH BE TO PINK 5R7/4,	COWN TUTES/3	SAND
12	1				1	MOIST 9'-9'6"		
					52	WET BELOW 9'6" (DURING DRILL)	
14 -						GRAVELLY AT 13'-15', GRANITIC	GRAVELS.	
	50 10-20							
16 -	20	-						
18 -						·		FLOWING SAND
		÷						AT 15', DRILLER
20_								CONTINUED TO
						•		20
22	20-		}					٠.
	25							·]
24 -								
							·	·
26 -		•						
	25					•		
28	0 25-28							
	œ							
30—						STOPPED BY KNIGHT PIESOLD		SCREEN AT
					ĺ			30'-10'
32								BOTTOM 4.7'
32 7			1	•	ļ			FILLED WITH
,					1			FLOWING SAND
34 -			1		- 1			

Project		BORING	ARGO S			Project No. 05-1-460 Borin	g No: PS-15	Sheet 1 of 1
Boring				945 PEAR	L		letion Date:	09/19/05
Driller:	JUS	TIN/ESN	Rig	Type: DIRE	CT P	JSH Ground Elev: NORTH	HING	EASTING
Logged	Ву:	CAJ				Water Depth: 11.2'	·	
	T -	SOIL	CORE				la	
Depth, foot	EXTENT % RECOVERY	Laboratory Sample 10	PID Reading (ppm)	Graphic Log	U.S.C.S	DESCRIPTION	CONTACT DIPITE	{ FIELD
0-			 	/	FILL	GRAVELLY CLAYEY SAND, DRY, BROWN	10YR5/3	FINE TO COARSE
2 –				LX_		CLAYEY SAND, SLIGHTLY MOIST, LIGHT	BROWN 2	2'6" FINE SAN
_	0-5					10YR8/3		12 6 FINE SAN
4 -				/	CL	SANDY CLAY, DARK BROWN 10YR3/3,	MOIST,	FINE SAND
.	H		}			·		
6 -	65 5-1					SLIGHTLY GRAVELLY SAND, LIGHT BROW		FINE TO COARS
8 -	10	•				DRY FROM 4'5" TO 5', SLIGHTLY MOIS		SAND
10—			[TO 9'6" WET BELOW 9'6" (DURING DR	BILL).	
` '~								
12 -	10-70						51	2
	70				-	SLIGHTLY CLAYEY SAND, WET, BROWN	10YR7/3	FINE TO COARSI
14 -		•		/	SP- SC	•	1	SAND
	H						2	
16 -	_		1				-	
18 –	60 5-20					SLIGHTLY GRAVELLY SAND, WET, BROW	и	FINE TO COARSE
.	111		}			OYR7/3, GRANITIC GRAVEL.		SAND
20—							1	
	2							
22 -	0 20-25					•		SCREEN AT
	5							30'-10'
.24		•						
26 -	\prod							
207	25-							
28 –	30					·	. -	BOTTOM 1.5'
							-	OF SCREEN
30-						STOPPED BY KNIGHT PIESOLD	35	FLOWING SAND
,								
32 –						• .	ļ	
34 —		•						
~~]	111							
36 J								

	Name:	ORING	ARGO S			Project No. 05-1-460 Boring No: PS-	16	Sheet 1 of 1
Boring	Location	:	PEARL 6			Stort Date: 09/19/05 Completion Date	::	09/19/05
riller:	JUSTI	N/ESN	Rig	Type: DIRE	CT F	USH Ground Elev: NORTHING		EASTING
cgged	Эу:	CAJ		<u>–</u>		Water Depth: 9.8'		!
						,		
		SOI	L CORE		,		HTP30	
_		5 ⊡	llng	U	S	DESCRIPTION		
Dapth, faat	RECOVERY	prot pla	Reading (ppm)	Graphic Log	S.C.S	Section (1914)	ACT	NOTES
je j	X E	Laboratory Sampla 1Ü	PID R	20	O.		CONTACT	
0-			=		!		1-	
				\setminus /	FILL	GRAVELLY CLAYEY SAND, MOIST TO DRY, BROWN 10YR6/3	9	FINE TO COARS
2 -			į		SC	CLAYEY SAND, MOIST, DARK BROWN 10YR3/3	2	FINE SAND
	65				SP	POORLY GRADED SAND, DRY, BROWN 10YR6/3	3	FINE SAND
4 -					sc	VERY CLAYEY SAND, BROWNISH GRAY 5YR4/1	9.1	FINE SAND
				· ·	<u> </u>	MINOR IRONSTAINING	1	1 .
6 -								•
	5					APAURILA AND DES TO CHARTE CONTENT CONTENT		
8 –	50			·		GRAVELLY SAND, DRY TO SLIGHTLY MOIST, LIGHT BROWN 10YR8/3, WET BELOW 11' (DURING		FINE TO COARS
					ς2	DRILL)		SAND
10-					13,	GRAVEL=GRANITE AND QUARTZITE		
			i			•		
12	10-1				1	1" THICK LENSE OF CLAYEY SAND AT 7'6"		
	5					•	-	
14 -					QH.	ORGANIC CLAY, MANY ROOTS AND OTHERS ORGANICS, VERY MOIST, BLACK N1.75.		14'6"
						IRONSTANED		SLIGHTLY ODOR
1.6 -								
1	15-10					GRAVELLY SAND, WET, BROWN 10YR7/3		
- 3:	20					OCCASIONAL LAYER OF SF-SM		FINE TO COARS
20-					SP	GRAVEL=GRANITE AND QUARTZITE		SAND
			-					
22	0							
	25						1	
24 -							'	
		•						
26 -		٠						
.	25-		-					SCREEN AT
28 -	30							20 - 10
				٠.			.0	BOTTOM 5' OF
30—				<u> </u>	1	STOPPED BY KNIGHT PIESOLD	30	FILLED WITH
						•		FLOWING -
32 -						·		SAND
34 -								
1	1 1 1		1				i	1

Project	Nome:		ARGO S	MELTER	-	Project No.	05-1-460	Boring No: PS-	-17	Sheet	1 of 1
	Location	<u></u> -		· ·		Start Date:	09/15/05	Completion Dat		09/19/0	
Driller:	JUSTI	N/ESN	Rig	Type: DIRI	ECT PL	SH Ground Elev:		NORTHING		EASTING	-
Logged	By:	CAJ				Water Depth:	9.6'				
			•								
								· · · · · · · · · · · · · · · · · · ·		, — — · .	
		SOIL	CORE		 1				ПЕРТН		
	EXTENT RECOVERY	7.0	ing	L)	ı,	-	ECODISTION		130	C.=.	
Depih, feet	S S	Laboratory Sample 10	l da Dogue	Graphic Log	5.0.5	i	ESCRIPTION		15	FIEL	
Def		bog mg	8 6	s. L	U.S				CONTACT		
	8	SS	PID Reading (ppm)		-		•		ဗြ	1	
ο −].			T		7	OPSOIL			F	4"	
}					\w	IXED SANDY CLA	Y & CLAYEY S	SAND, MOIST	{		
2	0 60				It ILL	ROWNISH GRAY :	SYR4/1 TO DA	RK GRAY N3,	9		,
Ì	5			$\langle \cdot \rangle$		MOMENTO OF SI	LAG AND CHAR		3,	1	
4 -						DORLY GRADED	SAND, BRY, IK	SHT EROWN		FINE TO	MEDIU
						OYR8/3	_, _, _,			CNAZ	
6 –] -					SANDY TO SILTY	CLAY, MOIST	DARK GRAY NR	- ₇ .		
	5 8				+	TO DARK OLIVE	BROWN 5Y5/6	•	 	-	
8 –	-10 B0		-		1011			OYR6/3,	9		
					1 SY	SILTY SAND, MI THINLY LAMINATE SANDY TO SILTY	U. CLAY: MOIST	DARK GRAY NE	8	1 .	-
10-						TO DARK OLIVE				9'6"	
					1 1	LIGHTLY SILTY S					
12 -	5				SM	= 2.1.,2. 2.0., 2	,,				
	65 0-15			<u></u>	4				13		
14 —	5			0 0	F	OORLY GRADED	SANDY GRAVEL	, WET, BROWN		FINE TO	00+00
				0	GP 1	OYR6/3				FINE TO	CUAKS
16 -				,		RAVELS=QUARTZ	ITE, GRANITE,	GNEISS	9	1	
	15		.]		1		•				
18	11 2		1		1				Ì	1	
167	20				SPP	OORLY GRADED	GRAVELLY SANI	D, WET, BROWN			
20	[1 1	OYR6/3				EINE TO	COADC
20—					1 1					FINE TO	CUARS
22	2									1	•
22 -	0				-	•					•
	25							• •			
24 -					-	•		•			
	 				. [•			
25 -											•
	0							•		1	
28 -	30										
									-	SCREEN 30'-25'	
30—) s	OPPED BY KNIG	HT PIESOLD		30	20'-10'	
									1.		
32 -			-								
. }											
34 -											
					1						
36									1	1	


Project			LOG ARGO S	MELTER		Project No	0. 05-1-46	O Boring No: PS-	18	Sheet 1 of 1
Boring l				LOGAN		Start Date				09/19/05
Driller:		N/ESN	Rig	Type: DIR	CT P	USH Ground E	ev:	NORTHING		EASTING
Locged	Ey:	CAJ				Water De:	oth: 12.2'			
										
		SOIL	CORE						E	
ļ	EXTENT	2≤	Reading (ppm)					•	DEPTH	
₹.	NIS	Laboratory Sample ID	m (m	Graphic Log	0.S.C.S		DESCRIPTION	·	15	FIELD NOTES
Depth, feet	토입	Бог Тр	Re du	رق ا	\si				1V	MOTES .
	% E	Sal	01·1	0	5				CONTAC	·
0-	100		 -			TOPSOIL			1	4"
11										
2 -	0			X		CLAYEY SAND,	VERY MOIST,	OLIVE GRAY 5Y4/1		GLASS -
	55 0-5		1		FILL			,		FRAGMENTS AT
4-				\ /	1				0	4'
7					 				. 프	EINE TO COURS
_							D SAND, DRY,	LIGHT BROWN	9	FINE TO COARS
5 -	[]			ļ		10YRE/3			9	FINE SAND
	75				SC	CLAYEY SAND.	EROWN 10YR6	3, VERY MOIST	L	7'6"
8 –	10									
					1		•			
10-			1							
				Į				•		l
12 -	5					·				FINE TO COARS
	0.00				1	GRAVELLY SAN	D, BROWN 10Y	'R7/3		SAND
	15				i	1		•		
14 -					SP	SLIGHTLY MOIS	T FROM 7'6"	TO 11', WET BELOW	'	1
						11', DURING D	RILL			1
16 -				-		HEAVY IRONST	AINING (EROWN	ISH YELLOW TOYR		
	90					6/8)	. •			FLOWING SAND
18 -	90 5-20					5.155 05 65			.,	BELOW 15'
. [TENSE OF SP-	SM AT APPROX	KIMATELY 12' TO 13	1	
20-										ĺ
					1 .			•		
22 -	20		}							
+ *	10						•			
	 									
24 -		_	1.	1						
		-					•		.	
26 -]				1					
	25-				1					
28 -	-30							•		
						,			_	SCREEN
30-]	STOPPED BY K	NIGHT PIESOLD		30,	30'-10'
32 –			-		.	• •		•	.	
54 -										
1	i 1 1					İ				l

<u>s</u> (OIL	BORIN	G LOG				KUM	IAR & ASS	OCI.	ATES
Project	Non	те:	ARGO S	MELTER		Project No.	05-1-460	Boring No: PS	-19	Sheet 1 of 1
Boring	Loca	ilion:	45th &	GRANT		Start Date:	09/19/05	Completion Da	te:	09/19/05
Driller:		USTIN/ESN	Rig	Type: DIRE	CT PUS	d Ground Elev:		NORTHING		EASTING
Logged	_					Water Depth:	11.5'	7		
								:		
	 13		L CORE	· · · · · ·					PIT	
Depth, faot	EXTENT % DECOVEDY	1 4.5	PID Reading (ppm)	Graphic Log	U.S.C.S	DE	SCRIPTION		CONTACT DE	FIELD NOTES
0	П				CL	AYEY GRAVELLY	SAND, BROWN	10YR7/3, DRY	7	
2 -	0-5			X	FILL FRO	DM 0-1' CLAYE AY 5YR6/1 TO 1	SAND, DRY, I DARK GRAY N	LIGHT BROWNIS! 3, CALCAREOUS	1 2'	
4 -	5				SC MIN	RY CLAYEY SANÇ IOR IRONSTAININ), DRY, BROW G.	N 10YR3/3.		
6 -	H							•	6'	GRAVELS BENT
8 –	5-10	30				•	٠	<i>,</i> , · ·		LOW RECOVERY
					SLI	GHTLY SILTY GR.				
10-					SP-DR SM GR	ILL), LIGHT RED ANITIC GRAVELS	DISH ORANGE	1 OR6/6		
12 -	10-15	50				CASIONAL LENSE PROXIMATELY 12		NING AT		
16		_							13	DRILLER
	15-2	10				·				REPORTS FLOWING SAND
18	20					ORLY GRADED SA OWN 10YR8/3.	AND, <5% SIL	T, WET, LIGHT		BELOW 20'
20—	H	1.			SP			•		
22 -	20-25	70								
24 -	5	,				מחברת חווב דר ו	TOWNS CASE		25.	SCREEN AT
26 -					. 314	OPPED DUE TO F	LUWING SANE	,		25'-20' & 10'-15'
28 -						· .				
30—										
32 -										
- }										
34 -					•					
36				·						


ton al. the

roject	Nom	e:	ARGO	SMELTER		Project No.	05-1-460	Boring No:	PS-20	Sheet	1 cf 1
oring	Loca	iion: S	OUTH EN	D OF LOG	AN	Start Date:	09/20/05		Date:	09/20/0	5
riller:		ISTIN/ESN		Type: DIR		Ground Elev:		NORTHING		EASTING	
odåeq	By:	CAJ				Water Depth:	: NE				
	12	1	IL CORE	1				· · · · · · · · · · · · · · · · · · ·	ОЕРТН		
Depth, feet	CXTENT	1 7:0	PIO Reading (ppm)	Graphic	U.S.C.S		DESCRIPTION		CONTACT DE	FIEL NOT	
	7 7				ASPH				5	FINE TO	COARSE
2 -	0-5				FILL SANT	DY CLAY, SLI ASIONAL ROO	CHTLY MOIST, T	BROWN 10YR	6/3 2		COARSE
4 -	5	`			SP-SLIG	HTLY CLAYEY	SAND, BROW	N 10YR6/3	9		MEDIUM
		1			CL SANS	DY CLAY, BRO	DWN 10YR6/3	, BLENDING D	OWN	COARSE 5'6"	CMAZ
6 -	5-1					TIGHT OFFE		, scioniei m	0131	STIFFINS	WITH
a -	10				WESPLIV	E BROWN 5Y	5/6 FROM 5'	TLY MOIST, LI	1.	DEPTH FINE TO	MEDIUM 1
10		-			SANI	D BELOW 10'	FROM 8' TO BUT STILL V	12', INCREAS /EATHERED	ING	SAND	
12	10-12				CLAY	STONE			12,	REFUSAL	
14-											
16 -											
18											
20-											
22						·	. •				
24 -		,									
25 -											
28 -											
Ì						-		•			
30-											•
32 -								·			•
- 1	1.	1	1		ļ						

APPENDIX C ANALYTICAL DATA

PHASE I INVESTIGATION

ANALYTICAL RESULTS FOR SOIL

this page left intentionally blank

	Station		1			1			1			1			2	
Sampl	e Type	Field	QC - PE	Std		Field			Field			Field			Field	
San	nple iD	01-VB	OU3-SB-0	0001-A	01-VB0	OU3-SB-(0001-B	01-VB	OU3-SB-0	0001-C	01-VB	OU3-SB-	0001-D	01-VB	OU3-SB-	0002-A
Parent San	nple ID		1-5													-
Sample Dat	e/Time	12/1	9/2003 10	0:56	12/1	9/2003 1	1:00	12/1	9/2003 1	1:05	12/1	9/2003 1	1:10	12/1	2/2003 1	1:35
Depth_upper (ft bgs)		· · ·			0.33			1.50			5.83			0.33	
Depth_lower (0.83			3.00			6.92			2.50	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	2300			20000			31000			30000			16000		
Antimony	11	3.2		7	ND		UJ	ND		UJ	ND		. UJ	ND		UJ
Arsenic	1	130			4.3			3.8			ND			5.1		
Barium	1	350			100			180			29			350		
Beryllium	0.5	ND			0.76			0.95			1.1			ND		
Cadmium	0.5	2 39000		ND			ND			ND			ND			
Calcium	20				20000			8400			8200			15000		
Chromium	1	7.2		15			13			12	,		9.4		J	
Cobalt	1	7.2 13		15			15			3.6			9.5			
Copper	2	1300			11			11			16			3.8		J
iron	10	4800			18000			28000			22000			15000		
Lead	0.8	1300			11			16			18			8.9		
Magnesium	20	16000			4200			5100			4100			3200		
Manganese	1	760		J	250		· J	570		J	230		J	340		
Mercury	0.033	0.27			ND			ND			ND			ND		
Nickel	4	9.4			12		<u> </u>	15			7			6.5		
Potassium	300	790			1700			1400			1400			810		<u> </u>
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			ND			ND			ND		<u> </u>
Sodium	500	ND			ND			1200			1300			660		
Thallium	1.2	ND			ND			ND.	<u></u>		ND			ND		
Vanadium	2	250		J	44		J	46		J	33		J	38		
Zinc	2	1800			58			69			50			46		
Percent Moisture		0.73			17			20			24			14		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1.
Soil Sampling Results (mg/kg)

Sample T	T		2			2			2			2	ļ		3	- 1
l	ryper		Field			Field			Field		Field	QC - PE	Sld		Field	
Sampi	le ID	01-VBC	0U3-SB-0	0002-B	01-VB0	OU3-SB-0	0002-C	01-VB0	DU3-SB-(0002-D	01-VB0	OU3-SB-0	0002-E	01-VB0	OU3-SB-	0003-A
Parent Sampl	le ID											1-1				
Sample Date/T	Time	12/1	2/2003 1	1:40	12/1	2/2003 1	1:45	12/1	2/2003 1	1:55	12/1	8/2003 1	1:40	12/1	8/2003 1	0:50
Depth_upper (ft t	bgs)		4.00			8.50			12.00						0.17	
Depth_lower (ft l	bgs)		5.00			10.00			13.00						2.00	
Analyte C	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	21000			28000			25000			2200			15000		
Antimony	1	ND _		UJ	ND		3	ND		UJ	2.9		J	ND		UJ
Arsenic	1	3.7			1.1			6.9			130			12		
Barium	1	160			36			340		J	340			320		J
\	0.5	ND	ND .		0.96			0.56			ND			1.9		·
	0.5	ND	5500		ND			ND			1.8			ND		
	20	5500			6800			8600			36000			27000		
Om om an	1		11 J		15 _		J	16			7.1		J	9.8		
000011	1		15		5.2			10			11			8.3		
	2	5		J	8.7		J	7.7		·	1300		J	1300		
\	10	18000			20000			29000			4400	<u> </u>		21000		
	0.8	9			30			7.1		J	1300			270		J
	20	3600			4500			3800			15000			2000	L	
Manganese	1	330	· ·		400			350		J	.710			550		J
	.033	ND		·	ND			ND_			0.2		ļ	ND		
	4	9.4			8.9			7.6			9.2			12		
<u> </u>	300	870		!	1800			1400			750			950		
1	1.3	ND			ND			ND			ND			ND		
011101	1	ND			ND			ND			ND			13		J
	500	780			1300			1600			ND			1500		
	1.2	ND			ND			ND			_ND			ND		
	2	49			36			51			260			28		
	2	54			53			71			1700			80		
Percent Moisture		17			24			16		L	15			26		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

- J = Result is an estimated quantity
- L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present
- U = Undetected, result is less than the detection limit

	Station		3			3			3			4			4	
Sampl	e Type		Field			Field			Field			Field			Field	
	nple ID	01-VB(OU3-SB-	0003-B	01-VB0	OU3-SB-	0003-C	01-VB	OU3-SB-	0003-D	01-VB	OU3-SB-	0004-A	01-VB	OU3-SB-	0004-B
Parent San	nple ID															_
Sample Dat	e/Time	12/1	8/2003 1	0:55	12/1	8/2003 1	1:00	12/1	8/2003 1	1:10	12/	18/2003	9:30	12/	18/2003 9	9:35
Depth_upper ((ft bgs)		2.00			5.00			10.50			0.08			6.00	
Depth_lower ((ft bgs)		3.50			6.17			11.00			3.00			10.00	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	24000			24000			28000			7400			13000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	· ND		UJ	ND		UJ
Arsenic	1	1.4			5.9			9			18			2.4		
Barium	1	500		J	580		J	330		J	160		J	74		J
Beryllium	0.5	0.62			0.71			1			ND			ND		
Cadmium	0.5	ND	[ND			ND			3.2		J	ND		
Calcium	20	27000 1		13000			6400			5600			2500			
Chromium .	1	12		12			14			7.6			15			
Cobalt	1	4.4			13			11			4.6	}		4.9		
Copper	2	10			8.6			11			200			12		
Iron	10	17000			18000			22000			10000			16000		
Lead	0.8	11		J	10		J	13		J	190		J	11		J
Magnesium	20	4600			5000			5000			1600		Ĺ	2400		
Manganese	1	290		J	310		J	440		J	180		J	210	<u></u>	J
Mercury	0.033	ND			ND			ND			0.14			ND		
Nickel	4	5.9			9.5			10			7.7			- 8		
Potassium	300	1500			1500			1900			1200			2600	<u> </u>	
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	11	ND			ND			ND			2.1	<u> </u>	J	ND		
Sodium	500	1000			1500			2200			ND			ND		
Thallium	1.2	ND			ND	ļ		ND			ND			ND		
Vanadium	_ 2	37			38			55			23			31		
Zinc	2	45			53			68			210			43		
Percent Moisture		19		it de eta Di	18			16	<u> </u>		13			13		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

- G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)
- J = Result is an estimated quantity
- L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present
- U = Undetected, result is less than the detection limit-

Table C-1.
Soil Sampling Results (mg/kg)

	Station		4			4			- 5		·	5			5	
Samp	le Type		Field			Field			Field			Field			Field	
Sar	nple ID	01-VB	DU3-SB-0	0004-C	01-VB	OU3-SB-	0004-D	01-VB	OU3-SB-	0005-A	01-VB	OU3-SB-	0005-B	01-VB	OU3-SB-	0005-C
Parent Sar	nple ID															
Sample Date	te/Time	12 <i>l</i> ·	18/2003 9	:40	12/	18/2003 9	9:45	12/1	8/2003 1	1:45	12/1	8/2003 1	1:48	12/1	18/2003 1	1:50
Depth_upper			10.00			15.50			0.00			0.83			6.50	
Depth_lower	(ft bgs)		12.50			17.00			0.50			2.50			7.50	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	17000			28000			8100			17000			20000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	6			2.5			28			6.2			4.2]	
Barium	1	410		J	570		J	280		J	720		J	360		J
Beryllium	0.5	ND			0.64			0.95			ND			ND		
Cadmium	0.5	150		J	7.3		J	0.73		J	ND			ND		
Calcium	20			8800			13000			15000			6000	ļ	<u> </u>	
Chromium	_1_	9.9		13			8 .			10			9.1			
Cobait	1	7.9			6.1			5.9			7.1		<u> </u>	6.5		
Copper	2	10			10			710			5.4			4.9		
Iron	10	16000	<u> </u>		26000			11000			14000			20000		
Lead	0.8	9.4		J	8.5		J	160		J	6.4		J	11		J
Magnesium	20	3000			3700			1600			2600			3900		
Manganese	_1	150		J	360		J	230		J	170		J	210	<u> </u>	J
Mercury	0.033	ND			ND			0.12	<u> </u>		ND			ND		
Nickel	4	10			8			8.3			6.8			6.6		
Potassium	300	1600			1300		<u> </u>	950_		<u> </u>	940			1000		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			_ND			12		J	ND			ND		
Sodium	500	1200			2200			940			1400			1100		
Thallium	1.2	1.2			ND		<u> </u>	ND			_ ND			ND		
Vanadium	2	. 33			51			20_			33			42		
Zinc	2	2100			700			150			44			52		
Percent Moisture		25	-4:!:		16			14		<u> </u>	16			16	1	

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

	Station	- · .	5			6			6			6		-	6	
	e Type		I QC - PE			Field			Field		04.140	Field			QC - Dup	
N .	nple ID	01-VB	DU3-SB-0	ט005-ט	01-780	OU3-SB-	0006-A	01-VB	OU3-SB-	0006-B	01-VB	OU3-SB-	0006-C		OU3-SB-	
Parent San		4011	1-3	4.50	404	0/0000 4	0.50	4074	0/0000 4	2.00	404	010000 4	2.05		OU3-SB-	
Sample Dat		12/1	8/2003 1	1:58	12/1	2/2003 1	2:50	12/1	2/2003 1	3:00	12/1	2/2003 1	3:05	12/1	2/2003 1	3:05
Depth_upper (1.00			5.00 6.50			7.00			7 00	
Depth_lower (n ngs) DL	Result	Ouel L	Ouel V	Desuit	4.50	Ouel V	Descrit		Our V	Result	10.00	0	D14	10.00	O1 1/
Analyte			Qual_L	Quai_v		Qual_L	Qual_v		Qual_L	Quai_v		Qual_L	Qual_V		Qual_L	Quai_v
Aluminum	10	2300			36000			22000			28000			32000		ļ. <u></u>
Antimony	_1	2.9		J	ND		UJ_	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	140			11		· -	29			3.9			1.7		
Barium		350		J	1800			280			69			72		
Beryllium	0.5	ND_			2.5			0.56			0.82			0.88		
Cadmium	0.5			ND			12			25			24			
Calcium	20				40000			5000			7500			8800		
Chromium	1	7.2		23			16		<u>J</u>	14		J	16		J	
Cobalt	1	12		14			4.8			9.3			12			
Copper	2	1300		<u> </u>	49		J	620		J J	67		J	29		J
iron	10	4900			21000			21000		ļ	25000			25000		
Lead	_8.0_	1300		J	110			170			18		<u> </u>	19		
Magnesium	20	16000			7400			3700			3800			4100		
Manganese	1	730		J	200			110		ļ <u>-</u>	310			340	<u> </u>	
Mercury	0.033	0.4			0.26		<u> </u>	1.3		<u> </u>	ND			0.033		<u> </u>
Nickel	4	9.5			19			25		<u> </u>	61			58		
Potassium	300	740			1400			2500	<u> </u>		2200			2500		
Selenium	1.3	ND			4			ND			ND			ND		
Silver	1	ND			ND			2.5			ND			ND		
Sodium	500	ND			10000		İ	790	<u> </u>		1300			1400		
Thallium	1.2	ND			ND			6.4			ND			ND	ļ. <u></u>	L
Vanadium	2	250			64			39			37			43		
Zinc	2	1900			75			360		1	520		<u> </u>	440		
Percent Moisture		0.39			11			28			25			25		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

U = Undetected, result is less than the detection limit

Table C-1.
Soil Sampling Results (mg/kg)

	Station		7		· · · · · · ·	7		<u> </u>	7			7			7	
Sampl	е Туре		Field			Field			Field			Field			Field	ļ
Sar	nple ID	01-VB	OU3-SB-	0007-A	01-VB	OU3-SB-	0007-B	01-VB	DU3-SB-	0007-C	01-VB0	OU3-SB-	0007-D	01-VB	OU3-SB-	0007-E
Parent Sar	nple ID															
Sample Dat	e/Time	12/1	2/2003 1	3:25	12/1	2/2003 1	3:30	12/1	2/2003 1	3:40	12/1	2/2003 1	3:45	12/1	2/2003 1	3:50
Depth_upper	(ft bgs)		0.33			5.00			10.50			14.00			20.67	
Depth_lower	(ft bgs)		5.00			10.00			12.00			15.00			22.00	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	4300			15000			11000			16000			29000		
Antimony	1	ND		UJ	3.6		J	85		J	ND		UJ	ND		UJ
Arsenic	1	1.1			24			2900			11			4.7		
Barium	1	48			1100			250			140			33		
Beryllium	0.5	ND			0.64			ND			ND			1.2		
Cadmium	0.5	ND 1400 :		ND			130			510			ND			
Calcium	20	1400		31000			2300			18000			7200			
Chromium	1	11 J		71		J	9.8		J	11		J	22		J	
Cobalt	1	3.9		17			4.6			5			7.2			
Copper	2	10		J	330		J	3100	_	J	83		J	23		J
Iron	10	9900		·	140000			120000			19000			19000		
Lead	8.0	8.9			430			1600			32			17		
Magnesium	20	1500			2500			1800			3100			4600		
Manganese	1	120			540			96			370			250		
Mercury	0.033	ND			ND			1.5			0.046			ND		
Nickel	4	6.5			96			39			8.9			16	Ī	
Potassium	300	1900			1200			3200			2700			2700		
Selenium	1.3	ND			ND			3.5			ND			ND		
Silver	1	ND			1.2			29			1.1	-		ND		
Sodium	500	ND			3600			1100			880			1100		
Thallium	1.2	ND			ND			12			ND			ND		
Vanadium	2	21			26	,		24			30			48		
Zinc	2	37			500			1000			3500			65		
Percent Moisture		3.8			20			44			27			21		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

	Station		8			8			8			8			9	
Sampl	e Type		Field			Field			Field			Field			Field	
San	nple ID	01-VB	OU3-SB-	A-8000	01-VB0	OU3-SB-0	0008-B	01-VB0	OU3-SB-(0008-C	01-VB0	OU3-SB-	0008-D	01-VB	OU3-SB-	0009-A
Parent Sar	nple ID															
Sample Dat		12/1	2/2003 1	0:55	12/1	2/2003 1	1:00	12/1	2/2003 1	1:05	12/1	2/2003 1	1:10	12/1	2/2003 1	0:00
Depth_upper	(ft bgs)		0.25			4.00			7.00			24.00			0.25	
Depth_lower			2.00			6.00			9.50			25.00			2.00	
Analyte	DL		Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	14000			18000			29000			27000			12000		
Antimony	11	2.1		J	ND		IJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	9.5			17			1.3			ND			10		
Barium	1	790	<u> </u>		240			35			30			230		LI
Beryllium	0.5	0.71			ND	<u></u>		1			0.82			ND ND		
Cadmium	0.5	14		ļ	ND			ND	· · · · · · · · · · · · · · · · · · ·		ND			ND 5500		
Calcium	20	24000	<u> </u>		12000			15000			6900			5500		
Chromium	1	20_		J	10		J	15		J	17		J			
Cobalt	1	6.8			7.1			5.1			6.5			6.6	İ	
Copper	2	280		J	_190		J	18		J	16		J	60		
Iron	10	16000			16000			20000			20000			16000		
Lead	0.8	400			160			17			40			100		J
Magnesium	20	2700			2900			3700			3700			3200		ļ
Manganese	1	260		·	270			200		<u> </u>	220			240	L	J
Mercury	0.033	0.27			0.26			ND			·ND			0.079	ļ	<u> </u>
Nickel	4	37			7			8.9			12			11		
Potassium	300	1300			2300			1800		<u> </u>	2200			2700	<u> </u>	<u> </u>
Selenium	1.3	1.3			ND			ND			ND			ND.		<u> </u>
Silver	1	2.2			3.7			ND			ND		<u> </u>	ND		
Sodium	500	1500	<u> </u>		ND			690		<u> </u>	1500		<u> </u>	ND		
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2_	24			29		·	34		<u> </u>	38		<u> </u>	32		
Zinc	2	440		<u> </u>	81			48		ļ	58			120	<u> </u>	J
Percent Moisture		16	L		23		<u> </u>	24			21	L	<u> </u>	13		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1.
Soil Sampling Results (mg/kg)

	Station	Field				9			9			10			10	
Sampl	le Type		Field			Field			Field			Field			Field	
San	nple ID	01-VB	OU3-SB-	0009-B	01-VB	OU3-SB-(0009-C	01-VB	OU3-SB-	0009-D	01-VB0	DU3-SB-	0010-A	01-VB	OU3-SB-	0010-B
Parent San	nple ID															ļ
Sample Dat	e/Time	12/1	2/2003 1	0:05	12/1	2/2003 1	0:10	12/1	2/2003 1	0:15	12/1	0/2003 1	1:01	12/1	0/2003 1	1:05
Depth_upper	(ft bgs)		5.50			8.50			23.00			0.50			2.00	
Depth_lower			7.00			9.50			24.00			1.50			2.83	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	20000			30000			29000			25000			21000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	9.1			2			6.2			7.2			2.8		
Barium	1	530			42			45			660	L	J	30	L	J
Beryllium	0.5	ND			1.2			1.1			0.58			ND		
Cadmium	0.5	ND			ΝŪ			ND			57			ND 5000		
Calcium	20.	4400			6800			8000			6600			5000		
Chromium	1	8.9			19			23			11			12		
Cobalt	1				4.3			9.1			16			5.9		
Copper	2				22			18			12			11		
Iron	10 .	15000			22000		L	20000			24000			15000		
Lead	8.0	11		J	18		J	17		J	12			12		
Magnesium	20				4900			4400			3300			3600		
Manganese	1		L	J	500	L	J	190	L	J	470			270		
Mercury	0.033				0.036			ND			ND			ND		
Nickel	4	8.7			9.3			17			17]	11		
Potassium	300	770			2300			3200			1600			1800		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			ND			·ND			ND		
Sodium	500	1200			1600			1200			1500			1300		
Thallium	1.2	ND			ND	<u>.</u>		ND			ND			ND		
Vanadium	2	38			54	·		48			53	·		28	i	
Zinc	2	56		J	51		J	110		j	1200		J	48		J
Percent Moisture		15			26			18			19			22		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

j S	Station		10		-	10			12			12			13	
Sample	e Type		Field			Field			Field			Field			Field	i
Sam	iple ID	01-VB0	OU3-SB-(0010-C	01-VB0	OU3-SB-	0010-D	01-VB	OU3-SB-0	0012-A	01-VB0	DU3-SB-	0012-B	01-VB	OU3-SB-	0013-A
Parent Sam	iple ID															l
Sample Date	e/Time	12/1	0/2003 1	1:12	12/1	0/2003 1	1:25	12/1	9/2003 1	3:50	12/1	9/2003 1	3:55	12/1	9/2003 1	4:00
Depth_upper (f	ft bgs)		5.00			8.00			0.25			2.00			0.00	
Depth_lower (f	ft bgs)		5.92			9.00			0.75			3.00			0.75	
Analyte	DL.	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	25000			38000			19000			24000			20000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		ŲJ
Arsenic .	1	8.7			1.3			8.7			4.1			5.1		
Barium	1	41	Ĺ	J	63	L	J	360			290			210		
Beryllium	0.5	0.77			0.76			0.73			0.94			0.71		
Cadmium	0.5	ND			ND			8.2			4.4			6.8		
Calcium	20	5400			7900			9400			9100			6500		
Chromium	1	14			11			18			13			15		
Cobalt	1	17			5.1			9			8.4			7.5		
Copper	2	18			20			560			91			82		
Iron	10	20000			27000			19000			21000			18000		
Lead	0.8	12			18			360			36			130		
Magnesium	20	3900			4800			3200			3900			3200		
Manganese	1	380			500			420		J	350		J	340		J
Mercury	0.033	ND			ND		. UJ	0.073			ND			0.055		
Nickel	4	15			8			14			12			12		
Potassium	300	2200			1800			2200			1800			1900		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			4.3			ND			ND		
Sodium	500	1600			2500			ND			ND			ND -		
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2	40			39			34		J	36		J	34		J
Zinc	2	58		J	58		J	300			130			220		
Percent Moisture		22			25			21			20			8.5		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1.
Soil Sampling Results (mg/kg)

	Sample ID Date/Time per (ft bgs) ver (ft bgs) DL Re 10 26 1 1 1 1 0.5 0 0.5 N 20 14 1 1 1 5		13			14			14			14			15	
Samp	le Type		Field			Field			Field			Field			Field	
Sar	nple ID	01-VB	OU3-SB-0	0013-B	01-VB	0U3-SB-	0014-A	01-VB	DU3-SB-	0014-B	01-VB	OU3-SB-	0014-C	01-VB	OU3-SB-	0015-A
Parent Sar	nple ID															ì
		12/1	9/2003 1	4:05	12/1	0/2003 1	5:55	12/1	0/2003 1	6:05	12/1	0/2003 1	6:10	12/1	2/2003 1	5:10
Depth_upper			4.50			3.00			8.08			19.00			0.25	
Depth_lower	(ft bgs)		5.00			5.00			9.25			20.00			5.00	
Analyte			Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	26000			22000			29000			27000			12000		
Antimony	1	ND		UJ	ND		UJ	ND		IJ	ND		UJ	10		J
Arsenic	1	1.9			2			2.7			3.4	}]	3.5		
Barium	1	110			97			120			160			620		
Beryllium	0.5	0.83			0.9			0.8			0.71			0.8		
Cadmium		ND_			ND			0.64			0.66			10		
Calcium	20	14000			7100			6700			7200			12000		
Chromium	1	18			16			14			9.2			18		J
Cobalt	1	5.3			7.4			13			8.8			7.1		
Copper	2	16			17			14			7.8			210		J
Iron	10	19000			16000			25000			28000			18000		
Lead	8.0	14			13		J	11		J	12		J	280		
Magnesium	20	4900			4500			5300			4000			2500	l	
Manganese	1	350		J	400		J	560		J	640		J	250		
Mercury	0.033	ND			0.035			ND			ND			ND		· -
Nickel	4	11			14			14			7.3			12		
Potassium	300	2600			2700			1600			1300			1800		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			ND			ND			ND		
Sodium	500	1600			ND			1200			1900			1500		
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2	37		J	32			50			44			28		
Zinc	2	53			51			55			66			330		
Percent Moisture		21			20			21			20			9.4	ļ	

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

	Station		15			15			16			16			16	· ·
Sampl	e Type		Field	i		Field			Field			Field		Field	QC - Du	plicate
Sar	nple ID	01-VB	OU3-SB-	0015-B	01-VB0	OU3-SB-0	0015-C	01-VB	OU3-SB-	0016-A	01-VB	DU3-SB-	0016-B	01-VB	OU3-SB-	0016-C
Parent Sar	nple ID													01-VB	OU3-SB-	0016-B
Sample Dat	e/Time	12/1	2/2003 1	5:15	12/1	2/2003 1	5:20	12/1	0/2003 1	4:15	12/1	0/2003 1	4:20	12/1	0/2003 1	4:20
Depth_upper	(ft bgs)		5.00			11.00			1.00			6.50			6.50	
Depth_lower	(ft bgs)		8.00			12.00			2.50			9.00			9.00	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	30000			29000			2000			31000			29000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		ŲJ
Arsenic	1	2.6			ND			1.2 .			22		Ī	18		
Barium	1	110			39	·		23	L	J	1500	L	J	1400	L	J
Beryllium	0.5	0.78			1	-		ND			ND		UJ	ND]	
Cadmium	0.5	1.4			ND			1.1			ND			ND		
Calcium	20	8400			6800			21000			13000			15000		
Chromium	1	13		J	20		J	2.4			7.6			7.1		
Cobalt	1	6.2			5.8			2.3			12			10		
Copper	2	140		J	19		J	3600			15			13		
Iron	10	23000			21000			3300			23000			20000		
Lead	0.8	24			18			5.1			10		[<u> </u>	9.2		
Magnesium	_20	5500			5100			570	· ·		4100			4000		
Manganese	1	490			440			190			380			340		
Mercury	0.033	ND.			ND			ND	,	UJ	ND		UJ	ND		UJ
Nickel	4	22			11			ND			7.3			6.4		
Potassium	300	3000			2600		·	ND		<u> </u>	1400			1300		
Selenium	1.3	ND			ND			ND		ļ	ND			ND		
Silver	1	1,1	<u> </u>		ND	~		ND	<u> </u> .	L	ND			ND		
Sodium	500	ND		<u></u>	540			ND			2700			2400		
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2	32	<u> </u>		43			7.5			45			42	ļ	_
Zinc	2	140			53			37		J.	54		J	46		j
Percent Moisture		24	l		22			7.2			18			19		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

U = Undetected, result is less than the detection limit

Table C-1.
Soil Sampling Results (mg/kg)

	Station		16			17			17			17			17	
Samp	le Type		Field			Field			Field	i		Field			Field	ł
	nple ID		OU3-SB-	0016-D	01-VB	OU3-SB-	0017-A	01-VB0	OU3-SB-	0017-B	01-VB	OU3-SB-	0017-C	01-VB	OU3-SB-	0017-D
Parent Sar	nple ID															
Sample Date	te/Time	12/1	0/2003 1	4:30	12/1	1/2003 1	0:40	12/1	1/2003 1	0:44	12/1	1/2003 1	0:50	12/1	1/2003 1	1:00
Depth_upper	(ft bgs)		10.00			0.25			5.00			9.25			11.00	
Depth_lower	(ft bgs)		11.08			3.00			6.08			10.50			12.50	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	28000			4400			28000			33000			7000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	1.1			2.5			2			5.7			ND		
Barium	1	54	L	J	110			1200			1100			16		
Beryllium	0.5	0.78 ND			ND			ND			0.74			ND		
Cadmium	0.5				ND			0.77			0.86			ND		
Calcium	20	6100			6600			18000			10000			9000		
Chromium	1	20			3.4			6			10			5		
Cobalt	1	7.2			3			11			22			1.6		
Copper	2	20			83			4.8			12			5.8		
Iron	10	20000			4900			27000			24000			5300		
Lead	0.8	15			43		J	7.2		J	16		J	3.4		J
Magnesium	20	4800			550	l		7400	····		5700			1300		
Manganese	1	320			120		J	850		J	530		J	86		<u>J</u>
Mercury	0.033	0.033		J	0.13			_ND_			ND			ND	<u> </u>	ļ
Nickel	4	13			ND			4.1			10			ND		
Potassium	_300	3200			340			790			1900			880		
Selenium	1.3	ND			ND			ND			ND			ND	<u> </u>	<u> </u>
Silver	1	ND			1			ND			ND			ND	<u> </u>	
Sodium	500	1900			ND			1300			2000		ļ	ND		<u> </u>
Thallium	1.2	ND			ND		<u> </u>	ND			ND			ND		
Vanadium	2	45			11			56			54			11		
Zinc	2	66		J,	30			55			58			14		
Percent Moisture		21			18	<u> </u>		18			17			19	L	

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

	Station	 -	18			18			18	T		18	<u>-</u>		19	
	e Type		Field			Field			Field	}	Field	QC - Dup	ficate		Field	
•	nple ID	01-VB	OU3-SB-0	0018-A	01-VB0	OU3-SB-0	0018-B	01-VB	OU3-SB-	0018-C		OU3-SB-		01-VB	OU3-SB-	0019-A
Parent Sar											01-VB	OU3-SB-	0018-C			
Sample Dat		12/1	1/2003 1	3:00	12/1	1/2003 1	3:10	12/1	1/2003 1	3:14	12/1	1/2003 1	3:16	12/1	0/2003 1	2:35
Depth_upper	(ft bgs)		2.00			5.00			6.00			6.00			8.00	·
Depth_lower	(ft bgs)		5.00			6.00			8.00			8.00			9.08	
Analyte	DL.	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	10000			39000			37000			36000			23000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		ÜJ
Arsenic	1	2.6			3.6			3			2.5			1.2		
Barium ,	1	100			1200			1200			1300			44	L	J
Beryllium	0.5	ND ND			ND			ND			ND			0.52		
Cadmium	0.5				1.3			0.69			0.84			ND		
Calcium	20	3200			43000			15000			15000			4500		
Chromium	1	3200			7.2			5.9			7.3			14		
Cobalt	1	4.8			14			13			14		_	5.7		
Copper	2	130			9.2			5.2			4.6			14		
Iron	10	12000			31000			30000			33000			21000		
Lead	0.8	44		J	12		J	7.8		J	7.5		J	11		
Magnesium	20	1800			9300			8800			8500	L.		3700		
Manganese	1	170		J	1900		J	1000		J	1000		J	410		
Mercury	0.033	ND			ND			ND_			ND			0.033		J
Nickel	4	6.6			6.8			4.7			4.8			15		
Potassium	300	1900			1000			790			790			2500		
Selenium	1.3	ND			ND	·		ND			ND			ND		
Silver	1	ND ND			ND	<u> </u>	l	ND			ND			ND	<u> </u>	
Sodium	500	O ND			910			1300			1400			2200		
Thallium	1.2				ND			ND			ND	L	<u> </u>	ND		
Vanadium	2	22			61			59			73			34		
Zinc	2	36			55			60			66			45		J
Percent Moisture		13			20			18		l	19	1		18		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1.
Soil Sampling Results (mg/kg)

	Station		19			20			20			21			21	
Samp	le Type		Field			Field			Field			Field			Field	
Sar	nple ID	01-VB	OU3-SB-(0019-B	01-VB	OU3-SB-0	0020-A	01-VB	OU3-SB-	0020-B	01-VB	OU3-SB-(0021-A	01-VB	OU3-SB-	0021-B
Parent Sar	nple ID												İ			
Sample Dat	le/Time	12/1	0/2003 1	2:45	12/1	0/2003 1	5:20	12/1	0/2003 1	5:25	12/1	1/2003 1	1:40	12/1	1/2003 1	1:48
Depth_upper	(ft bgs)		11.00			2.00			8.75			0.50			4.50	
Depth_lower	(ft bgs)		11.83			3.00			10.00			2.00			5.50	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	21000			33000			32000			12000			25000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		ÜJ	ND		UJ
Arsenic	1	1.1			1.6			27			23			1.9		
Barium	1_	42	L	J	340			940			190			45		
Beryllium	0.5	0.57			0.62	 		0.91			ND			0.65		<u> </u>
Cadmium	0.5	ND			0.64			1.4			9.3			ND		
Calcium	20	5000			11000			10000			7000			13000	<u> </u>	
Chromium	1	15			5.5			13			14			17	<u> </u>	
Cobalt	1	5.3			9.8			61			5.3		<u> </u>	4.4		
Copper	2	18			6.7			13			270		<u> </u>	15		
Iron	10	14000			27000			38000			14000			16000		<u> </u>
Lead	0.8	22			7.3		J	18	ļ	J	210		J	15		J
Magnesium	20	3700			8400			5400			3400			3700		<u> </u>
Manganese	1	440			890		J	1100		J	340		J	140		J
Mercury	0.033	ND		UJ	ND_			ND	ļ <u> </u>		1.6			ND		ļ!
Nickel	4	13			5			42			8			8.3	İ	<u> </u>
Potassium	300	2500			720			2100			2400			2100	<u> </u>	
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	11	ND			ND			ND			3			ND		
Sodium	500	2000			840			3300			ND			ND		
Thallium	1.2	ND			ND			1.2			ND			ND ·		
Vanadium	2	31			57			59			24	-		41		
Zinc	2	50	·	J	56			67			470			40		
Percent Moisture		19			20			16			12			20		
		51 5 1			ic the rone											

Qual_L = Qualifier assigned by laboratory.

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1. Soil Sampling Results (mg/kg)

	Station	·	21			22			22			22	1		22		
Samp	le Type		Field			Field			Field			Field			Field		
Sar	nple ID	01-VB	DU3-SB-	0021-C	01-VB0	0U3-SB-	0022-A	01-VB	DU3-SB-	0022-B	01-VB0	OU3-SB-	0022-C	01-VB	OU3-SB-	0022-D	
Parent Sar	nple ID									ļ							
Sample Date	te/Time	12/1	1/2003 1	1:52	12/	12/2003 9	9:05	12/	12/2003 9	9:10	12/	12/2003 9):15	12/	12/2003 9):25	
Depth_upper	(ft bgs)		8.00			2.00			6.00			10.50			21.00		
Depth_lower	(It bgs)		9.00			4.00			8.50			12.00			23.00		
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	
Aluminum	10	27000			5300			24000			28000			26000			
Antimony	1	ND		UJ	2		J	ND		UJ	ND		UJ	ND		UJ	
Arsenic	1	ND			51			15			1.5	,]	47		· ·	
Barium	1	41			270			1200			50			38		J	
Beryllium	0.5	0.59			ND			ND			0.79			1.1			
Cadmium	0.5	ND			11			1.8			ND			ND 9100			
Calcium	20	15000			15000			13000			6700			9100			
Chromium	1	16			6.3			7.3			21			12	·		
Cobalt	1_	3.9			3.5			10			6.7			7.9			
Copper	2	15			580			210			19			34			
Iron	10	19000			7800			19000			19000			23000			
Lead	0.8	13		J	380		J	140		J	15		J	16		J	
Magnesium	20	3400			4900			5500			5300			4100			
Manganese	1	190		J	280	l	J	570	L	J	380	L	J	110		J	
Mercury	0.033	ND		1	0.19			0.047			0.033			ND			
Nickel	4	8.1			4.7			6.8			14			9.4			
Potassium	300	2400			1400			1500			3300			1600			
Selenium	1.3	ND			ND			ND			ND			ND			
Silver	1	ND			13			2.5			ND		<u> </u>	ND			
Sodium	500	ND			ND			740			650			1800			
Thallium	1.2	ND			ND			ND			ND			ND		<u> </u>	
Vanadium	2	36			. 19			46			48			40			
Zinc	2	41			410		J	110		J ·	72		J	110			
Percent Moisture		18			8.3			17			21			29			
				it (note DI										-	21.00 23.00 esult Qual_L Qu 6000 ND 47 38 1.1 ND 9100 12 7.9 34 13000 16 4100 110 ND 9.4 1600 ND ND ND 1800 ND ND 1800 ND 40 110		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1.
Soil Sampling Results (mg/kg)

Aluminum		Station		22			23			23			23			24	
Sample ID Parent Sample ID Parent Sample ID Parent Sample ID 1-2 12/19/2003 11:42 12/19/2003 10:10 12/19/2003 10:15 12/19/2003 10:20 12/19/2003 8:40	Samp	le Type	Field	dC - PE	Std		Field			Field			Field			Field	
Sample Date/Time 12/18/2003 11:42 12/19/2003 10:10 12/19/2003 10:15 12/19/2003 10:20 12/19/2003 8:40	Sar	nple ID	01-VB	OU3-SB-	0022-E	01-VB	OU3-SB-	0023-A	01-VB	DU3-SB-	0023-B	01-VB0	OU3-SB-	0023-C	01-VB	OU3-SB-	0024-A
Depth_lower (ff bgs)	Parent Sar	nple ID		1-2													
Depth_lower (ft bgs)			12/1	8/2003 1	1:42	12/1	9/2003 1	0:10	12/1	9/2003 1	0:15	12/1	9/2003 1	0:20	12/	19/2003	8:40
Depth_lower (ft bgs)	Depth_upper	(ft bgs)					0.08			2.00			10.00			0.50	
Aluminum	Depth_lower	(ft bgs)					1.50			5.00			10.67			3.00	
Antimony	Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Arsenic 1 140 3.5 3 5.7 53 Barium 1 370 83 64 32 700 Beryllium 0.5 ND ND ND 0.95 1 ND Cadmium 0.5 2.1 ND ND ND ND ND Calcium 20 38000 6600 7300 7800 12000 12000 Chromium 1 7.8 13 J 19 J 13 J 8.7 J Cobalt 1 15 5.6 7.7 6.2 12	Aluminum	10	2400			17000			30000			28000			27000		
Barium	Antimony	1	3.3		J			UJ	ND		UJ	ND		UJ_	ПD		ŨJ
Beryllium		1	140			3.5			3			5.7			53		
Cadmium 0.5 2.1 ND ND ND ND ND G Calcium 20 38000 6600 7300 7800 12000 12000 Chromium 1 7.8 13 J 19 J 13 J 8.7 J Cobalt 1 15 5.6 7.7 6.2 13 18 18 18 18 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18		1	370						64			32			700		
Calcium 20 38000 6600 7300 7800 12000 Chromium 1 7.8 13 J 19 J 13 J 8.7 J Cobalt 1 15 5.6 7.7 6.2 12 12 12 12 12 12 12 12 13 18 19 18 18 18 18 18 18 18 18 <td< td=""><td>Beryllium</td><td>0.5</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td>0.95</td><td></td><td></td><td>1</td><td></td><td></td><td>ND</td><td></td><td></td></td<>	Beryllium	0.5	ND			ND			0.95			1			ND		
Chromium 1 7.8 13 J 19 J 13 J 8.7 J Cobalt 1 15 5.6 7.7 6.2 12 Copper 2 1400 30 20 18 18 Iron 10 4800 17000 23000 21000 28000 Lead 0.8 1400 J 35 21 15 10 Magnesium 20 16000 3000 3800 3200 4900 Manganese 1 770 L J 270 410 120 700 Mercury 0.033 0.24 ND ND ND ND ND Nickel 4 10 9.9 13 10 6.5 1500 Potassium 300 800 2000 2500 1700 1500 Selenium 1.3 ND ND ND ND ND	Cadmium		2.1			ND						ND			ND	G	
Cobalt 1 15 5.6 7.7 6.2 12 Copper 2 1400 30 20 18 18 Iron 10 4800 17000 23000 21000 28000 Lead 0.8 1400 J 35 21 15 10 Magnesium 20 16000 3000 3800 3200 4900 Manganese 1 770 L J 270 410 120 700 Mercury 0.033 0.24 ND ND ND ND ND Nickel 4 10 9.9 13 10 6.5 1 Potassium 300 800 2000 2500 1700 1500 1500 Selenium 1.3 ND ND ND ND ND ND Sodium 500 ND 520 J 1300 J 1100 J 2200 <td></td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="3">12000</td>		20													12000		
Copper 2 1400 30 20 18 18 Iron 10 4800 17000 23000 21000 28000 Lead 0.8 1400 J 35 21 15 10 Magnesium 20 16000 3000 3800 3200 4900 Manganese 1 770 L J 270 410 120 700 Mercury 0.033 0.24 ND ND ND ND ND Nickel 4 10 9.9 13 10 6.5 9 Potassium 300 800 2000 2500 1700 1500 1500 Selenium 1.3 ND ND ND ND ND ND Silver 1 ND ND ND ND ND ND Sodium 500 ND ND ND ND ND ND		1	7.8					J			J			J	8.7		J
Iron 10 4800 17000 23000 21000 28000 Lead 0.8 1400 J 35 21 15 10 Magnesium 20 16000 3000 3800 3200 4900 Manganese 1 770 L J 270 410 120 700 Mercury 0.033 0.24 ND ND ND ND ND Nickel 4 10 9.9 13 10 6.5 Potassium 300 800 2000 2500 1700 1500 Selenium 1.3 ND ND ND ND ND Silver 1 ND ND ND ND ND Sodium 500 ND 520 J 1300 J 1100 J 2200 J Thallium 1.2 ND ND ND ND ND ND ND																	
Lead 0.8 1400 J 35 21 15 10 Magnesium 20 16000 3000 3800 3200 4900 Manganese 1 770 L J 270 410 120 700 Mercury 0.033 0.24 ND ND ND ND ND Nickel 4 10 9.9 13 10 6.5 10 Potassium 300 800 2000 2500 1700 1500 1500 Selenium 1.3 ND ND ND ND ND ND Silver 1 ND ND ND ND ND ND Sodium 500 ND 520 J 1300 J 1100 J 2200 J Thallium 1.2 ND ND ND ND ND ND ND ND ND ND ND ND	Copper																
Magnesium 20 16000 3000 3800 3200 4900 Manganese 1 770 L J 270 410 120 700 Mercury 0.033 0.24 ND ND ND ND ND Nickel 4 10 9.9 13 10 6.5 1500 Potassium 300 800 2000 2500 1700 1500 1500 Selenium 1.3 ND ND ND ND ND ND Sifver 1 ND ND ND ND ND ND Sodium 500 ND 520 J 1300 J 1100 J 2200 J Thallium 1.2 ND<	Iron																
Manganese 1 770 L J 270 410 120 700 Mercury 0.033 0.24 ND ND ND ND ND Nickel 4 10 9.9 13 10 6.5 10 Potassium 300 800 2000 2500 1700 1500 1500 Selenium 1.3 ND ND ND ND ND ND Silver 1 ND ND ND ND ND ND Sodium 500 ND 520 J 1300 J 1100 J 2200 J Thallium 1.2 ND		0.8	1400	<u> </u>	J					····		15			10		<u> </u>
Mercury 0.033 0.24 ND		20				3000			3800			3200	<u> </u>	· · · · · · · · · · · · · · · · · · ·	4900		
Nickel 4 10 9.9 13 10 6.5 Potassium 300 800 2000 2500 1700 1500 Selenium 1.3 ND ND ND ND ND Silver 1 ND ND ND ND ND Sodium 500 ND 520 J 1300 J 1100 ND ND Sodium 500 ND ND ND ND ND ND Thallium 1.2 ND ND ND ND ND ND Vanadium 2 270 30 J 45 J 34 J 55 J Zinc 2 1700 J 93 J 71 J 67 J 80 J			770	L.	J							120					
Potassium 300 800 2000 2500 1700 1500 Selenium 1.3 ND ND ND ND ND Silver 1 ND ND ND ND ND Sodium 500 ND 520 J 1300 J 1100 J 2200 J Thallium 1.2 ND ND ND ND ND ND Vanadium 2 270 30 J 45 J 34 J 55 J Zinc 2 1700 J 93 J 71 J 67 J 80 J		0.033	0.24			ND_						ND					
Selenium 1.3 ND	Nickel	4	_ 10			9.9			13		1	10			6.5		L
Silver 1 ND ND ND ND ND ND ND ND ND ND ND ND ND J 2200 J J 2200 J ND	Potassium	300	800			2000_			2500			1700			1500		
Sodium 500 ND 520 J 1300 J 1100 J 2200 J Thallium 1.2 ND		1.3	ND			ND			ND			ND			ND		
Thallium 1.2 ND		11	ND	l					ND			ND			ND		
Vanadium 2 270 30 J 45 J 34 J 55 J Zinc 2 1700 J 93 J 71 J 67 J 80 J	1	500	_ ND			520		J	1300		J	1100		J	2200		J
Zinc 2 1700 J 93 J 71 J 67 J 80 J	Thallium																
		2	270					J			J			J			J
Percent Moisture 0.48 9 19 21 17	Zinc	2	1700		J	93		J	71		J	67		J			J
· · · · · · · · · · · · · · · · · · ·	Percent Moisture		0.48			9			19 .			21			17		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

	Station		24	T		24			24			25	<u> </u>		25	
Sampl	e Type	Fie	ld Duplic	ate	Field	IQC - PE	Std		Field			Field			Field	
Sar	nple ID	01-VB	OU3-SB-(024-B	01-VB	OU3-SB-0	0024-C	01-VB	DU3-SB-(0024-D	01-VB	OU3-SB-	0025-A	01-VB	OU3-SB-	0025-B
Parent Sar	nple ID	01-VB	OU3-SB-(0024-A		1-9										,
Sample Dat	e/Time	12/	19/2003 8	3:40	12/	19/2003 8	3:45	12/	19/2003 8	3:50	12/	19/2003 9	9:15	12/	19/2003 9):20
Depth_upper			0.50						6.50			0.17			5.50	
Depth_lower	(ft bgs)		3.00						7.50			1.50			6.00	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	24000			2300			32000		·	32000			27000		
Antimony	1	ND		UJ	2.7		J	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	32			130			13			1.9			2		
Barium	1	650			360			1100			740			160		
Beryllium	0.5	0.53			ND			0.83			ND			ND ND		
Cadmium	0.5	ND	G		1.9			ND	G		ND	G		ND		
Calcium	20	10000			40000			12000			21000			ND 80000		
Chromium	1	7.7		J	7.6		J	8		J	5.9		J	ND 80000 6.5		
Cobalt	1	12			12			14			12			13	2	
Copper	2	13			1300			12			4.7			3.2	·	
Iron	10	25000			4800			27000			34000			32000		
Lead	0.8	9.5			1400			14			7.6					
Magnesium	20	4300			16000		l	4100			8300			7300		
Manganese	1	740			810		<u> </u>	370			820			3600		
Mercury	0.033	ND			0.22		L	ND			ND					
Nickel*	4	5.8			9.7			5.2			4		<u> </u>			
Potassium	300	1300			730			1600			720					
Selenium	1.3	ND			ND			ND			ND		<u> </u>			
Silver	1	ND			ND			ND			ND			ND		
Sodium	500	1900		J	ND			5100		J	3300		J	1700		J
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2	52		J	260		J	61		J	66		J	66		J
Zinc	2	65		J	1900		J	73		J	76		J	68		J
Percent Moisture		18			0.34			17			18		<u></u>	12	3.2 32000 6.5 7300 3600 ND 4.9 500 ND ND ND ND ND ND ND ND ND ND	

DL = Detection Limit (note DL is the reporting limit)

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

U = Undetected, result is less than the detection limit

Table C-1.
Soil Sampling Results (mg/kg)

	Station		26			26			26			27			27	
Samp	le Type		Field			Field		Fie	ld Duplic	ale		Field			Field	
Sar	nple ID	01-VB0	OU3-SB-0	0026-A	01-VB	DU3-SB-(0026-B	01-VB	DU3-SB-(0026-C	01-VB	OU3-SB-	0027-A	01-VB	DU3-SB-	0027-B
Parent Sar	nple ID							01-VB	OU3-SB-(0026-B						
Sample Date	te/Time	12/1	9/2003 1	2:30	12/1	9/2003 1	2:35	12/1	9/2003 1	2:35	12/1	1/2003 1	5:07	12/1	1/2003 1	5:11
Depth_upper	(ft bgs)		0.25			3.00			3.00			0.17			5.00	
Depth_lower	(ft bgs)		2.83			4.50			4.50			3.00			9.00	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	9100			25000			24000			24000			28000		
Antimony	1	ND		UJ	ND		UJ	_ND		UJ	ND		UJ	ND		UJ
Arsenic	1	3.4			4.1			3.6			4.4			10		
Barium	_1_	79			110			78			120			280		
Beryllium	0.5	ND			1			11			ND			0.75		
Cadmium	0.5	0.67			ND			ND			ND			ND		
Calcium	20	4100			7000			7200			5100			14000		
Chromium	111	16			13			11			16			13		
Cobalt	1	5.8			7.1			7.5			7.6			. 12		
Copper	2	23			19			17			20			66		
Iron	10	14000			24000			24000			21000			27000		
Lead	0.8	23			50			22			19		J	40		J
Magnesium	20	3100			3700			3300			3400			4800		<u> </u>
Manganese	1	220	•	J	520		J	760		J	300	L	J	650	L	J
Mercury	0.033	ND			0.039			0.046			ND			0.077		
Nickel	4	16			9.1			9.1			10			13		
Potassium	300	1800			2100			1500			3200			2300		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			ND			ND			1.1		
Sodium	500	ND			790			830			660			1000		
Thallium	1.2	ND_			ND			ND			ND			_ND_		<u> </u>
Vanadium	2	33		J	35		J	36		J	44			54		
Zinc	2	69			87			70			62		J ·	130		J
Percent Moisture		3.3			18			22			12			16		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

	Station		27		 -	27			27	····		28			. 28	
Samp	le Type		Field			Field			Field		•	Field			Field	
Sar	nple ID	01-VB0	01-VBOU3-SB-0027-C			01-VBOU3-SB-0027-D			01-VBOU3-SB-0027-E			DU3-SB-	0028-A	01-VB	OU3-SB-	0028-B
Parent Sar	nple ID															
Sample Dat	le/Time	12/1	1/2003 1	5:30	12/1	1/2003 1	5:45	12/11/2003 16:05			12/	10/2003 8	3:30	12/10/2003 8:35		
Depth_upper	epth_upper (ft bgs) 13.00			17.00				20.33			0.92		10.00			
Depth_lower	(ft bgs)	14.17			18.00			21.00				1,92		10.50		
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	36000			30000			29000			30000			25000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	2.9			10			1.9			2.4			4.9		
Barium	1	1100		1100			84			36	_ L	J	210		J	
Beryllium	0.5	0.76		0.75			0.84			0.76			ND			
Cadmium	0.5	ND			ND			ND			ND			ND		
Calcium	20	9600			9800			7100			5500			8200		
Chromium	1	9.9			9.4			22			14			29		
Cobalt	1	10			14			5.2			5.1			11		
Copper	2	12			15			24			11			7.5		
Iron	10	29000			27000			21000			21000			33000		
Lead	8.0	9.2		J	11		J	16		J	12			9.1		
Magnesium	20	5500			4100			4800			4400			3800		
Manganese	1	420	L	J	380	L	J	640	L	J	320			490		
Mercury	0.033	ND			ND			ND			ND	l		ND		
Nickel	4	4.5			5.9			16			8.4		<u> </u>	9.8	ļ	
Potassium	300	1800			1900			3800			2000			1300		<u> </u>
Selenium	1.3	ND			ND			ND			ND		ļ	ND		
Silver	1	ND			ND			ND_			ND			ND	<u> </u>	
Sodium	500	1800			2800			1100			1800			1700		<u> </u>
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2_	60			73			50			37			57		
Zinc	2	64		J	67		J	63		J	49		J	65		J
Percent Moisture		22			20			19			22			18		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

J = Result is an estimated quantity

Table C-1.
Soil Sampling Results (mg/kg)

	Station	-	28			28			28			29			29	
Samp	ie Type		Field			Field			Field			Field			Field	
Sai	nple ID	01-VB	OU3-SB-(0028-C	01-VBOU3-SB-0028-D			01-VBOU3-SB-0028-E			01-VB	OU3-SB-	0029-A	01-VB	OU3-SB-	0029-B
Parent Sar	nple ID										1					
Sample Da	te/Time	12/	10/2003 8	3:40	12/	10/2003 8	3:50	12/10/2003 9:05			12/	10/2003 9	9:50	12/10/2003 9:55		
Depth_upper	(ft bgs)	14.00			19.00			24.00				1.83		5.00		
Depth_lower	(ft bgs)	15.00			20.00			25.50				2.83		5.50		
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	27000			27000			31000			38000			32000		
Antimony	1	ND		UJ	ND		ŲĴ	ND		UJ	ND		ŲJ	ND		UJ
Arsenic	1	5.3			1.9			2.3			ND			ND		
Barium	1	32	L	J	38	L	J	30	Ļ	J	49	L	J	35	L	J
Beryllium	0.5	1.1		_	0.7			0.6			1			0.75		
Cadmium	0.5	ND			ND			ND			ND			ND		
Calcium	20	7000			6300			7400			8700			7000		
Chromium	1	15			21			18			17			20		
Cobalt	1	4.5			5.6			4.3			11			7.2		
Copper	2	22			17			20			11			22		
Iron	10	16000			17000			19000			31000			25000		
Lead	0.8	19			16			11			15			14		
Magnesium	20	3300			4000			3100			4600			3900		
Manganese	1	97			110			120			290			220		
Mercury	0.033	0.039			ND			0.39			ND			ND.		
Nickel	4	9.3			13			8.8			15			15		
Potassium	300	2300			3000			2400			2300			2500		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND_			ND			ND			ND		
Sodium	500	1500			1300			1500			1700			1400		
Thallium	1.2	ND			ND	 		ND			ND			ND		ļ
Vanadium	2	37			47			42			42			44		
Zinc	2	65		J	58		J	52		J	68		J	57		j
Percent Moisture		21			17			16			21	L		18	L	1

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present,

	Station		29			29			29			30			30	
Sampl	e Type		Field			Field			Field			Field			Field	
Sar	nple ID	01-VB	1-VBOU3-SB-0029-C		01-VBOU3-SB-0029-D			01-VBOU3-SB-0029-E			01-VB	DU3-SB-	0030-A	01-VBOU3-SB-0030-B		
Parent Sar	nple ID			1						i						
Sample Dat	Sample Date/Time 12/10/2003 10:05			0:05	12/1	0/2003 1	0:10	12/1	0/2003 1	0:15	12/1	1/2003 1	4:10	12/11/2003 14:17		
Depth_upper	Depth_upper (ft bgs) 11.00					15.50			20.00			0.00		1.00		
Depth_lower	(ft bgs)	11.92			16.33			21.00				0.50		3.00		
Analyte	DL	Result Qual_L Qual_V			Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	31000			28000			26000			23000			33000		
Antimony	1	ND		IJ	ND		UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	ND			. 1.1			1.5			2.8			1.3	Ī	
Barium	1	35	L	J	29	L	J	41	L	J	86			`51		
Beryllium	0.5	1.1			0.53			0.57			0.65		[0.85		
Cadmium	0.5	ND			ND			ND			ND			ND		
Calcium	20	6800			6600			7000			10000			11000		
Chromium	1	17		-	12			19			15			22		
Cobalt	1	5.9			6			8.5			6.3			12		
Copper	2	19			12			24			65			13		
Iron	10	21000		,	20000			20000			18000			23000		
Lead	0.8	21	1		13			27			22	l	J	15		J
Magnesium	20	3300			3100			3600			3900			5600		
Manganese	1	240			200			430			260	1	J	370	L	J
Mercury	0.033	ND			ND			0.081			ND			ND		
Nickel	4	-12			11			21		1	10			15		
Potassium '	300	2100			2000			2800			2400			3200		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND	1		ND			ND			ND		
Sodium	500	1500			1300			1200			720			2900		
Thallium	1.2	ND			ND			ND			ND			ND .		
Vanadium	2	49			32			45			34			58		
Zinc	2	55		J	50		J	77		J	55			53		J.
Percent Moisture		20			18			15			14			15		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

J = Result is an estimated quantity

Table C-1.
Soil Sampling Results (mg/kg)

	Station		30			31			31			31		32		
Samp	le Type		Field			Field			Field			Field			Field	
	mple ID	01-VBOU3-SB-0030-C			01-VBOU3-SB-0031-A			01-VB	DU3-SB-(0031-B	01-VB	DU3-SB-	0031-C	01-VB	OU3-SB-	0032-A
Parent Sai	nple ID															
Sample Da	Sample Date/Time 12/11/2003 14:27			12/11/2003 8:45			12/11/2003 8:50			12/	11/2003 9	9:00	12/12/2003 8:05			
Depth_upper	Depth_upper (ft bgs) 9.00			0.83			5.00				10.00		0.33			
Depth_lower	(ft bgs)	10.50			2.00			6.17			11.00			2.50		
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	21000			33000			31000			35000			25000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		ŲJ	ND		UJ
Arsenic	1	3.1			1.2			ND			ND			13		
Barium	1	1200			64			33			25			210		
Beryllium	0.5	ND			1.1			1.1			1			0.55		
Cadmium	0.5	ND		0.78			0.57			0.74			1.1			
Calcium	_ 20	5500			7000			_6900			8200			14000		
Chromium	1	10			16			16			18			17		
Cobalt	11	6.6			6.7			5.5			6.4			7.6		
Copper	2	4			26			15			12			150		
Iron	10	10000			25000			21000			26000			19000	·	
Lead	0.8	6.4		J	17	·	J	14		J	10		J	110		J
Magnesium	20	2000			5100			4100			4100			4100]	<u> </u>
Manganese	11	190	L	J	310		J	280		J	270		J_	330	LL	J
Mercury	0.033	ND			ND_			ND			ND		l	0.069		
Nickel	4	5.9			9.8	·		8.8			12			11	ĺ	<u> </u>
Potassium	300	1300			2600			1700			2400			2600		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			_ND_	<u> </u>		ND			ND			1.4		l
Sodium	500	5500			2300]	2300			2100			1100		<u> </u>
Thallium	1.2	ND			_ND			ND			ND			ND		
Vanadium	2	29			45			35			44			44		<u> </u>
Zinc	2	37		J	56			39			53			130		J
Percent Moisture		12 .			24			24			20			21		1

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers.

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1.
Soil Sampling Results (mg/kg)

	Station		32			32			32			32			33	
Samp	le Type		Field			Field			Field			Field	1		Field	
Sar	nple ID	01-VBOU3-SB-0032-B		01-VBOU3-SB-0032-C			01-VB	01-VBOU3-SB-0032-D			OU3-SB-0	0032-E	01-VB	OU3-SB-	0033-A	
Parent Sar	nple ID			i						1						
Sample Dat	le/Time	12/	12/2003 8	:10_	12/	12/2003 8	3:15	12/12/2003 8:20			12/	12/2003 8	3:25	12/18/2003 14:15		
Depth_upper	(ft bgs)	6.00			9.00			13.83				24.00		0.33		
Depth_lower	(ft bgs)	8.50				10.50			15.00			25.00			2.50	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	22000			32000			45000			31000			20000		
Antimony	1	dN		บป	ND		IJ	ND		ŲJ	ND		UJ	ND		UJ
Arsenic	1	7.7			1			ND			3.5			5.5		
Barium	1	280		_	49			51			37			200		
Beryllium	0.5	_ND			0.78			1			1			0.51		
Cadmium	0.5	ND			ND			ND			ND			ND		
Calcium	20	11000			9600			9500			6500			8000		
Chromium	1	19			23			17			21			13		J
Cobalt	1	6.7			7.5			7.3			6.5			7.5	1	
Copper	2	45			24			17			18		[18		
Iron	10	32000			22000			32000			22000			17000	· ·	i
Lead	0.8	230		J	21		J	24		J	18		J	21		
Magnesium	20	4100			4500			4700			4100			3500		
Manganese	1	320	L	J	240	- L	J	370	L	J	150	L.	J	240		
Mercury	0.033	0.24			ND			0.046			ND			ND		
Nickel	4	15			12			13			14			8.5		
Potassium	300	2700			3000			2500			3000			1900		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			ND			ND			ND		
Sodium	500	1800			1800			2100			1800		·	530		J
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2	42			54			50			45			32		J
Zinc	2	130_		J	58		J	77		J	75		J	65		J
Percent Moisture		24	·		23			22			19			17		

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmiurn in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

U = Undetected, result is less than the detection limit

Table C-1.
Soil Sampling Results (mg/kg)

	Station		33			33		~	33			33	···		34	
Samp	ie Type		Field			Field			Field			Field			Field	
	mple ID	· 01-VB0	OU3-SB-0	0033-B	01-VBOU3-SB-0033-C			01-VB	01-VBOU3-SB-0033-D			OU3-SB-	0033-E	01-VB	OU3-SB-	0034-A
Parent Sar	nple ID												ł			
Sample Date	Sample Date/Time 12/18/2003 14:20			12/1	8/2003 1	4:25	12/18/2003 14:30			12/1	8/2003 1	4:35	12/18/2003 13:30			
Depth_upper	(ft bgs)	3.00			9.00			15.67			18.00			0.33		
Depth_lower	(ft bgs)	4.00			10.00			16.50			18.50			2.33		
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	13000			5100			1400			23000			23000		
Antimony	1	ND		UJ	ND		UJ	ND		ŲJ	ND		UJ	ND		UJ
Arsenic	1	2.9			1.8			ND			6.7			8.8		
Barium	1	100			55			11			36			430		J
Beryllium	0.5	ND			ND			ND			0.94			0.59		
Cadmium	0.5	ND	G		ND			0.88			ND			ND		
Calcium	20	2700			2500			600			6300			9800		
Chromium	1	16 J		13		J	2.2		j	13		J	13			
Cobalt	1	6.4			4			ND			18			21		
Copper	2	8.1			6			7.5			14			12		
Iron	10	17000			12000			3300			17000			18000		
Lead	0.8	12			9.3		L	1.7		U	18			19		J
Magnesium	20_	3100			1700			330_			3700			3800		
Manganese	1	300			160			30			160			770		J
Mercury	0.033	ND			ND			ND			ND			ND		
Nickel	4	8.6			5.8			ND			21			15		
Potassium	300	2800			1200			330		U	1900			1300		
Selenium .	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			ND			ND			ND		
Sodium	500	ND			ND			ND			720		J	1000		
Thallium	1.2	ND			ND			ND			ND			1.2		
Vanadium	2	31		J	23		J	4.6		J	29		J	40		
Zinc	2	55		J	33		J	25		J	67		J	62		ļ
Percent Moisture		8.1	_		3.5			3		·	21		<u> </u>	15		L

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

	Station		34			34			34	l		34			34	
Sampl	e Type		Field			Field		Fie	ld Duplic	ate		Field			Field	
Sar	nple ID	01-VB0	DU3-SB-0	0034-B	01-VB	OU3-SB-(0034-C	01-VB	OU3-SB-	0034-D	01-VB	DU3-SB-	0034-E	01-VB	OU3-SB-	0034-F
Parent Sar	nple ID							01-VB(OU3-SB-0	0034-C						
Sample Dat	e/Time	12/1	8/2003 1	3:35	12/1	8/2003 1	3:40	12/1	8/2003 1	3:40	12/1	8/2003 1	3:45	12/1	8/2003 1	3:50
Depth_upper	(ft bgs)		4.50		-	11.00			11.00			18.00			21.00	
Depth_lower	(ft bgs)		6.50			13.00			13.00			19.50			22.00	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	25000			8000			7200			8400			28000		
Antimony	1	ND		UJ	ND	,	UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	9.2			2.6			2.3			1.2			4.8]
Barium	1	250		J	73		J	67		J	670		J	51		J
Beryllium	0.5	0.65		N				ND			ND			0.88		
Cadmium	0.5	ND		NI 360				ND			ND			ND]
Calcium	20	8700		3				3200			2800			6400		
Chromium	1	14			16			15			6	Ĺ	· · · · · · · · · · · · · · · · · · ·	11		}
Cobalt	1	8.4			6			5.5			2.7			7.5		
Copper ·	2	8.3			7.3			7.5			4.1			12		
Iron	10	20000			16000			15000			7900			24000		
Lead	0.8	12		J	12		J.	10		J	4.1		J	12		J
Magnesium	20	4500			2400			2200			1300			4400		
Manganese	1	270		J	250		J	220		J	92		J	340		J
Mercury	0.033	ND			ND			ND			ND			ND		
Nickel	4	7			8.2			7.6			ND			9.1		
Potassium	300	1300			2100			1900	ļ		1000			1700		
Selenium	1.3	ND			ND			ND			ND			ND		
Silver	1	ND			ND			ND			ND			ND		
Sodium	500	2000			ND			ND		<u> </u>	840			910		
Thallium	1.2	ND		<u> </u>	ND			ND			ND			ND		
Vanadium	2	55			27			25			16			29		
Zinc	2	58			41			38			22			71		
Percent Moisture		11			3.6			3.9			3			18	<u> </u>	

DL = Detection Limit (note DL is the reporting limit)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

- J = Result is an estimated quantity
- L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present
- U = Undetected, result is less than the detection limit

Table C-1.
Soil Sampling Results (mg/kg)

	Station		35			35			35			36			36	
Samp	le Type		Field			Field			Field	····		Field			Field	
Sar	nple ID	01-VB	OU3-SB-	0035-A	01-VB	OU3-SB-(0035-B	01-VB	DU3-SB-	0035-C	01-VB	OU3-SB-	0036-A	01-VB	OU3-SB-	0036-B
Parent Sar	nple ID									ì						
Sample Dat	le/Time	12/1	8/2003 1	5:50	12/1	8/2003 1	5:55	12/1	8/2003 1	6:00	12/1	9/2003 1	1:50	12/1	9/2003 1	1:55
Depth_upper			0.50			9.00			9.83			0.25			5.00	
Depth_lower	(ft bgs)		3.50			9.67			10.83			3.50			10.00	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	_ 10	8300			3300			18000			15000			13000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	_ 1	2.6			1_			1.3			5.7			2.5		
Barium	1	86			36			23			130			97		
Beryllium	0.5	ND			_ ND		*****	0.54			0.56			ND		
Cadmium	0.5	ND			_0.91			ND			ND			10		
Calcium	20	5000			1300			7200			3300			3700		
Chromium	1	12		j	4.5		J	9.1		J	14			13		
Cobalt	1	4.8			2.2			3.7			5.8			5.6		
Copper	2	9			2.8			11			24			10		
Iron	_ 10	11000			5400			13000			15000			14000		
Lead	0.8	11			3.3			20			21			13		
Magnesium	20	1900			760			2500			2700			2400		
Manganese	1	190	L		150			200			240		J	290		J
Mercury	0.033	ND			ND			ND			ND			ND		
Nickel	4	6.4			4.9			7.2			8.1			8.8		
Potassium	300	2200			860			1200			2700			2000		
Selenium	1.3	_ND_			ND			ND			ND			ND		
Silver	_ 1	ND			ND			ND			ND			ND		
Sodium	500	ND			. ND			ND			ND			ND		
Thallium	1.2	ND			ND			ND			ND			ND		
Vanadium	2	22	l	J	8.9		J	25		J	30		J	26		J
Zinc	2	70		·J	55		J	73		J	69			350		
Percent Moisture		9.5			2.4			15			9.2			6.2		

DL = Detection Limit (note DL is the reporting limit)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers

G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

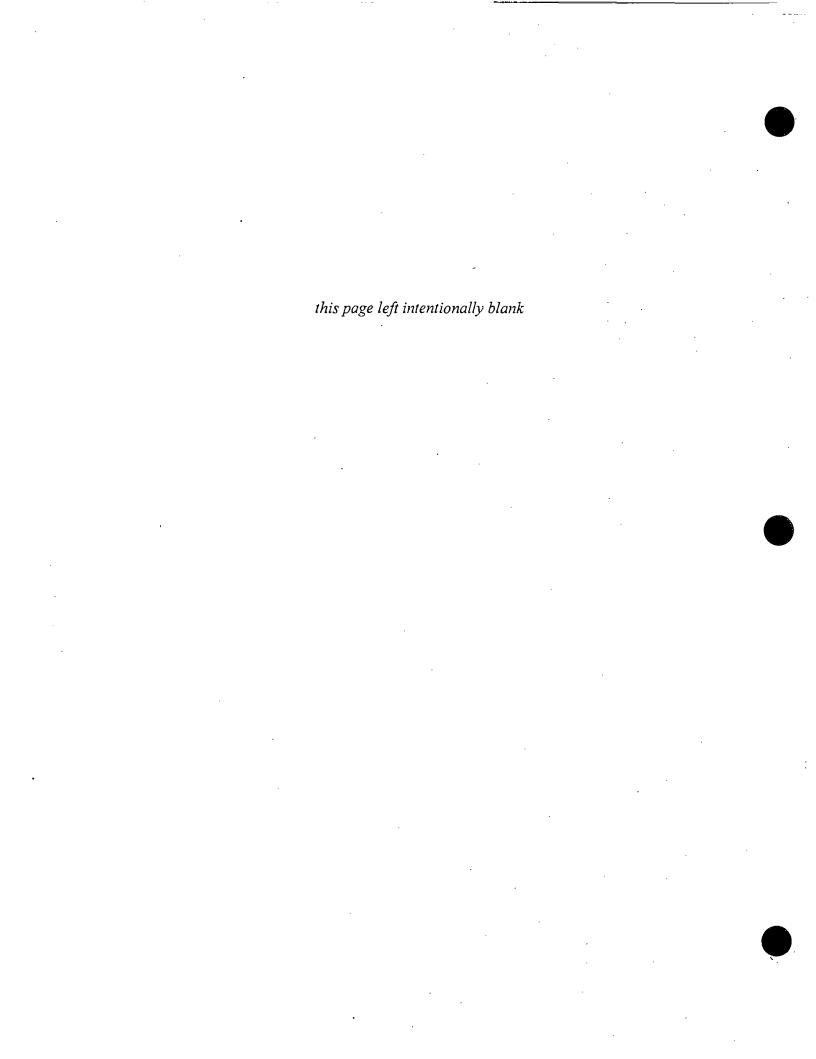
L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

Table C-1.
Soil Sampling Results (mg/kg)

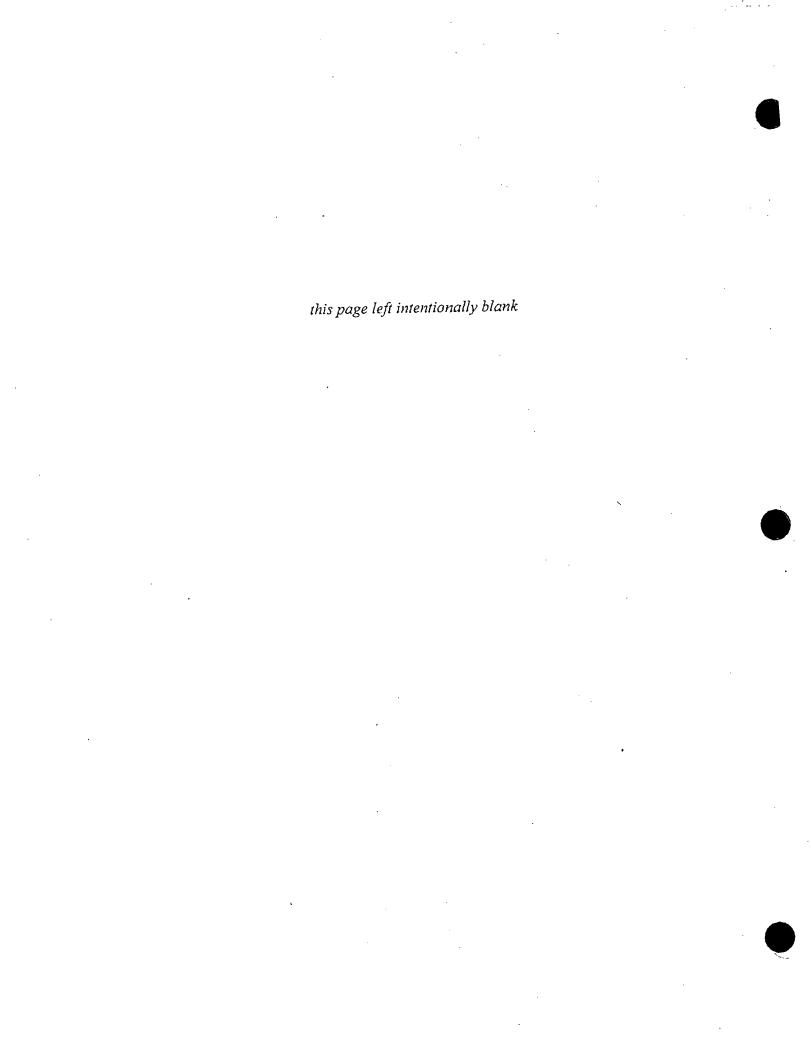
[Station		36			37			37	-		37	
Sampl	e Type		Field			Field			Field			Field	
Sar	nple ID	01-VB0	OU3-SB-0	0036-C	01-VB	OU3-SB-	0037-A	01-VB	OU3-SB-6	0037-B	01-VB	OU3-SB-	0037-C
Parent San	nple ID											•	i
Sample Dat	e/Time	12/1	9/2003 13	2:00	12/1	8/2003 1	5:15	12/1	8/2003 1	5:20	12/1	8/2003 1	5:25
Depth_upper ((ft bgs)		11.00			0.00			5.83			10.00	
Depth_lower	(ft bgs)		12.00			1.00			7.00			11.17	
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	24000			17000			23000			22000		
Antimony	1	ND		UJ	ND		UJ	ND		UJ	ND		UJ
Arsenic	1	1.2			6.1			2.6			2.9		
Barium	1	33			160			56			19		
Beryllium	0.5	0.85			0.9			0.86			0.53		
Cadmium	0.5	ND			2.7			0.59			ND		
Calcium	20	8500	8500 4/					9800			14000		
Chromium	1	13	13				J	18		J	10		J
Cobalt	1	2.4			6.8			6			4.6		
Copper	2	26			23			21			4.3		
Iron	10	17000			18000			18000			15000		
Lead	0.8	19			30			16			12		
Magnesium	20	3300			3300			4400			2600		
Manganese	1	240		J _	410			150			160		
Mercury	0.033	0.066			ND	<u> </u>		0.1	l		ND		
Nickel	4	7.1			9.2			16			7		
Potassium	300	2000			2600			2200	<u> </u>		910		<u> </u>
Selenium	1.3	ND			ND			ND			ND		
Silver	11	ND			ND			ND			ND		
Sodium	500	ND			ND			960		J	720		J
Thallium	1.2	ND			ND			ND			ND		<u> </u>
Vanadium	2	30		J	31		J	34		J	24		J
Zinc	2	50			130	ļ	J	100		J	41		J
Percent Moisture		18			9.7			16	<u> </u>		16	<u></u>	<u> </u>

DL = Detection Limit (note DL is the reporting limit);

Qual_L = Qualifier assigned by laboratory


Qual_V = Qualifier assigned during data validation

Qualifiers:


G = Elevated reporting limit, due to matrix interferences (for cadmium in soil, elevated detection limit ranged from 1.1 to 1.4)

J = Result is an estimated quantity

L = Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present

ANALYTICAL RESULTS FOR GROUNDWATER

	Station		4		<u> </u>	7			4	- -
Sam	ple Type		Field			Field		Field	QC - PE St	andard
- Sa	ample ID	01-V	BOU3-GW	-0003	01-V	BOU3-GW	-0002	01-V	BOU3-GW	-0005
Parent Sa	ample ID								7-A	
Sample D			12-18-2003			12-12-2003			12-18-2003	3
Depth_upper			11.0			12.2				
Depth_lowe	r (ft bgs)									
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	10	27200			355000			ND	Ū	
Antimony	4	ND	U		40.1			138		
Arsenic	1	12.2	В	J	11600		J	41.4		J
Barium	1	414			1410			637		
Beryllium	0.5	ND	U	UJ	26.1		J	22.1		J
Cadmium	0.5	908		J	7400		J	24.8		J
Calcium	20	360120			736800			90	-	U
Chromium	4	ND	U		460			ND ·	U	
Cobalt	1	31.6			199			183		
Copper	4	153			37500			6.43	В	
Iron	50	25700			1100000			283		
Lead	0.3	42.6		J	15800		J	19.1		J
Magnesium	150	53000			148000			13600		
Manganese	5	5690		·	22800			89.4		U
Mercury	0.06	0.099	В	Ü	17.7			ND ·	U	
Nickel	2	56.2			889			6.3	В	U
Potassium	200	11200			92200			17600		
Selenium	1	· 11	В	J	39.4		J	83.4		J
Silver	0.2	2.19	В	J	219		J	35.2		J
Sodium	100	900000			833000			100	В	J
Thallium	0.1	4.68		j	300		J	30		J
Vanadium	3	47.4	B	J	541		J	ND	U	
Zinc	2	11200			85200_			130		
рН		4.6			5.1					
Hardness (mg/L)		1112.5			2447.3			57.1		
Specific Conductance (umhos/cm)										
Conductivity (uS/cm)		2.17			1.52					
Total Dissolved Solids (mg/L)										
Temperature (°F)		41			58.9					
DI = Detection Limit										

DL = Detection Limit

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

Qualifiers

B = Concentration qualifier, above reporting lmit, less than PQL

J = Result is an estimated quantity

	Station		32			32	 	1	33		J	33	
	ole Type		Field	1	1	Field		i	Field		ł	Field	
	mple ID	M	W-32-0701	04	M	W-32-0728	04	M	W-33-0503	04	M	W-33-0521	04
Parent Sa								l			l		
Sample Da		7/1/20	004 10.40.	MA 00	7/28/2	004 10.00.	00 AM	5/3/2	004 3:20.0	0 PM_	5/2 1/3	2004 9:30:	MA 00
Depth_upper	(ft bgs)		6.1			3.9			16.1			15.6	
Depth_fower	(ft bgs)												
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	20	440			170			26000			580		J
Antimony	0.15	ND			ND			ND		UJ	_ ND		
Arsenic	0.12	2.3			2.7			7.1			1.9		J
Barium	0.37	48			44			220			29		
Beryllium	0.061	ND			ND			1.6			ND		
Cadmium	0.051	ND			13			87	-		27		
Calcium	76	230000		, ————	140000			77000			66000		1
Chromium	2.1	ND			ND			26			ND		
Cobalt	0.67	DIA			19			64			ND		
Copper	0.97	17			ND			96			ND		
Iron Lead	19	320			3000			28000			560		}
Lead	2.1	ND			ND			26			ND		
Magnesium	27	29000			18000			11000			6700		
Manganese	0.54	79			650			1300			51		
Mercury	0.025	ИĎ			ND			ND		J	ND		
Nickel	4.2	11D			ND			46			ND		
Potassium	460	ND			ND			6500			ND		
Selenium	4.6	NĐ			ND			ND			ND		
Silver	0.7	ND			ND			ND			ND		-
Sodium	1100	640000			140000			100000			82000		
Thallium	0.047	ND			ND			ND			ND		I
Vanadium	2.6	ND			ND			38			ND		<u> </u>
Zinc	7.1	ND			ND			940			190		
рН		· ·						6.5			6.5		
Hardness (mg/L)													
Specific Conductance (umhos/cm)								780			800		
Conductivity (uS/cm)	1												
Total Dissolved Solids (mg/L)													
Temperature													

DL = Detection Limit (note DL is the reporting limit)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

Qualifiers:

J = Result is an estimated quantity
U = Undetected, result is less than the detection limit

	Station		33			33			34			34	
	Sample Type		Field			Field			Field			Field	
	Sample ID	M	W-33-0701	04	M	W-33-0728	04	М	W-34-0521	04	M	W-34-0701	04
	arent Sample ID	_											
	mple Date/Time	7/1/2	004 8:50:0	MA 0	7/28/	2004 8:50:0	MA 00	5/21/2	004 10:25:	MA 00	7/1/2	004 9,55:0)0 ΛM
	h_upper (ft bgs)		15.6			15.7			21.1			20	
	h_lower (ft bgs)												
Analyte	DL.	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	20	420			110			260		J	ND		
Antimony	0.15	ND			ND			ND			ND		
Arsenic	0.12	3.1			2.2		I	ND			ND		
Barium	0.37	30			34			65	l		63		
Beryllium	0.061	ND			ND			ND			ND		
Cadmium	0.051	27			33			7.5		J	3.5		
Calcium	76	75000			100000			610000			670000		
Chromium	2.1	ND			ND			ND			ND		
Cobalt	0.67	ND			ND	· -		ND			ND		
Copper	0.97	ND			ND			14			ND		
Iron	19	330			170			1100			160		
Lead	2.1	ND			ND			ND			ND		
Magnesium	27	7300			9800			54000			75000		
Manganese	0.54	32			23			840			140		
Mercury	0.025	ND			ND			ND			ND		
Nickel	4.2	ND			ND			ND			ND		
Potassium	460	ND			ND			13000			11000		
Selenium	4.6	ND			ND			ND			ND		
Silver	0.7	ND			ND			ND		UJ	ND		
Sodium	1100	93000			120000			670000			720000		L
Thallium	0.047	ND			ND	[ND	í .		ND		l
Vanadium	2.6	ND			ND			ND		IJ	ND		
Zinc	7.1	220			250			65			76		
pH		6.6			6.6								
Hardness (mg/L)													
Specific Conductance (umhos/	cm)	840			1000								
Conductivity (uS/cm)													
Total Dissolved Solids (mg/L)													
Temperature										1			

DL = Detection Limit (note DL is the reporting limit)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

Qualifiers: J = Result is an estimated quantity

	Station		34			36			30 .	
·Sam	ple Type		Field			Field		Field	QC - PE Sta	andard
Sa	imple ID	М	W-34-0728	04	М	W-36-0521	04	м	W-30-0701	04
Parent Sa	miple ID								7-B	
Sample D	ate/Time	7/28/	2004 9:15:	MΛ 00	5/21/2	004 11:05:	MA 00	7/1/20	004 12:05:0	M1 00
Depth_uppe	r (ft bgs)		19.8			8.3				
Depth_lower	(fl bgs)									
Analyte	DL	Result	Qual_L	Quaf_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual V
Aluminum	20	390			1300		j	ND		
Antimony	0.15	ND			ИD			130		
Arsenic	0.12	1,3			10		J	40		
Barium	0.37	36			100			630		
Beryllium	0.061	ND			ΝD			23		
Cadmium	0.051	17			41	·		24		
Calcium	76	300000			480000			ND		
Chromium	2.1	ND			MD			ND		
Cobalt	0.67	ND			ND			180		
Copper	0.97	ИD			46			ND		
Iron	19	700			1500			320	·	
Lead	2.1	ND			7.2			18		
Magnesium	27	36000			60000			13000		
Manganese	0.54	45			1600			86		
Mercury	0.025	ND			DM			ND		
Nickel	4.2	ND			ND			ND		
Potassium	460	6600			11000			17000		
Selenium	4.6	ND			ND .			75		
Silver	0.7	ND			ND			36		
Sodium	1100	470000			430000			ND		
Thallium	0.047	ND			HD			29		
Vanadium .	2.6	ND			ND			ND		
Zinc	7.1	ND			200			170		
ρH	1								, ,	
Hardness (mg/L)	-[
Specific Conductance (umhos/cm)	-									
Conductivity (uS/cm)	·		l-———				·			
Total Dissolved Solids (mg/L)	-			·						
Temperature	-								· - ·	

DL = Detection Limit (note DL is the reporting limit)
Qual_L = Qualifier assigned by laboratory
Qual_V = Qualifier assigned during data validation

IID = Non-detect

Qualifiers:
J = Result is an estimated quantity

	Station	Γ	GW-15		Γ	GW-16		T	GW-17		l	GW-46		Ι	30	
	ole Type		Field		i	Field			Field			Field		Field Q	C - PE S	Standard
Sa	inple ID	KP-0	W-15-11	1904	KP-0	W-16-11	11904	KP-0	SW-17-11	11904	KP-G	W-46-11	1904	MV	/-30-05 0	205
Parent Sa	mple ID		_		}]			l			l		
Sample Da	te/Time	11/1	9/2004 1	1:35	1 1/1	9/2004 1	0:15	11/1	9/2004 1	2:45	1 1/19	9/2004 1	4:00	5/2	/2005 1	3:05
Depth_uppor			15.45			9,02			15.57			9,7				
Depth_lower	(ft bgs)															
Analyte	DL						L	l						l		
Aluminum	20	ND			220		J	3500		J	ND			190		
Antimony	0.15	ND			ND			ND			ND			34	J	J
Arsenic	0.12	ND			ND			3.3			ND			11	7	J
Barium	0.37	120			74			200			80			120		
Beryllium	0.061	ND			ND			ND			ИD			6.2	J	J
Cadmium	0.051	110			53			8		1	24			6		
Calcium .	76	210000			230000			120000			200000			ND		
Chromium	2.1	_ND		l	ND			ND	L		ND			ND		
Cobalt	0.67	ND			ND		Ĺ	11			ND			53		
Copper	0.97	ND			-ND			30			ND			ND		
Iron	19	100			240			11000			ND			ND		· ·
Lead	2.1	ND			ND			.12			ND			ND		
Magnesium	27	35000			36000		l	14000			30000			2200		
Manganese	0.54	40			490			18000			11			27		
Mercury	0.025	ND		l	ND			0.22			ND			ND		
Nickel .	4.2	ND			ND		<u> </u>	42			ND			ND		
Potassium	460	9100			7800			3200		<u> </u>	6700			МĐ		ļ
Selenium	4.6	ND			ND			ND		<u> </u>	ND			22		
Silver	0.7	ND			ND			ND	ļ	<u> </u>	ND			ND	<u> </u>	
Sodium	1100	250000			250000			170000		L	250000			NO		.
Thailium	0.047	_ND_			MĐ			ND			ND			5.4		
Vanadium	2.6	ND			ND			12		<u> </u>	ND			ND		.
Zinc	7.1	120		. J	150		J	61		J	170		J	30		
pH t									<u></u>				l	<u> </u>		
Hardness (mg/L)		[.[L				II					-
Specific Conductance (umhos/cm)																.
Conductivity (uS/cm)											l					
Total Dissolved Solids (mg/L)							1									
Temperature	1]	•		L			L								<u> </u>

DL = Detection Limit (note DL is the reporting limit)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

Qualifiers:

J ≈ Result is an estimated quantity

U ≈ Undetected, result is less than the detection limit

	Station		30			PS-1		J	PS-3		<u> </u>	PS-4	
San	ple Type	Field Q	C - PE S	Standard		Field			Field			Field	
ļ s	ample ID	MV	V-30-111	904	P:	5-1-0502	05	PS-	3-05020	5	PS	-4-0502	.05
Parent S	ample ID		7-B		}			i					
Sample D	ate/Time	11/1	9/2004 1	13:50	5/2	/2005 15	:00	5/2/2	2005 12:	55	5/2	2005 14	:10
Depth_uppo						12.8			14.3			12.1	
Depth_lowe	r (It hgs)												
Analyle	DL	·											
Aluminum	20	ND		T	100000		T	360000			10000		
Antimony	0.15	130		1	ND		R	ND		R	ND	R	R
Arsenic	0.12	43		1	28		J	60		J	4.3	J	J
Barium	0.37	640			1400			3200			210		
Beryllium	0.061	22		J	4.4		J	29			1.2	J	J
Cadmium .	0.051	25	i ——		1.6			5			ND		
Calcium	76	ND			100000			340000			200000		
Chromium	2.1	ND			160			930			15		
Cobalt	0.67	170			50			180			ND		
Copper	0.97	ND			98		1	710			12		
Iron	19	360	i —		170000			810000			17000		
Lead	2.1	18			110			630			10		
Magnesium	27	14000			33000			120000			39000		
Manganese	0.54	85			5800			12000			290		
Mercury	0.025	HID	l		ND			1.3			ND		
Nickel	4.2	ND	1		70		[330			ND		
Potassium	460	19000.			19000			63000			11000		
Sclenium	4.6	77			ND			21			ND		
Silver	0.7	33			ND			ND			ND .		
Sodium	1100	ND			300000			270000			250000		
Thallium	0.017	32			1.2			3.5			ND		
Vanadium	2.6	ON			220			1000			50		
Zinc	7.1	120	ļ.——-	J	420			1600			41		
pH													
Hardness (mg/L)													
Specific Conductance (umhos/cm)	1												
Conductivity (uS/cm)	-[1								,—	
Total Dissolved Solids (mg/L)							1						
Temperature				1									

DL = Detection Limit (note DL is the reporting limit) Qual_L = Qualifier assigned by laboratory Qual_V = Qualifier assigned during data validation ND = Non-detect

Qualifiers:

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

	Station		PS-5		7	PS-6		T	PS-7			PS-11	
	ple Type		Field			Field			Field			Field	
Sa	ample ID	PS	S-5 - 0502	05	PS	6-0502	05	P:	S-7-0502	05	KP-I	S-11-09	2005
· Parent Sa	ample ID												
Sample D	ate/Time	5/2	/2005 11	:00:	5/2	/2005 10	:20	5/:	2/2005 9	20	9/2	0/2005 1	2:30
Depth_uppo	r (ft bgs)		11,25			11.8			12.7			9.62	
Depth_lower	(ft bgs)												
Analyte	DL							Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	20	44000			7700			110000			8200		
Antimony	0.15	ND	R	R	. ND		R	ND		R	ND		UJ
Arsenic	0.12	15	J	J	2.8		J	47		J	2.8		
Barium	0.37	670			180		· ·	1400			230		1
Beryllium	0.061	4.4	J	J	ND		UJ	7.8		J	ND		
Cadmium	0.051	35			68			150			ND		
Calcium	76	240000			250000			630000			160000		
Chromium	2.1	160		1	12			100			12		1
Cobalt	0.67	43			ND	-		67			13		
Copper	0.97	70			ND			240			16		
Iron	19	94000			10000			130000			12000	,	
Lead	2.1	64			7.2			120			19		
Magnesium	27	48000		i	41000			99000			35000		
Manganese	0.54	1100			510			2000			440		-:
Mercury	0.025	ND			ND			ND			ND		R
Nickel	4.2	56			ND			69			ND		
Potassium	460	18000			10000			25000			22000		
Selenium	4.6	ND			ND			43			ND		
Silver	0.7	ND			ND			ND			ND		
Sodium	1100	330000			390000			610000		-	240000		
Thallium	0.047	ND			ND			1.6			ND		1
Vanadium	2.6	140			15			230		i —	16		
Zinc	7.1	2100			330			4800		1	90		
pH	1	1						1					
Hardness (mg/L)											-		
Specific Conductance (umhos/cm)													
Conductivity (uS/cm)													
Total Dissolved Solids (mg/L)													
Temperature				I									

DL = Detection Limit (note DL is the reporting limit)
Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND ≈ Non-detect

Qualifiers:

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

<u> </u>	Station		FS-12		_ 	PS-13		Γ	PS-14			PS-15	
Samp	le Type		Field			Field		ĺ	Field			Field	
Sa	mple ID	KP-I	PS-12-09	92005	KP-F	°S-13-09	2005	KP-I	S-14-09	2005	KP-I	S-15-09	91905
Parent Sa	mple ID							L			1		
Sample Da	te/Time	9/2	0/2005 1	1:25	9/20	0/2005 1		9/2	0/2005 9	00:00	9/1	9/2005 1	4.45
Depth_upper			10.23	3		8.86			8.66			11.2	
Depth_lower													
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	20	17000			12000			7700	I		87000		1
Antimony	0.15	ND	[UJ	ND		IJ	ND		UJ	dit		UJ
Arsenic	0.12	3.9			6.2			2.2			15		
Barium	0.37	310			220			170			1100		
Beryllium	0.061	1.1			ND			ND			5.7		
Cadmium	0.051	1.2			1.4			9,3			25		
Calcium	76	130000			120000			150000			160000		
Chromium	2.1	22		T	16			ND			220		
Cobalt	0.67	ND		1	25		·	ND			40		
Copper	0.97	28	1		21			14		1	170		
fron	19	19000			15000			8100			120000		
Lead	2.1	25			21			12		1	130		
Magnesium	27	32000			27000		1	32000			46000		
Manganese	0.54	360	i		680		1	1500			4900		
Mercury	0.025	ND	·	·R	ND		R	ND		R	ND		
Nickel	4.2	ND		1	ND			ND			84		1
Potassium	4G0	27000			30000			21000			37000		1
Sclenium	4.6	ND	ļ		MD			ND			ND		1
Silver	0.7	ND	l		ND .			ND			ND		1
Sodium	1100	190000		1	160000			210000		· · · · ·	220000		
Thallium	0.047	ND			ND		1	ND			1.2		
Vanadium	2.6	34			28			18			170		
Zinc	7.1	130			130			60			940		1
pH							T						T
Hardness (mg/L)				T									
Specific Conductance (umhos/cm)	[1				1						1
Conductivity (uS/cm)				1									1
Total Dissolved Solids (mg/L)	i			 			1						1
Temperature							1	1					

DL = Detection Limit (note DL is the reporting limit)
Qual_L = Qualifier assigned by laboratory
Qual_V = Qualifier assigned during data validation
ND = Non-detect

Qualifiers:
J = Result is an estimated quantity

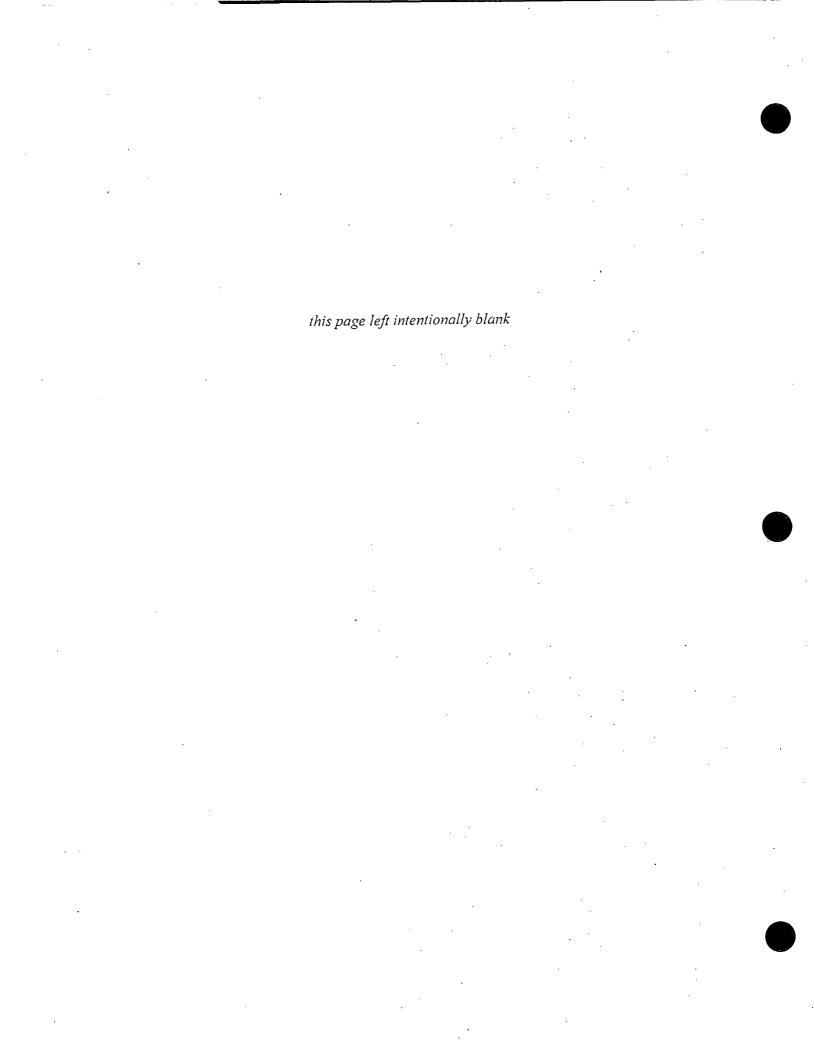
U = Undetected, result is less than the detection limit

l	Station		PS-16			PS-17		Γ	PS-18			PS-19	
	Sample Type		Field			Field			Field			Field	
•	Sample ID	KP-I	PS-16-09	1905	KP-I	PS-17-09	1905	KP-	PS-18-09	1905	KP-I	S-19-09	1905
Pa Pa	rent Sample ID												
Sar	nple Date/Time	9/1	9/2005 1	3:30	9/1	9/2005 12	2:20	9/1	9/2005 1	1:15	9/1	9/2005 9	145
	_upper (fl bgs)		9.8			9.6			12.2			11.6	
Depti	lower (fl bgs)												
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_l.	Qual_V
Aluminum	20	4600			26000			32000			140000		
Antimony	0.15	ND		ŲJ	ND		UJ	ND		บป	ND		IJ
Arsenic	0.12	ND		_	10		T	11			22		
Barium	0.37	160			590			670			1400		
Beryllium	0.061	ND			2			2.4			10		ſ
Cadmium	0.051	5,6			8.4			14			2.8		
Calcium	76	110000			110000			110000			130000		
Chromium	2.1	- ND			43			60			150		
Cobalt	0.67	ND			15			27			50		
Copper	0.97	ND			75			69			220		
fron	19	4300			35000		, , , , , , , , , , , , , , , , , , ,	49000			180000		
Lead	2.1	3.4			81			54			160		
Magnesium	27	26000			30000			29000			50000		
Manganese	0.54	260	·		780			6800			5200		
Mercury	0.025	ND	-		ND			ND			0.25		
Nickel	4.2	ND		Ī	ND			47			99		
Potassium	460	31000			36000			34000			47000		
Selenium	4.6	ND			ND			ND			ND		
Silver .	0.7	ND			ND			ND			ДИ		
Sodium	1100	180000			170000			170000			160000		
Thallium	0.047	ND			ND			ND			1,5		
Vanadium	2.6	10			57			79			280		
Zinc	7.1	37			390			470			720		
pH													
Hardness (mg/L)													
Specific Conductance (umhos/o	:m)												
Conductivity (uS/cm)					-								
Total Dissolved Solids (mg/L)									l				
Temperature				1				·		1	· · · · · · · · · · · · · · · · · · ·		

DL = Detection Limit (note DL is the reporting limit)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation


ND = Non-detect

Qualifiers:

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

R = Rejected,

	Station	I	04		[07	
	nple Type		Field			Field	•
	Sample ID	01-V	BOU3-GW-	0004	01-V	BOU3-GW-	0001
	Sample ID						
	Date/Time	1	12-18-2003			12-12-2003	
Depth_upp			11.0			12.2	
Depth_low							
Analyte ⁻	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	20	ND	U		2.46	В	
Antimony	2	3.25	В		32.8		
Arsenic	2	36.4			25		1
Barium	4	ND	د		ND	U	
Beryllium	1	1770			8.73		
Cadmium	0.6	375600			382000		
Calcium	100	ND	U		ND	U	
Chromium	2	35.8			13.6		
Cobalt	2	30.6	В		ND	U	
Copper	8	261	В		25800		
Iron	100	1.35	В		2.3	В	
Lead	0.6	48300			60900		
Magnesium	300	5420			8190		
Manganese	10	ND	J		ND	U	
Mercury	0.06	30.3			36.6		
Nickel	4	9910			14400		
Potassium	400	7.06	В		10.6		
Selenium	2	ND	U		ND	U	-
Silver	0.4	877000			764000		
Sodium	200	2.03			0.62	В	
Thallium	0.2	12.1	В		12.5	В	1
Vanadium	6	10300		J	1240		ļ
Zinc	4				63.2	В	
PHI		4.6		-	5.1		
Hardness (mg/L)	_	1136.8			1204.6		
Specific Conductance (umhos/cm)	_						
Conductivity (uS/cm)		2,17			1.52		
Total Dissolved Solids (mg/L)	_						
Temperature	_	41			58.9		

DL = Detection Limit

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

Qualifiers

B = Concentration qualifier, above reporting lmit, less than PQL

J = Result is an estimated quantity

	Station		32		1	32			33			33	
Sami	ple Type		Field			Field	'		Гield		1	Γield	
	imple ID	M	W-32-0701	04	l M	W-32-0728	04	M	W-33-0503	04	l m	W-33-0521	04
Parent Sa			02 0.0.	• •	-		•	•••					• •
Sample Da		7/1/20	004 10:40:0	00 ΛM	7/28/2	004 10:00:	MA 00	5/3/2	004 3:20:0	0 PM	5/21/2	2004 9:30:0	00 AM
Depth_upper			6.1			3.9			16.1			15.6	
Depth_lower													
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	100	ND			ND			ND			ND		
Antimony	2	1.7			2.9			2			2		l
Arsenic	1	55	-		46			24			23		
Barium	10	ND			ND			ND			ND		
Beryllium	1	ND			ND			69			40		J
Cadmium	1	190000			140000			74000			66000		i
Calcium	200	ND			ND			ND			ND		
Chromium	10	11			20			18			ND		
Cobalt	10	- 16			ND			ND			ND		
Copper	10	ND			3000			ND		1	ND		
Iron	100	ND			ND			ND .			ND		i
Lead	3	24000			18000			7400			6600		
Magnesium	200	71		-	610			1200			450		
Manganese	10	ND			·ND			ND			ND		
Mercury	0.2	ND			ND			ND			ND		
Nickel	40	ND			ND			ND			ND		
Potassium	3000	ND			ND			ND			ND		
Selenium	15	ND			ND			ND			ND		
Silver	10	590000			440000			120000			88000		
Sodium	5000	ND			ND			ND			ND		
Thallium	1	ND			ND			ND		· · · · · · · · · · · · · · · · · · ·	ND		
Vanadium	10	ND .			ND.			190			180		
Zinc	20	108			ND			ND			ND		
рН			•					6.5			6.5		
Hardness (mg/L)						-							
Specific Conductance (umhos/cm)								780	<u>, · </u>		800		
Conductivity (uS/cm)	1												
Total Dissolved Solids (mg/L)											160		
Temperature										<u> </u>			<u> </u>

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

Page 2 of 10

C2_GWResults_v3.xls

·	Station		33			33			34			34	
1	iple Type		Field			Field			Field			Field	
	ample ID	M	W-33-0701	04	. W	W-33-0728	04	м	W-34-0521	04] М	W-34-0701	04
Parent S	ample ID				_			ĺ			i		
Sample D	ate/Time	7/1/2	004 8:50:0	0 AM	7/28/2	2004 8:50:0	00 AM	5/21/2	004 10:25:	MA 00	7/1/2	004 9:55:0	MA 0
Depth_uppe			15.6			15.7			21.1			20	
Depth_lowe	er (ft bgs)												
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	100	ND			ND			ND			ND		
Antimony	2	2.8			2.2			1	,		1.3		
Arsenic	1	26			35			62			48		
Barium	10	ND			ND ·			ND			ND		
Beryllium	1 1	26			34			5.9		J	2.1		
Cadmium	1	73000		[100000			630000			540000		
Calcium	200	ND			ND			ND ·		1	ND		
Chromium	10	ND			· ND			ND			ND		
Cobalt	10	ND			ND			• 11			ND		
Copper	10	ND			ND .			180			ND		
Iron	100	ND			ND			ND			ND		
Lead	3	7000			10000			57000			61000		
Magnesium	200	15			ND			640			98		
Manganese .	10	ND			ND			ND			ND		
Mercury	0.2	ND			ND			ND			ND		
Nickel	40	ND			ND			12000			9400		
Potassium	3000	ND			. ND			ND			ND		
Selenium	15	ND			ND			ND		UJ	ND		
Silver	- 10	92000			120000			680000			630000		
Sodium	5000	ND			ND			ND	•		ND		
Thallium	1	ND			ND			ND		UJ	ND		
Vanadium .	10	200			260			45			.ND	·	
Zinc	20	ND			ND	<u> </u>		ND			ND		
рН		6.6	 :		6.6								
Hardness (mg/L)	_		·	[-			· · · · · · · · · · · · · · · · · · ·						
Specific Conductance (umhos/cm)		840		· · · · · · · · · · · · · · · · · · ·	1000								
Conductivity (uS/cm)													
Total Dissolved Solids (mg/L)	_	500			630								
Temperature	-				·								

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

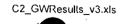
Qualifiers

J = Result is an estimated quantity

	Station		34			35 Field			35 Field			36 Field	
	le Type		Field W-34-0728	^4		Field W-35-0524	0.4		неи W-35-0728	0.4	N.7	W-36-0524	0.4
	nple ID	tvi i	VV-34-U128	U 4	(""	VV-33-U324	04	(" "	VV-J3-0728	04	["	¥¥-36-U324	04
Parent Sam Sample Dat		.7/20/2	2004 9:15:0)() AM	E /2 4/2	2004 1:35:0	00 DM	7/20/2	004 10:55:	NA 00	5/24/	2004 1:35:0	AAG OC
		112812		JU AIVI	3/24/2	11.2	JU FIM	112812	11.2	UU AIM	5/24/2		JU 1- IVI
Depth_upper (19.8			11.2	_		11,2			8.9	
Depth_lower ((it ogs)	Result	Qual L	Qual V	Result	Qual L	Qual V	Result	Qual L	Qual V	Result	Qual L	Qual V
Analyte			Quai_L	Qual_v	<u>'</u>	Qual_L	Quai_v		Quai_L	Qual_v		Qual_L	Quai_v
Aluminum	100	ND ND			ND		 	ND			ND	ļ <u>.</u>	
Antimony	2	ND			1			ND			ND	ļ	ļ ———
Arsenic	1	36			76			1			6		ļ
Barium	10	ND			ND			110			110		
Beryllium	1	1.8			3			ND		l	ND_		
Cadmium	_1_	380000			120000		L	3.6			47	·	
Calcium	200	ND	·		ND			120000			430000		
Chromium	10	ND			ND			NO			ND		l
Cobalt	10	ND			ND			ND			11		
Copper	10	ND			ND			ND			27		
iron	100	ND			ND			ND			150		
Lead .	3	42000			14000			ND			ND		
Magnesium	200	23			11			14000			50000		
Manganese	10	ND			ND			ИD			3800		
Mercury	0.2	. ND			ND			ND			ND		
Nickel	40	7300			4100			4200			ND		
Potassium	3000	ND			ND ,			ND			8700		
Selenium	15	ND			. ND			ND			ND		
Silver	10	540000			140000			140000			ND		
Sodium	5000	ND			ND			. ND	•		380000		
Thallium	1	ND			ND			NU			ND		
Vanadium	10	ND			ND			23			ND		
Zinc	20	ND			ND			ND			98		
На			·										
Hardness (mg/L)										<u> </u>			
Specific Conductance (umhos/cm)													
Conductivity (uS/cm)			•			·							
Total Dissolved Solids (mg/L)													
Temperature		·											

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory


Qual_V = Qualifier assigned during data validation

Qualifiers:

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

Page 4 of 10

	Station		36						GW-15	·-	1	GW-16	
Sam	ple Type		Field			Field			FIELD	•	,	FIELD	
S	ample ID	M'	W-36-0701	04	M	W-36-0728	04	KP-	GW-15-111	904	KP-	GW-16-11	1904
Parent S													
Sample D	ate/Time	7/1/20	004 12:15:0	00 PM	7/28/2	004 10:30:	00 AM	11/	19/2004 11	:35	11/	/19/2004 10):15
Depth_uppe			8.4			8.5			15.45			9.02	
Depth_lowe	r (ft bgs)												
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	_100	ND			ND			ND	_		ND ND	l	
Antimony	2	ND			ND			ND-			ND		
Arsenic	1	9.2			6.1			ND			ND		
Barium	10	100			86			120			71		ł
Beryllium	1	ND			ND			ND			ND		
Cadmium	1	26			53			110			50		
Calcium	200	410000			450000			200000			230000		•
Chromium	10	ND			ND -			ND			ND		
Cobalt	10	ND			ND			ND			ND		-
Copper	10	22			22			ND			ND,		
Iron	100	ND			ND			ND			120		
Lead	3	ND			ND			ND			ND		
Magnesium	200	46000			51000			34000			37000		
Manganese	10	1900			540			34			330		
Mercury	0.2	ND		,	ND			ND			ND		
Nickel	40	ND			ND			ND			ND		
Potassium	3000	8000			8200			9200			8200		
Selenium	15	ND			ND			ND			ND		
Silver	10	ND			ND			ND .			ND		
Sodium	5000	380000			420000			250000			260000		
Thallium	1	ND			ND			ND			ИD		
Vanadium	10	ND			ND			· ND			ND		
Zinc	20	140			110			130			150		
рН													
Hardness (mg/L)													
Specific Conductance (umhos/cm)													
Conductivity (uS/cm)													
Total Dissolved Solids (mg/L)													
Temperature										· -			L

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

J = Result is an estimated quantity

	Station		GW-17			GW-46 FIELD			PS-1			PS-3 FIELD	
	ole Type		FIELD	1004	,,		1004	_ ا	FIELD	_	,	PS-3-05020	ا ا
	mple ID	KP-	GW-17-111	1904	KP-	GW-46-111	1904	·	S-1-05020	5		25-3-05020	5
Parent Sa		44	401000440	. 45		/19/2004 14	.00	l	2/2005 45	00		2/2005 12:	- -
Sample Da		11/	19/2004 12	145	<u></u>		.00		2/2005 15:	00		14.3	35
Depth_upper	(n bgs)		15.57			9.7		·	12.8		·	14.3	
Depth_lower	DL		-	0.11		-	01.14	Result	Qual L	0	Result	Qual L	Qual V
Analyte		Result	Qual_L	Qual_V	Result	Qual_L	Qual_V		Qual_L	Qual_V		Qual_L	Qual_v
Aluminum	100	ND_		ł	ND_	l		190			ND		
Antimony	2	ND			ND			ND			ND		J!
Arsenic	1	ND			ND			ND ND			1.3		
Barium	10	16			77		l	65		l	210		
Beryllium	1_1_	ND			ND			ND			11D		l'
Cadmium	1	ND			24			MD			ND	l	
Calcium	200	110000			190000			65000			290000		
Chromium	10	ND			ND			ND			ND		·
Cobalt	10	ND			ND			ND			ND		
Copper	10	ND			ND			ND			ND		
Iron .	100	ND			ND			150			180		
Lead	3	ND			·ND			ND			ND		
Magnesium	200	12000			29000			12000			51000		
Manganese	10	11 .			ND			360			330		
Mercury	0.2.	ND			ND			ND			ND		
Nickel	40	ND			ND			, ND			ND		
Potassium	3000	ND			6400			8600			11000		
Selenium	15	ND			ND	l		ND			ND		
Silver	10	ND			ND			ND			ND		
Sodium	5000	150000			240000			330000			390000		
Thallium	1	ND		I	ND			ND			ND		
Vanadium	10	ND			ND ND			ND		l	ND		
Zinc	20	ND			180			ND			ND		
Н	 -			 	 	 -							
Hardness (mg/L)	·		J	·		·					l		
Specific Conductance (umhos/cm)													
Conductivity (uS/cm)	-		·									· · · · · · · · · · · · · · · · · · ·	
Total Dissolved Solids (mg/L)				·			·			- 			
Temperature			 .										
1 omportunit	<u> </u>		L		I	1		L	L		L	·	

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

Svvikestilis_v3.xi

Page 6 of 10

C2_GWResulls_v3.xls

	Station		PS-4			PS-5			PS-6			PS-7	
Sam	ple Type		FIELD			FIELD			FIELD		1	FIELD	
	imple ID	F	S-4-05020	5	,	S-5-05020	5	,	S-6-05020	5		S-7-05020	15
Parent Sa		·		ř.	,		-	,	•	•			•
Sample Da		5/	2/2005 14:	10	5/	2/2005 11:0	00	5/	2/2005 10:2	20	5	/2/2005 9:2	20
Depth_uppe	r (ft bgs)		12.1			11.25			11.8			12.7	
Depth_lowe	r (ft bgs)								-				
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	100	ND			ND			ND			ND		
Antimony	2	ND			ND			ND			ND		
Arsenic	1	1.1			ND			ND			2.8		
Barium	10	150			130			76			64		
Beryllium	1	ND .			ND		·	ND			ND		
Cadmium	1	ND			22			62			83		
Calcium	200	200000			220000			250000			640000		
Chromium	10	ND			ND			ND			ND		
Cobalt	10	ND			20			ND			ND		
Copper	10	ND			ND			ND			ND		
Iron	100	300			1000	,		ND			ND		
Lead	3	ND			7			ND			ND		
Magnesium	200	36000			39000			40000		_	83000		
Manganese	10	140			470			190			100		
Mercury	0.2	ND			ND			ND			ND		
Nickel	40	ND		,	ND			ND :			ND		
Potassium	3000	8000			9000	J		9100			8500		
Selenium	15	ND			ND			ND			ND		
Silver	10	ND			ND			ND			ND		
Sodium	5000	240000			330000			400000			660000	·	
Thallium	1	ND		}	ND			ND			ND		
Vanadium	10	ND			ND			ND			ND		
Zinc	20	ДN			180			250			360		
рН													
Hardness (mg/L)													
Specific Conductance (umhos/cm)													
Conductivity (uS/cm)													
Total Dissolved Solids (mg/L)													
Temperature													

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

J = Result is an estimated quantity

	Station le Type		PS-11 Field			PS-12 Field	·- —		PS-13 Field			PS-14 Field	
	nple ID	KD.	PS-11-092	005	K D	-PS-12-092	005	. KD	PS-13-092	005	KP	-PS-14-092	2005
Parent Sai		, Ar	15-11-032	003		1 3-12-032	.003	"	1 5-10-032	.003	1	-1 0-14-002	.000
Sample Da		9/2	20/2005 12:	30	9/	20/2005 11:	25	9/2	20/2005 10:	05	9	/20/2005 9:	00
Depth_upper			9.62			10.23			8.86			8.66	
Depth_lower			0.00					l ———					
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	100	500			ND			ND			ND		
Antimony	2	ND			ND .			ND ·			ND		
Arsenic	1	ND			ND			ND			1		
Barium	. 10	130			120			120		l	99		1
Beryllium	1	ND			ND			ND			ND		
Cadmium	1	ИD			ND			ND			7.7		
Calcium	200	170000			150000			120000			160000		
Chromium	10	ND	***		ND			ND			ND		
Cobalt	10	12			ND		·	23			ND		
Copper	10	. ND			ND			ND			ND		
Iron	100	850			200			. 690			100		
Lead	3	ND			ND			ND			ND		
Magnesium	200	34000			31000			25000			33000		
Manganese	10	360			230			780			1500		
Mercury	0.2	ND			ИD			ND			ND .		
Nickel	40	ND			ND		,	. ND			ND .		
Potassium	3000	21000			25000			.28000			20000		
Selenium	15	ND			ND			ND			ND		<u> </u>
Silver	10	ND			ND			ND			ND		
Sodium	5000	250000			210000			170000			230000		
Thallium	1	ND			ND			ND			ND		
Vanadium	10	ND			ND			ND			ND]
Zinc	20	27			21			50			22		
рН .													!
Hardness (mg/L)	ĺ												-l'
Specific Conductance (umhos/cm)													.
Conductivity (uS/cm)												· ·	<u> </u>
Total Dissolved Solids (mg/L)													ļ!
Temperature										l	<u> </u>	<u>L</u>	

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Qualifiers:

C2_GWResults_v3.xls

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

Page 8 of 10

j s	Station ple Type ample ID ample ID	KP-	PS-15 Field -PS-15-091	905	KP	PS-16 Field -PS-16-091	905	KP-	PS-17 Field PS-17-091	905	KP	PS-18 Field -PS-18-091	905
Sample D	ate/Time	9/	19/2005 14:	45	9/	19/2005 13:	30	9/	19/2005 12	:20	9/	19/2005 11	:15
Depth_uppe			11.2			9.8			9.6		···	12.2	··-
Depth_lowe					ļ								
Analyte	DĽ	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	100	190			280			ND ·			160		
Antimony	2	ND			ND			ND			ND		
Arsenic	1	ND			ND			ND			ND		
Barium	10	87			140			130			170		ļ
Beryllium .	1	ND			ND			ND			ND		· · · · · · · · · · · · · · · · · · ·
Cadmium	1	8.3			4.8			3.3			2.3		
Calcium	200	160000			120000			120000			110000		
Chromium	10	ND			ND			ND			ND		
Cobalt	10	ND			· ND			ND			ND		
Copper	10	ND			ND		[ND			ND		
Iron	100	850			230			190			240		
Lead	3	ND			ŅD			ND			ND		
Magnesium	200	32000			26000			26000			25000		
Manganese	10	3700			210			420			2900		
Mercury	0.2	ND			ND			ND			ND		-
Nickel	40	ND			ND			ND			ND		
Potassium	3000	20000			30000			32000			29000		
Selenium	15	ND			ND			ND			ND		
Silver	10	ND			ND			ND			ND		
Sodium	5000	230000			190000			190000			180000		ļ
Thallium	1	ND			ND			ND.			ND		
Vanadium	10	ND			ND			ND			ND		
Zinc	20	54			21	•		62			36		
рН													
Hardness (mg/L)]		
Specific Conductance (umhos/cm)													
Conductivity (uS/cm)													
Total Dissolved Solids (mg/L)													
Temperature											l		

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

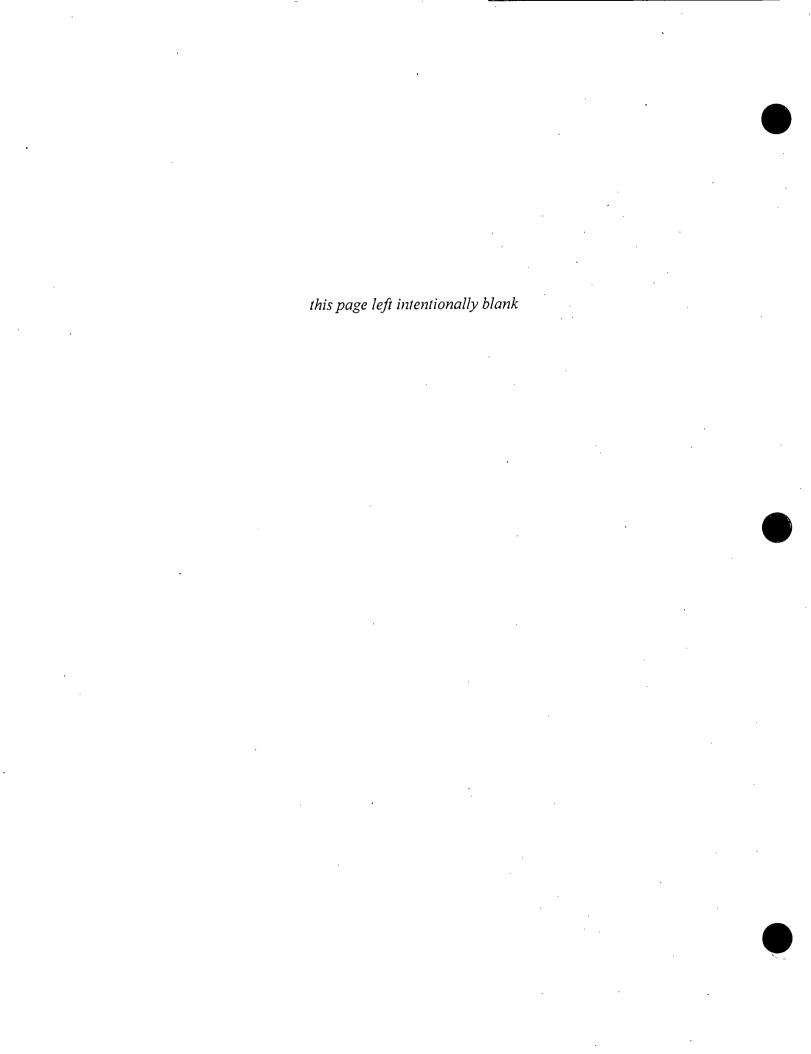
Qual_V = Qualifier-assigned during data validation

Qualifiers:

J = Result is an estimated quantity

	Station		PS-19	·····
Samo	le Type	1	Field	
	mple ID		-PS-19-091	905
Parent Sa				
Sample Da		9,	19/2005 9:	45
Depth_upper	(ft bgs)		11.6	
Depth_lower	(ft bgs)			
Analyte	DL	Result	Qual_L	Qual_V
Aluminum	100	ND		
Antimony	2	ND		
Arsenic	1	1,1		
Barium	10	150		
Beryllium	1	ND		
Cadmium	1	ND		
Calcium	200	200000		1
Chromium	10	ND		
Cobalt	10	ND		
Copper	10	ND		
Iron	100	300		
Lead	3	ND		
Magnesium	200	36000		
Manganese	10	140		
Mercury	0.2	ND		
Nickel	40	ND		
Potassium	3000	8000		
Selenium	15	ND		
Silver	10	ND		
Sodium	5000	240000		· · · · · · · · · · · · · · · · · · ·
Thallium	1	ND		
Vanadium	10	ND		
Zinc	20	ND		
pH				
Hardness (mg/L)				
Specific Conductance (umhos/cm)		[<u>-</u>		
Conductivity (uS/cm)	I			
Total Dissolved Solids (mg/L)				
Temperature	1			

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)


Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

Oualifiers:

J = Result is an estimated quantity

ANALYTICAL RESULTS FOR SURFACE WATER

Sample ID Parent Sample ID Sample ID Sample Date/Time 3/28/2005 13:45 3/28/2005 14:25	Sam	Station		SW-1 FIELD			SW-2 FIELD	
Parent Sample ID Sample Date/Time 3/28/2005 13:45 3/28/2005 14:25			KP		805 l	КР		805
Sample Date/Time			•••					
Depth upper (ft bgs) Depth lower (ft bgs)	Sample D	ate/Time	3/2	28/2005 13:	45	3/2	28/2005 14	25
Depth lower (ft bgs)								
Aluminum	Depth lower	r (ft bgs)						
Antimony 2 ND ND Arsenic 1 ND 1 Barium 10 34 33 Beryllium 1 ND ND Cadmium 1 5.3 4.6 Calcium 200 70000 66000 Chromium 10 ND ND Cobalt 10 ND ND Copper 10 ND ND Iron 100 150 240 Lead 3 ND ND Magnesium 200 12000 ND Manganese 10 ND ND Mercury 0.2 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 1	Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Arsenic 1	Aluminum	100	ND	<u> </u>		230		
Barium	Antimony	2	ND			ND		
Beryllium	Arsenic							
Cadmium 1 5.3 4.6 Calcium 200 70000 66000 Chromium 10 ND ND Cobalt 10 ND ND Copper 10 ND ND Iron 100 150 240 Lead 3 ND ND Magnesium 200 12000 12000 Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 Hardness (mg/L) 8.2	Barium	10	34					
Calcium 200 70000 66000 Chromium 10 ND ND Cobalt 10 ND ND Copper 10 ND ND Iron 100 150 240 Lead 3 ND ND Magnesium 200 12000 12000 Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 Hardness (mg/L) Specific Conductance (umhos/cm) 1200 1100 Condu		1						
Chromium 10 ND ND Cobalt 10 ND ND Copper 10 ND ND Iron 100 150 240 Lead 3 ND ND Magnesium 200 12000 12000 Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH Hardness (mg/L) 8.2 8.2 Hardness (mg/L) 1200 1100 Conductivity (uS/cm)		1						
Cobalt 10 ND ND Copper 10 ND ND Iron 100 150 240 Lead 3 ND ND Magnesium 200 12000 12000 Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 4 8.2 8.2 Hardness (mg/L) Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) Total Dissolved Solids (mg/L)		200	70000			66000		
Copper 10 ND ND Iron 100 150 240 Lead 3 ND ND Magnesium 200 12000 12000 Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 4ardness (mg/L) 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) 7 1200 1100	Chromium	10	ND			ND		
Tron	Cobalt	10	ND	1		ND		1
Lead 3 ND ND Magnesium 200 12000 12000 Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 Hardness (mg/L) 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) 1200 1100	Copper	10	ND			ND		l
Magnesium 200 12000 12000 Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 Hardness (mg/L) 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) 100 100	Iron	100	150			. 240	[
Manganese 10 ND ND Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 Hardness (mg/L) 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) 100 100 Total Dissolved Solids (mg/L) 100 100	Lead	3	ND			ND		
Mercury 0.2 ND ND Nickel 40 ND ND Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 8.2 Hardness (mg/L) 8.2 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 1100 Conductivity (uS/cm) Total Dissolved Solids (mg/L)	Magnesium	200	12000		[12000		
Nickel 40	Manganese	10	ND			ND		
Potassium 3000 ND ND Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 Hardness (mg/L) 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) 1200 1100 Total Dissolved Solids (mg/L)	Mercury	0.2	ND			ND		
Selenium 15 ND ND Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND ZInc 20 22 25 pH 8.2 8.2 8.2 Hardness (mg/L) Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) Total Dissolved Solids (mg/L) 1200 1100	Nickel	40	ND			ND		·
Silver 10 ND ND Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 8.2 Hardness (mg/L) Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) Total Dissolved Solids (mg/L)	Potassium	3000	ND			ND		
Sodium 5000 170000 150000 Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 8.2 Hardness (mg/L) 8.2 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 1100 Conductivity (uS/cm) Total Dissolved Solids (mg/L) 100 100 100	Selenium	15	ND			ND	<u> </u>	
Thallium 1 ND ND Vanadium 10 ND ND Zinc 20 22 25 pH 8.2 8.2 Hardness (mg/L) 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) 170tal Dissolved Solids (mg/L) 1100	Silver	10	ND			ND		
Vanadium 10 ND ND ZInc 20 22 25 pH 8.2 8.2 Hardness (mg/L) 8.2 8.2 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) 170tal Dissolved Solids (mg/L) 1100	Sodium	5000	170000	1	<u> </u>	150000		İ
Zinc 20 22 25	Thallium	1	ND	· ·		ND	<u> </u>	l
pH 8.2 8.2 Hardness (mg/L) 1200 1100 Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) Total Dissolved Solids (mg/L) 100	Vanadium	10				ND		l
Hardness (mg/L) Specific Conductance (umhos/cm) Conductivity (uS/cm) Total Dissolved Solids (mg/L)	Zinc	20	22			25		
Specific Conductance (umhos/cm) 1200 1100 Conductivity (uS/cm) Total Dissolved Solids (mg/L)	pH		8.2			8.2		I
Conductivity (uS/cm) Total Dissolved Solids (mg/L)								
Total Dissolved Solids (mg/L)	Specific Conductance (umhos/cm)		1200			1100		
Total Dissolved Solids (mg/L)	Conductivity (uS/cm)							
rempetation It = Detection Limit (note DL is the reporting limit for	Temperature				1			

DL = Detection Limit (note DL is the reporting limit for

Round 2 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

this page left intentionally blank

ANALYTICAL RESULTS FOR EQUIPMENT DECONTAMINATION RINSATE

this page left intentionally blank

Total Metals in Equipment Decontamination Rinsate (ug/L)

	Station		16			31			22			33	
!	Sample Type	Fiel	d QC - Rins	sate	Fiel	d QC - Rins	ate	Fiel	ld QC - Rins	sate	Fie	ld QC - Rin:	sate
	Sample (D	01-V	BOU3-RIN-	0001	01-V	BOU3-RIN-	0002	01-V	BOU3-RIN-	0003	01-V	BOU3-RIN	-0004
Pare Pare	nt Sample ID												l
	le Date/Time	12/	10/2003 13	:05	12/	11/2003 10	:00	12	/12/2003 9:	40	12	18/2003 14	:45
	pper (ft bgs)												
Depth_I	ower (ft bgs)												
Analyte	DL	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V
Aluminum	100	ND	Ī		210			ND			120		
Antimony	2	ND		R	ND			ND			ND		
Arsenic	1	ND			ND			ND			ND		
Barium	10	ND			ND			ND			ND		
Beryllium	1	ND			ND			ND			ND		
Cadmium	1	ND			ND			ND			ND		
Calcium	200	ND			240			520			270		
Chromium	10	ND			ND			ND	ļ		ND		
Cobalt	10	ND	ļ		ND			ND	<u> </u>		ND		
Copper	10	ND			ND			ND			ND		
Iron	100	220		J	420			170	,		180		
Lead	3	ND			ND			ND			3		{
Magnesium	200	ND			ND			200			ND		1
Manganese	10	ND			ND			ND			ND		l
Mercury	0.2	ND			ND			ND		R	ND		<u> </u>
Nickel	40	ND			ND			ND			ND	1	
Potassium	3000	ND			ND			ND			ND		
Selenium	5	ND			ND			ND		·	ND		ł
Silver	10	ND			ND			ND			ND		<u> </u>
Sodium	5000	ND			ND			ND		1	ND		
Thallium	· 1	ND			ND			ND			ND		
Vanadium	10	ND			ND			ND		1	ND		
Zinc	20	ND			ND			ND	i	1	ND		
pH						<u> </u>			1				
Hardness (mg/L)												1	
Specific Conductance (umhos/cm)						,			1			T	
Conductivity (uS/cm)									1	1	l		1
Total Dissolved Solids (mg/L)		-									<u> </u>	1	1
Temperature			1			1		i — —			[1	1

DL = Detection Limit (note DL is the reporting limit for Round 2 and Round 3 samples)

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

Qualifiers:

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

Table C-4.
Total Metals in Equipment Decontamination Rinsate (ug/L)

	Station le Type				31 Field QC - Rinsate			31 Field QC - Rinsate			31 Field QC - Rinsate			31 Field QC - Rinsate			
Sample ID		01-VBOU3-RIN-0005			MW-31-070104			MW-31-072804			MW-31-111904			MW-31-050205			
	Parent Sample ID		01-48003-1111-0003			11111-01-070154			11111-31-072004			M44-31-111304			MVV-51-050203		
Sample Date/Time		12/19/2003 11:25			7/1/2004 10:05:00 AM			7/28/2004 9:35:00 AM			11/19/2004 12:55			5/2/2005 10:30			
Depth_upper (ft bgs)					7,112001 101001		1723233, 0.00.00 (4.6)			11/10/2001 12:00			072.2000 10.00				
Depth_lower														· 			
Analyte	DL.	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	Result	Qual_L	Qual_V	
Aluminum	100	110		1	ND			ND		I	ND			ND		1	
Antimony	2	ND			ND			ND			ND		 	ND	R	R	
Arsenic	1	ND			ND			ND			ND			ND	J	J	
Barium	10	ND			ND			ПD		1	ND			ND			
Beryllium	1	ND		1	ND		1	ND			ND	1	i	ND	UJ	UJ	
Cadmium	1	ND			ND			ND			NĐ	1		ND			
Calcium	200	280			290			ND		i	ND			ND			
Chromium	10	ND			ND		1	ND		l	ND	†	·	ND		1	
Cobalt	10	ND			ND			ND			ND		1	ND		1	
Copper	10	ND			ND	1		ND			ND	1		ND		1	
Iron	100	220			ND			ND			ND			ND		1	
Lead	3	ND			ND			ND		i	ND			ND			
Magnesium	200	ND			ND			ND			ND			ND		1	
Manganese	10	12			ND	·		ND			ND	ļ	 	ND	· -		
Mercury	0.2	ND			ND		***************************************	ND		l ————	ND			ND		1	
Nickel	40	ND			ND			ND			ND			ND			
Potassium	3000	ND			ND			ND			ND	·		ND			
Selenium	5	ND			ND	1	·	ND		·	ND	j		ND	 	1	
Silver	10	ND			ND	1		ND			ND	ļ — — — — —		ND		1	
Sodium	5000	ND			ND	1		ND.		i	ND	1		ND		1	
Thallium	1	ND			ND			ND			ND	<u> </u>		ND	i — —	1	
Vanadium	10	ND			ND			ND			ND			ND		1	
Zinc	20	ND			ND			ND		l	ND	1	UJ	ND		1	
рН				 							·	1				 	
Hardness (mg/L)					·	1		l							1	1	
Specific Conductance (umhos/cm)	<u> </u>					1]	J				1]		1	
Conductivity (uS/cm)											l						
Total Dissolved Solids (mg/L)	1					1										1	
Temperature				l		·	i										

DL = Detection Limit (note DL is the reporting limit for Round

Qual_L = Qualifier assigned by laboratory

Qual_V = Qualifier assigned during data validation

ND = Non-detect

Qualifiers:

J = Result is an estimated quantity

U = Undetected, result is less than the detection limit

ASARCO GLOBE PLANT GROUNDWATER DATA

Table C-5. Groundwater Data from the Remedial Investigation of the Globe Plant

Sample Location	Date	Lab	7	Groundwater Concentration (ug/L)										
			Depth		enic		mium	Le	ead	Zinc				
			ft bgs	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved			
BH-12	9/17/1985	С	9.26		0.01	_	<0.001		0.01		<0.01			
BH-12	8/22/1986	D		-	<0.004		<0.001		<0.005	-	<0.008			
BH-12	6/29/1987	D		0.009	<0.006	0.004	0.004	0.061	<0.005	0.164	0.014			
BH-12	9/1/1987 -	D	8.89	-	<0.006	· -	0.003	_	<0.005	. 	0.028			
BH-12	11/18/1987	R	9.32		<0.003	_	0.0034	-	<0.004		<0.01			
BH-12	11/18/1987	D	9.32		<0.006	-	<0.001		<0.005	-	0.012			
BH-12	11/18/1987	c	9.32		<0.01		0.011		<0.01		0.01			
GW-15	11/13/1985	D	14.21		<.050	0.068	0.068		0.033		0.1			
GW-15°	11/13/1985	R	14.21	0.05	<.05	0.061	0.06	<0.025	<0.025	0.099	0.093			
GW-15	11/13/1985	c	14.21		_	_	0.07				-			
GW-15	3/19/1986	c			_	0.077	-			0.17				
GW-15	5/6/1986	l c l				0.061				0.07	-			
GW-15	7/2/1986	lol	13.73		-	0.114			_	0.263	_			
GW-15	7/2/1986	c	13.73	< 0.01] _	0.12	_	0.01	-	0.23	_			
GW-15	7/2/1986	R	13.73	< 0.05	-	0.11		0.03	-	0.3	_			
GW-15	8/25/1986	D			<0.004		0.06		<0.005	·	0.069			
GW-15	9/2/1986	D		0.025	_	0.141	_	0.025		0.375	-			
GW-15	11/6/1986	D		0.052	l	0.146	_	0.041		0.363				
GW-15	11/6/1986	c		<0.01	_	0.175		0.04	1 _	0.39	_			
GW-15	1/13/1987	D		0.021	_	0.087		0.013] _	0.15	_			
GW-15	3/17/1987	D		0.09	0.008	0.32	0.054	0.19	<0.005	1.5	0.13			
GW-15	6/27/1987	R	13.65	0.011	<0.003	0.1	0.061	0.026	<0.004	0.34	0.06			
GW-15	6/27/1987	c	13.65	<0.01	<0.01	0.095	0.062	0.02	<0.01	0.26	0.05			
GW-15	6/27/1987	Ь	13.65	0.031	<0.006	0.108	0.07	0.035	<0.005	0.35	0.05			
GW-15	9/2/1987	D		<0.006	<0.006	0.079	0.073	0.017	<0.005	0.184	0.072			
GW-15	11/20/1987	D			<0.006		0.059	_	<0.005		0.06			
GW-16	6/5/1986	c			<0.01		0.039	_	<0.01		0.12			
GW-16	6/5/1986	اما			<0.004	_	0.04		<0.005	_	0.22			
GW-16	8/14/1986	اما		_	<0.004	_	0.03		0.027		0.121			
GW-16	6/27/1987	D	8.55	<0.006	<0.006	0.031	0.031	<0.005	<0.005	0.132	0.125			
GW-16	9/2/1987	D	9	-	<0.006		0.044		<0.005		0.213			
GW-16	11/20/1987	D			<0.006		0.032	_	<0.005		0.111			
GW-17	7/11/1986	D	12.97		0.011		<0.001		<0.005		0.008			
GW-17	8/21/1986	اما			0.005		<0.001		<0.005		<0.008			
GW-17	8/30/1987	اما			<0.006		0.006		<0.005		0.02			
GW-46	6/17/1987	R	9.48		0.02		0.023	_	<0.004		0.11			
GW-46	6/17/1987	ו מ	9.48		<0.006		0.02		<0.005	_	0.101			
GW-46	6/17/1987	c	9.48		<0.01		0.023	_	<0.01		0.11			
GW-46	9/1/1987	c	9.83		<0.01	· _	0.023		<0.01	_	0.15			
GW-46	9/1/1987	R	9.83		<0.006		0.025	·	<0.008		0.16			
GW-46	9/1/1987	D	9.83		0.009	-	0.023		<0.005		0.183			
GW-46	9/30/1987	D	3.55		<0.009		0.022	_	0.016	_	0.185			
GW-46	10/22/1987	Ь			<0.006		0.022		<0.005		0.103			
GW-46	11/23/1987	اما	' I		<0.006		0.015	_	<0.005		0.156			
GW-46	12/30/1987	D	11.42		<0.006	_	0.016	_	<0.005		0.17			
rce: TRC 198		است			,		J		1					

cource: TRC 1988

Table C-6. Quarterly Groundwater Monitoring Data (1993-2001)
ASARCO Globe Plant Monitoring Wells

Location	date_samp	T/D	Туре	Lab Code	Source	Water Level	Field Temp	Cond @ STP	Field pH	As ppb	Cd ppb	Pb ppb	Zn ppb
GW-15	9/17/1993	D	SAMPL	DOES	GW	5131.4	14.2	705	6.5	<5.0	<1.0	<5.0	·<8.0
GW-15	11/18/1993		DUPE	DOES	GW	5131.27	15.4	680	6.74	<5.	86.	<5.	170.
GW-15	11/18/1993	D	SAMPL	DOES	GW	5131.27	15.6	689	6.77	<5.	74.	<5.	71.
GW-15	2/23/1994	D	SAMPL	DOES	GW	5131	14.2	632	6.81	<5.	61.	<5.	71.
GW-15	5/26/1994	D	SPLIT	CORE	GW	5131.45	14.3	1180	6.75	<5	59	<2	80
GW-15	5/26/1994	D	SAMPL	DOES	GW	5131.45	14.3	1180	6.75	<5.	62.	<5.	96.
GW-15	9/8/1994	D _	SAMPL	DOES	GW	5131.39	16.6	1090	6.69	<5.	61.	<5.	70.
GW-15	11/2/1994	D	SAMPL	DOES	GW	5131.17	13.8	881	6.91	<5.	61.	<5.	96.
GW-15	2/22/1995	D	SAMPL	DOES	GW	5130.94	15.9	1250	6.77	<5.	71.	<5.	83.
GW-15	2/22/1995	D	DUPE	DOES	GW	5130.94	15.3	1240	6.75	<5.	70.	<5.	78.
GW-15	5/23/1995	D	SAMPL	DOES	GW	5131.51	12.9	1270	6.58	<5.	9.9	<5.	241.
GW-15	8/9/1995	D	SAMPL	DOES	GW	5132.8	17.1	1290	6.7	<5.	173.	<5.	107.
GW-15	11/9/1995	D	SPLIT	CORE	GW	5131.7	17	1170	6.64	<10.	79.4	<2.	94.
GW-15	11/9/1995	D	SAMPL	DOES	GW	5131.7	17	1170	6.64	<5.	94.	<5.	127.
GW-15	3/7/1996	D	SAMPL	DOES	GW	5131.09	14.1	1170	6.54	<5.	112.	<5.	150.
GW-15	6/24/1996	L	SAMPL	DOES	GW	5131.71	15.1	1090	6.5	<5.	74.	<5.	184.
GW-15	8/28/1996		SAMPL	DOES	GW	5131.63	16.8	1210	6.56	<5.	83.	<5.	95.
GW-15	11/26/1996	D	DUPE	DOES	GW	5131.38	12.5	1280	6.39	<5.	41.	<5.	82.
GW-15	11/26/1996		SAMPL	DOES	GW	5131.38	12.8	1130	6.39	<5.	44.	<5.	96.
GW-15	3/12/1997	D	SAMPL	DOES	GW	5132.08	15.8	1180	6.55	<5.	47.	<5.	86.
GW-15	6/24/1997	D	SAMPL	DOES	GW	5132.14	15.1	1400	6.34	<5.	119.	<5.	152.
GW-15	9/24/1997		SAMPL	DOES	GW	5132.15	15.5	1370	6.48	<5	115	<5	127
GW-15	9/24/1997		SPLIT	CORE	GW	5132.15	15.5	1370	6.48	<10	110	<50	130
GW-15	11/19/1997		SAMPL	DOES	GW	5131.95	14.1	1060	6.58	<5	96	<5	91
GW-15	3/3/1998		SAMPL	DOES	GW	5131.31	13.4	1600	6.78	<5	95	<5	118
GW-15	6/2/1998		SAMPL	DOES	GW	5132.71	15.5	1330	6.66	<5	84	<5	93
GW-15	8/26/1998	<u></u>	SAMPL	DOES	GW	5132.6	16	1190	6.64	<5	57	<5	84
GW-15	8/26/1998		DUPE	DOES	GW	5132.6	15.8	1200	6.67	<5	60	<5	85
GW-15	11/20/1998		SAMPL	DOES	GW	5131.89	12.7	997	6.77	<5	65	<5	73
GW-15	2/17/1999		SAMPL	DOES	GW	5131.43	12.2	754	6.75	<5	87	N/A	100
GW-15	5/19/1999		SAMPL	DOES	GW	5132.68	15	960	6.68	<5	67		70
GW-15	8/20/1999		SAMPL	DOES	GW	5133.09	15	1670	6.88	<5	62		74
GW-15	11/11/1999		SAMPL	DOES	GW	5132.01	14.6	1660	6.9	<5	66		66
GW-15	11/11/1999		SPLIT	STDL	GW	5132.01	14.6	1660	6.9	<10	74	<5	90
GW-15	2/4/2000		SAMPL	DOES	GW	5131.5	12.7	1900	6.89	<5	78	1	89
GW-15	5/9/2000	*****	SAMPL	DOES	GW	5131.70	14.3	1822	6.75	<5	87	 	107
GW-15	8/7/2000		SAMPL	DOES	GW	5132.29	14.3	1843	6.73	<5	87		101
GW-15	11/8/2000		SAMPL	DOES	GW	5131.90	14.2	1770	6.82	<5	82		<10
GW-15	2/12/2001		SAMPL	DOES	GW	5131.36	12.0	1956	6.77	<5	94		98
GW-15 GW-15	5/23/2001		SPLIT	STDL	GW	5132.20	14.1	1440	6.62	<10	100	 	120
GW-15 GW-15	5/23/2001		SAMPL	DOES	GW	5132.20	14.1	1440	6.62	<5	98		105

Table C-6. Quarterly Groundwater Monitoring Data (1993-2001) ASARCO Globe Plant Monitoring Wells

Location	date_samp	T/D	Туре	Lab Code	Source	Water Level	Field Temp	Cond @ STP	Field pH	As ppb	Cd ppb	Pb ppb	Zn ppb
GW-46	9/17/1993	D	SAMPL	DOES	ĞW	5133.7	17.1	799	6.35	<5.0	16.	<5.0	180.
GW-46	9/17/1993	D	SPLIT	CORE	GW	5133.7	17.1	799	6.35	<5	14	<2	200
GW-46	11/18/1993	D	SAMPL	DOES	GW	5133.56	15.9	673	6.38	<5.	23.	<5.	150.
GW-46	2/24/1994	D	SAMPL	DOES	GW	5133.26	13	417	6.74	<5.	14.	<5.	181.
GW-46	2/24/1994	D	DUPE	DOES	GW	5133.26	13.2	414	6.78	<5.	14.	<5.	184.
GW-46	5/26/1994	D	SAMPL	DOES	GW	5133.72	14.3	1200	6.63	<5.	19.	<5.	183.
GW-46	9/8/1994	D	SAMPL	DOES	GW	5133.81	17.9	1230	6.79	<5.	23.	<5.	180.
GW-46	11/2/1994	D		CORE	GW	5133.45	15.2	1020	6.67	< 5.	17.	<5.	191.
GW-46	11/2/1994	D	SAMPL	DOES	GW	5133.45	15.2	1020	6.67	<5.	18.	<5.	170.
GW-46	2/22/1995	D	SPLIT	CORE	GW	5133.16	15.5	1520	6.49	<5.	19.	<5.	200.
GW-46	2/22/1995	D	SAMPL	DOES	GW	5133.16	15.5	1520	6.49	< 5.	20.	<5.	180.
GW-46	5/23/1995	D	SAMPL	DOES	GW	5133:73	12.3	1630	6.51	< 5.	17.	<5.	177.
GW-46	8/9/1995	D	SAMPL	DOES	GW	5135.93	15.4	1540	6.63	<5.	25.	<5.	236.
GW-46	11/9/1995	D	SAMPL	DOES	GW	5133.39	17	1510	6.49	<5.	28.	<5.	268.
GW-46	11/9/1995	D	DUPE	DOES	GW	5133.39	17.1	1400	6.55	<5.	30.	<5.	271.
GW-46	3/7/1996	D	SAMPL	DOES	GW	5133.49	13.8	1590	6.63	<5.	32.	<5.	242.
GW-46	6/24/1996	D	SAMPL	DOES	GW	5134.19	15	1450	6.57	<5.	25.	<5.	215.
GW-46	8/28/1996	D	SAMPL	DOES	GW	5134.04	17	1290	6.5	7.	25.	<5.	216.
GW-46	8/28/1996	D	SPLIT	CORE	GW	5134.04	17	1290	6.5	<10.	29.6	<3.	241.
GW-46	11/21/1996	D	SAMPL	DOES	GW	5133.84	14.9	1430	6.32	<5.	28.	<5.	251.
GW-46	3/12/1997	D	SAMPL	DOES	GW	5133.39	13.8	1440	6.36	<5.	27.	<5.	221.
GW-46	6/24/1997	D	SAMPL	DOES	GW	5134.37	15.6	1140	6.45	<5.	27.	<5.	166.
GW-46	9/24/1997	D	DUPE	DOES	GW	5134.85	16.3	1170	6.41	<5	28	<5	214
GW-46	9/24/1997	D	SAMPL	DOES	GW	5134.85	16.6	1040	6.46	<5	26	<5	228
GW-46	11/19/1997	D	SAMPL	DOES	GW	5134.53	15.2	1020	6.52	<5	25	<5	196
GW-46	3/3/1998	D	SAMPL	DOES	GW	5133.58	13.4	1860	6.62	<5	30	<5	288
GW-46	6/2/1998	D	SAMPL	DOES	GW	5135.36	14.5	1820	6.62	<5	36	<5	212
GW-46	8/26/1998	D	SPLIT	CORE	GW	5135.41	17.1	1520	6.67	<10	39	<5	335
GW-46	8/26/1998	D	SAMPL	DOES	GW	5135.41	17.1	1520	6.67	<5	27	<5	162
GW-46	11/23/1998	D	SAMPL	DOES	GW	5134.41	14.9	1720	6.72	<5	45	<5	192
GW-46	2/18/1999		SAMPL	DOES	GW	5133.67	12.7	997	6.79	<5	29	n/a	253
GW-46	5/25/1999	D	SAMPL	DOES	GW	5135.05	12.6	1647	6.69	<5	37		182
GW-46	8/20/1999	D	SAMPL	DOES	GW	5136.07	15.9	2530	6.82	<5	27		150
GW-46	11/11/1999	D	SAMPL	DOES	GW	5134.62	15.1	2700	6.63	<5	36_		159
GW-46	2/4/2000	D	SAMPL	DOES	GW	5133.84	14	2900	6.78	<5	33		149
GW-46	2/4/2000	D	SPLIT	STDL	GW	5133.84	14	2900	6.78	<10	37.1		183
GW-46	5/9/2000	D	SAMPL	DOES	GW	5134.03	13.9	2430	6.75	<5	24		150
GW-46	8/7/2000	D	SAMPL	DOES	GW	5134.90	15.2	2350	6.71	<5	24		146
GW-46	11/9/2000		SAMPL	DOES	GW	5134.43	16.5	2110 .	6.60	<5	28		200
GW-46	2/12/2001	D	SAMPL	DOES	GW	5133.69	12.8	2010	6.84	<5	24		176
GW-46	5/23/2001		SAMPL	DOES	GW	5134.72	13.2	1745	6.71	<5	28		171

APPENDIX D DATA VALIDATION REPORTS

ROUND 1: SOIL AND GROUNDWATER VALIDATION REPORTS

SDG: D3L100414

SDG: D3L100408

SDG: D3L190390

SDG: D3L190405

SDG: D3L190419

SDG: D3L190461

SDG: D3L190464

LSR: R8-040018

this page left intentionally blank

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear – TechLaw, Inc.

Report Date:

February 17, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

D3L100414

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, 7471A, and 7470A for Laboratory Lot No. D3L100414 from Severn Trent Laboratories, Inc. This report consists of the validation of 20 solid samples and one water sample collected on December 10, 2003, and analyzed on December 19, 23, and 29, 2003 for ICP metals; on December 24, 2003 for ICPMS (water sample only); and on December 15 and 18, 2003 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
01-VBOU3-SB-0028-A	D3L100414-001
01-VBOU3-SB-0028-B	D3L100414-002
01-VBOU3-SB-0028-C	D3L100414-003
01-VBOU3-SB-0028-D	D3L100414-004
01-VBOU3-SB-0028-E ⁺	D3L100414-005
01-VBOU3-SB-0029-A	D3L100414-006
01-VBOU3-SB-0029-B	D3L100414-007
01-VBOU3-SB-0029-C	D3L100414-008
01-VBOU3-SB-0029-D	D3L100414-009
01-VBOU3-SB-0029-E	D3L100414-010
01-VBOU3-SB-0010-A	D3L100414-011
01-VBOU3-SB-0010-B	D3L100414-012
01-VBOU3-SB-0010-C	D3L100414-013
01-VBOU3-SB-0010-D	D3L100414-014
01-VBOU3-SB-0019-A	D3L100414-015
01-VBOU3-SB-0019-B	D3L100414-016
01-VBOU3-SB-0016-A	D3L100414-017
01-VBOU3-SB-0016-B ⁺	D3L100414-018
01-VBOU3-SB-0016-C	D3L100414-019
01-VBOU3-SB-0016-D	D3L100414-020
01-VBOU3-RIN-0001	D3L100414-021

denotes full validation

Validated By:_

Bill Fear

Reviewed Bv:

Amy Ballow

D3L100414m

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples 01-VBOU3-SB-0028-E and 01-VBOU3-SB-0016-B were randomly selected for full validation. Cursory validation was conducted on all remaining samples. The data were evaluated based on the following parameters:

Data Completeness

- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
 Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
 Serial Dilution for ICP Analysis
 Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided. However, various transcription errors and calculations errors were noted on the summary forms.

The Form 14 incorrectly indicated that sample 01-VBOU3-SB-0028-E was analyzed at a five times dilution for the 12/29/03 analysis. Additionally, the Form 14 for the 12/23/03 ICP analysis should only have indicated that sample 01-VBOU3-SB-0010-A was analyzed at a 10 times dilution for zinc, not all analytes.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

<u>Calibrations</u>

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

The rinsate sample, 01-VBOU3-RIN-0001, reported a detected result for iron at 220 ug/L. Qualification was not necessary because the sample results for iron were above the blank action levels (greater than the RL and five times the rinsate blank value).

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The aluminum, calcium, iron, and magnesium concentrations in the full validation sample 01-VBOU3-SB-0028-E were less than the ICSA values and no action was required. However, the results for iron in the full validation sample 01-VBOU3-SB-0016-B exceeded the ICSA value of 200 ppm.

The following non-detected sample result was qualified as estimated (UJ) because the iron result was greater than the ICSA value and the absolute value of the associated element was greater than the MDL in the ICSA analysis:

Beryllium in sample 01-VBOU3-SB-0016-B

Beryllium was reported in the ICSA at -6.3 ug/L, which exceeds the MDL of 0.41 ug/L. Non-detected results are qualified as estimated for negative ICSA values. No action was required for additional analytes reported above the IDL in the ICSA, as the sample results were greater than five times the ICSA value.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed solid sample 01-VBOU3-SB-0016-B for ICP metals and mercury analyses and on solid sample 01-VBOU3-SB-0028-A for mercury analyses. Various water MS/MSD analyses were performed on samples from other SDGs for ICP metals and mercury analyses.

The following non-detected sample result was qualified as rejected (R) because the associated spike recoveries at 10% and 6.9% were less than 30%:

Antimony in sample 01-VBOU3-RIN-0001

The following detected sample result was qualified as estimated (J) because the associated spike recovery at 131% was greater than 125%:

Iron in sample 01-VBOU3-RIN-0001

The following sample results were qualified as estimated (J/UJ) because the spike recoveries were less than 75%, but greater than 30%:

- Antimony (35%/33%) and zinc (60%) in all solid samples
- Mercury (59%/31%) in samples 01-VBOU3-SB-0010-D, 01-VBOU3-SB-0019-A, 01-VBOU3-SB-0019-B, 01-VBOU3-SB-0016-A, 01-VBOU3-SB-0016-B, 01-VBOU3-SB-0016-C, and 01-VBOU3-SB-0016-D

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were no applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that several analytes were outside the laboratory percent recoveries QC limits. No action was taken on these results because the recoveries were within 75-125%. Additionally, antimony was not flagged as being outside QC limits in the MS/MSD of sample 01-VBOU3-SB-0016-B because the recoveries of 35% and 33% were within the laboratory limits of 20-200%. Additionally, the water recovery of iron was not flagged at 131%, as this recovery was also within the laboratory limits of 52-155% in a matrix spike analysis on a sample from another SDG.

Post-digestion spike recoveries were not provided for antimony, iron and zinc. The laboratory did provide a post digestion spike for the water ICPMS analysis. Beryllium was outside QC limits in this analysis. No action is taken based on post-digestion results. Additionally beryllium was within 75-125% in the pre-digestion spike analysis.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected. Additionally, recoveries for detected results were calculated using actual results rather than the rounded results reported on the summary Form 5A.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD RPDs.

The following sample results are qualified as estimated (J/UJ) because the MS/MSD RPD at 58% exceeded 35% in the MS/MSD analysis of sample 01-VBOU3-SB-0016-B:

Mercury in samples 01-VBOU3-SB-0010-D, 01-VBOU3-SB-0019-A, 01-VBOU3-SB-0019-B, 01-VBOU3-SB-0016-A, 01-VBOU3-SB-0016-B, 01-VBOU3-SB-0016-C, and 01-VBOU3-SB-0016-D

The laboratory also indicated that the RPD mercury from the MS/MSD analyses of sample 01-VBOU3-SB-0028-A exceeded criteria. However, the RPD of 21% was less than the soil validation limit of 35% and no action was taken.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses for both matrices. All recoveries were within the laboratory QC limits for the solid analysis and within 80-120% for the water analysis. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on solid sample 01-VBOU3-SB-0016-B and on a water sample from another SDG.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

• Barium in all solid samples

All other %Ds in the solid serial dilution were less than 10% or the sample result was less than 50 times the MDL.

It appears that arsenic and barium may have exceeded serial dilution criteria in the water analysis. However, no action was taken, as these analytes were non-detected in the water sample 01-VBOU3-RIN-0001.

No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. No calculation or transcription errors were found. However, although the laboratory reported percent moisture values, the results were not adjusted for dry weight.

The result for zinc in sample 01-VBOU3-SB-0010-A was reported from a 10x dilution. The result and reporting limit were correctly reported.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

BATCH: D3L100414

Erst on on	alytes which do not	THEEL	noidii	_	st Pre-			NI*	etals	Но	CVAA	- T		No. of Days	
	Sample ID	Ma	trix		rvative	1	ate ected		alysis		alysis	*CN Analysis Date	Analysis	Past Holding	Action
01-V	BOU3-58-			(A	, B, C)	<u> </u>			te/s		ate	Date	Date/s	Time	
	225-1A	يرک	1-	1	_و	121	15/5	12/1	7 24 63	121	18			-0-	150
	0028-13				1		1	1			•			1	()
	CU25-C											_			رپ
	(028-D					•									
->	025-E														
	W29 - A														
	W29-B														
····	-c				1	<u> </u>			1					1	····
	-D														
	- E				 	 							_·_·		
	1010- A	\vdash			1		\vdash		0		<u> </u>			†	
	- B				 		i							1	
	<u>- د</u>	$\vdash \vdash$					+		 	-					
···	-0			\dashv			 							1	
	0018- 7						1	-							
	- B		-				 		+					 	
	0.16-6		1	\dashv							+				
<i>(</i> ∕>	-3								+		 				
	-6			1							-				
<u></u>	-0	J	,	-)		-			1.		1				
0:		Rini	عاد	<u></u>	U-7	1	/	RIG	75		1.5				
	10 600 1	6~1.0	2.2					12/2		- 12	1/2			 	
	JC 8-2 12	175			ج ے			10(2	7	21	, P,	. 50.00	- ,\		
	17121 P							4) 5		35	, ,-,	1 32, 60	1 (-)	 	
	15/26 12	-		<u>ٽي</u>	<u> </u>	وسعنوا	18	<u>۽ تيم</u>				-			
	ıts 🗘-			_		<u> </u>			4. 4.7 3			~ 12/2	1.5		
COMMEN		70	<u> </u>	72	<u>√ </u>	~	<u> </u>	<u> </u>	0010	- 		~ (.L\L	7102	e shold	U. N
	70.62	<u> </u>	,		· · >		() -V	\?	مريب	7	7 €	ے۔ صراح	y v	E Shorte	76 X
	१८८ ३०	<u> </u>													
Actions:	CCC S	<u> </u>													·
I. f holding	g times are exceeded,	all sam	pie res	sults	are estim	ated (J	V(UJ).								
	g times are grossly exc J), and non-detected re					ielecte	o results	are							
,			,							Valida	ted by:	ROMO	_		Date:
												アンイベル			
Preservatio	ves;														
Preservativ A. Preserve B. Cooled t	ed w/HNO3 and cooled	d to 4°C								Reviev	v By:	A h	2	1	Date: 2・1 アー

ANALYTE	HOLDING TIME	PRESERVATIVE				
· · · · · · · · · · · · · · · · · · ·		AQUEOUS	SOIL			
Metals	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C			
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C			
Cvanide	14 davs	pH > 12 w/NaOH, 4 Deg. C	. 4 Deg. C			

*VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

IIA. INORGANIC ANALYSIS WORKSHEET -- ICP CALIBRATIONS

ICS & ICOMS 11.02

BATCH: DILLOOKIN

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	ICV CCV	TRUE	Found	% R	Action	Samples Affected
,						AN ICV, ccv
						that breaket source
						that broken source
						or inter
		·		·····		
- <u> </u>						
	<u>-,</u>					
						<u> </u>
 					/ 0	()
<u>-</u>				/		/
					'/_	
						`
				···········		
						<u> </u>
	· · · · · · · · · · · · · · · · · · ·					
						<u> </u>
			sequences? (C		es No	
	sample (CRI) a	nalyzed at the b	eginning and at	the end of ear	ch sample run (C	LP only)? (Fes No
MENTS		 				
					<u></u>	

ICV/CCV Actions:

	PERCENT RECOVERY					
	<75%	75-89%	\$0-110%	111-125%	>125%	
Detected results	R	J	(v)	. J	R	
Non-detected Results	, R	UJ	\ \ \ /	٧	V .	

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

IIC. INORGANIC ANALYSIS WORKSHEET -- Hg CALIBRATIONS

BATCH: DILICOLLING

List all mercury results that did not meet the percent recovery criteria for the ICV and/or CCV standard. TRUE Found % R Action Samples Affected CCV ICV, CCV Sc- Bos 60-206 Kes) 1. Were the correct number of standards and blanks used to calibrate the instrument? 2. Is the initial calibration correlation coefficient > 0.995? No C. 9999 If no, list affected analytes and samples: 3. Was a CRDL check sample (CRA) analyzed at the beginning of each sample run? (CLP only) 4. CCV run after CRA, every ten samples and at end of sequence? COMMENTS

Actions:

PERCENT RECOVERY

<65% 65-79% 80-120% 121-135% >135%

Detected results R J V J R

Non-detected Results R UJ V V V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

	MATRIX:	Soil	1470			BATCH:	03410	وبدابر	<u>.</u>	
List the highest positi	ivo AND popoliv	o blank roculi	· >=IDLL bolow	Hee one wo	richaet for en	il matriy and an	other for water	matriv		
List the highest positi	ICB ICB	e diank resum	S-incl pelow	. Ose one wo	T TO SOL	ii maux and an	Other for water	medix.		
Analyte	CCB PB/MB	IDL	Blank Conc.	5 * Bl. Cond	. Action	·	Samples	Affected		
						1211	NO	۴.	PL	

	1			<u> </u>						
Rinsde		 								- :
RIN-0001										
			220	1310						
Fe	Rin		245/	(00 1-	-41Ky -	None	Du			
			WIL		1			i/	,	
					1					
	1									
			İ							
							· · · · · · · · · · · · · · · · · · ·			
						·	····			
				,						
								 		
;					1		· · · · · · · · · · · · · · · · · · ·			
	1				 					
NOTE: Verify that th	e absolute vaiue	e of any analy	te concentration	on in the PB	or MB is < CRI	DL *				
Verify										
One prep blank per n	natrix /	-		No r	e.>./4.>	Rowled	- 150	ريان	PL	
One prep blank per b										
ICB analyzed immed		/	.,		+cp->>	(69)	PL =5			
CCB analyzed after e							مرا عادا			
Field/equipment/rinsa		zed? If so, ir	clude above if	applicable to	project.			· · ·		
COMMENTS	_							··		

Actions:

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5^* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

	•			BA ⁻	тсн:_	D	3610241	٧
NOTE:	The sample results can be accepted without qualific	ation, if the san	nple c	oncentrations	of Al,	Ca, Fe	and Mg are I	ess than or
equal to	the concentration found in the ICSA solution.	FIL	ς,	a-pes	00	14		

Sample ID	Analyte	Sample Result	ICS Value	Comments
0028-E	1104	Z ICA	رماس	
८०१७-७	Fe	228	700	pon unt
		<u> </u>		<u> </u>

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	% R	Action	Samples Affected
			80-1201.
			······
			<u> </u>
			•
	•		
LP Protocol Only	· · · · · · · · · · · · · · · · · · ·		
ere Interference Chec	k Samples rui	n at the beginning and end o	of each sample analysis run, or a minimum of twice per 8-hour shift (whichever
more frequent)?	Yes	No	·
OMMENTS			
 			

Actions:

PERCENT RECOVERY

	<50%	50-79%	80-120%	>120%
Detected results	R	J	v	J
Non-detected results	R	UJ	٧	٧

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE.

BATCH: D3/100LING

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result
K	- 642	2425	j~00 -					
Be	·- (i.ɔ		ð					
Be	- 6-3	US	NP	/				
55	ا ا ا		<i>N</i> •>		<u> </u>			
C/L	43	2.15	1.6-					
<u> </u>	-11-9		T					
Ph	5.5		7					
Mr	10.9		Ţ		· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u></u>
A;	2-5		NO					ļ
2	1-1.7		9					<u> </u>
						,		
					·			
								
 						· <u></u>	<u> </u>	-
						<u> </u>	<u> </u>	
						 		<u> </u>
						<u> </u>		ļ
			· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·						ļ.——		
								
	,							
							 	
	·					 	 	
					<u> </u>		<u></u>	
···								
· · · · · · · · · · · · · · · · · · ·					<u></u>		<u> </u>	<u> </u>
								
		ļ					ļ	

Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1. Estimate (J) detected results < = 5* |ICSA|.
- 2. Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX: H25 SU-1 BATCH: 18 036100414

					jestion spike i	recovery criteria are not evaluated for Ca, Mg, K,
•		-	•		ken.	
Analyte	Spiked Sample Result	Sample Results	Spike Added	%R 54	Action	Samples Affected
Hy	0.576		0.233	621	Jlus	Botch 2 los has si
	0-286	_	4	zu 31	マルン	20017 31
			ļ			
· ·				36	7/1/2	AU Soils who lib kan
<u> </u>				33		20-24
1.5~	4.5.7	24	ddil	¥ 3 €	7/47	Su: \ >
12:	(, \(\) \(\)	141	~ <	Eliza	Z, 1	1, R.761. > 751.
7	26.50		(*, >	((2)57 2	9-1	1,0 400-
من دیم	a)tres	5067				7,5,2,5,5
	0,300	30()				
1234	UO 29.	(-0-1	TCP			
Re	2520	710	رسی	131	7	Rinsole
		<u>2-004</u>			<u></u>	
<u> </u>			ري ا	(O	12	Rinsole
72	3.06		رب	8		1.6 4 69
	. 0.	, , , , , , , , , , , , , , , , , , , 			10.0	
1034	r. Ke	 		2 405	4427	15-4 -(1 \$>
	<u></u>	~ +5-	(2)		·	
102	1-1590	337-6	15 H	C H20	0	Boli Flierez noch
re-digestion ma		<u> </u>	<u> </u>	cy of once eve		· · · · · · · · · · · · · · · · · · ·
ent)? Kes	No.			<u> </u>	·	
		•		-	nat did not me	eet the pre-
					No	
			4-25		> CH	was le
		67-1,	, <u> </u>	1	BC 7	771. axin :~
		pre	م م كود	- 203	مريات	
		· · · · · · · · · · · · · · · · · · ·				
		oritoria avalifi	, all accasiota	d animalas usia	a tha fallowin	a critoria:
alyte does not n	neer me 76 K	citteria, quanti	y all associated	a samples usin	g me lonowing	use 75-125%
		P	ERCENT REC	OVERY		USE 75 12 1
		< 30%	30-74%	75-125%	> 125%	wot les link
		J	J	\smile_{\vee}	J	
Non-detected	Results	Ŕ	UJ	٧	V	Note: (a) is
						Siaccing hour
oncentrations i	in the sample	e is greater th	an 4 times th	e amount snik	ed, then limi	
	-	1.0.	(C: No	205	its do not apply. On their l
	-	1.0.	(C: No	205	its do not apply. On their l
	-	1.0.	(C: No	205	its do not apply. On their l
	درد محمد ر	-(-P>	بار المرادية	C: No	per. 1 2	its do not apply.
	re-digestion matrix spike reconstrix spike prep	e result exceeds the spike ad Analyte Spiked Sample Result Color Color Sh. 10.7	re-result exceeds the spike added by a factor of the spike added by a factor of the spike added by a factor of the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the spike added by a factor of the sample Results and the sa	result exceeds the spike added by a factor of 4 or more. Spiked Sample Results Analyte Sample Results Color Col	Analyte Spiked Sample Results Spike Added % R in Result	re-result exceeds the spike added by a factor of 4 or more, no action is taken. Analyte Spiked Sample Results Spike Added % R 3 Action

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX: Sigl (H20

✓ List all parameters that do not meet RPD or CRDL criteria.

Sample

BATCH DZLWUM

Sample ID	Analyte	Result	Dup. Results	RPD	Difference ³	Action	Samples Affected /
poilers	Hig	0-516	0.286	581		ゴルゴ	per Soils Gater
includ							2
							0-0,
							19 12, 13
·							16,2-0
CULLER	144	0.623	0.407	21-1			13:11 Tool 124
							position Friging
							· +-0 25
							· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·		
					<u>-</u>		
		ļ					
		<u> </u>	1				

COMMENTS

Actions:

1. AQUEOUS

If both sample values > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

Note

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	H25/5,-1			BATCH: 032004114
	1	meet the percent			·	T
LCS ID	Analyte	True Value	Found Value	% R	Action	Samples Affected
147	ر					cula 20-12011.
		<u> </u>				<u> </u>
(S	5/					T when her lines
		1				
		1				
-				• • • • • • • • • • • • • • • • • • • •		
		 				
<u> </u>		-	· · · · · ·		 	· · · · · · · · · · · · · · · · · · ·
						
						17 221 JURENOUL 2013
		ļ		<u> </u>		0.3
			·			
ļ					<u> </u>	
					ļ	
					ļ	
			<u> </u>			
Note:						
LCS with the sar	me matrix as sa	amples must be p	repared for each	SDG.		
COMMENTS		•				
						· · · · · · · · · · · · · · · · · · ·
Actions:		-			•	
Exception: Antir	nony and silve	r have no control	limits. An aqueo	ous LCS is not	required for CN	and mercury.
				PERCEN'	T RECOVERY	
1. AQUEOUS			<50%	50-79%	80-120%	>120%
Detected results			R	J	V	(°p)
Non-detected re	sults		R	UJ	٧	V e
2. SOLID LCS			•		\sim	South lines
Recoveries stipu	lated by EMSL				10	-) or ! ! !
			BELOW		WITHIN	ABOVE
			CONTROL LIMITS	/	CONTROL LIMITS	CONTROL LIMITS
Detected results			J	- (V	J
Non-detected re			บ้า	($\sqrt{}$	V

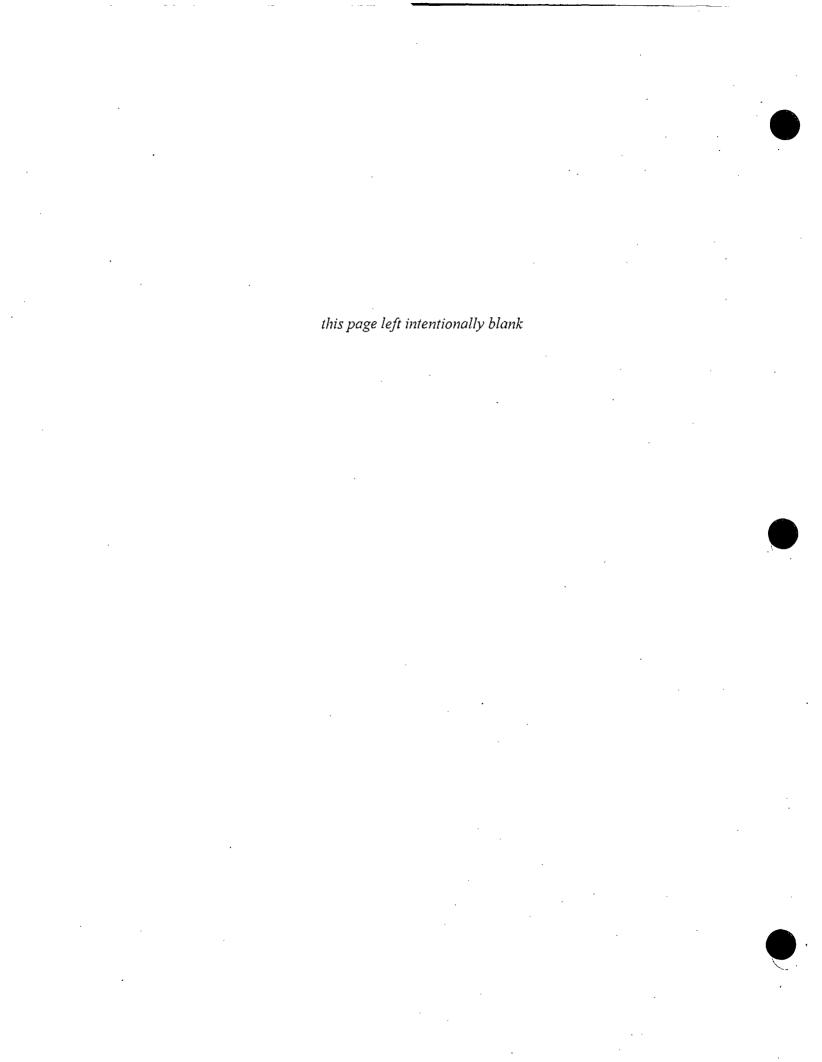
IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

MATRIX: Soll H20	BATCH: D3LIWGUY

Analy	te IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
K	COIL .	230-0	-				< 50*
B	F (2.7)	18-5	15617	17641	131	づ無	DW 5001/
1420 6	2						
<i>₽</i> ⁹	0.02	0.6	36.6	ユン・ *	زدر		NO
B	6 0.532	· 1_ \&	9.4	12-5	74	-	(1
		+	· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·		
		- 				<u> </u>	
		 		ļ <u>-</u>			
-			 			<u> </u>	
INDUCTIV	/ELY COUPLED F	PLASMA SERIA	L DILUTION AN	ALYSIS:	nle apalucia	areed within	·
ten percei	nt of the original ur	ndiluted analysis	. Yes	No No		agreed within	
COMMEN	tions were not per	tormed for the fo	mowing:				
30,,,,,							

Actions

Estimate (J) detected results if %D is > 10%.


NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: <u>834 120414</u>	
Describe any raw data anomalies (i.e., baseline shifts, negative absorbances, transcription or calculation errors, legibility, etc.	
Levits not corrected For it moniture	
The case noon text not connected also	
Calcy CUZ+ = SNULL 42 7500 Not 2400	
Calci- CUZX E GNULL her 7500 Put 7400 PC- 75.03 Co-me were CAUN Compre cire 1.11. 742	
(and che 1.11. 742	
5-53-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	`
2. List results that fall outside the linear range of the ICP instrument or the calibrated range of the AA or Cyanide instrument, and were not reanalyzed.	
10x 2:rc - 10-A	
Were ICP linear ranges obtained within 3 months of, and preceding, the sample analyses?	NA .
4. Were ICP interelement corrections obtained within 12 months of, and preceding, the sample analyses? (Fe) No N	<u> </u>
5. Were instrument detection limits present, found to be less than or equal to the CRDL, and obtained within 3 months of, and creceding, the sample analyses? でき No NA ハンナ マンこんへり せん	
preceding, the sample analyses? Yes No NA FLST QUELENTY ON	
<u> </u>	NIA.
Were all sample results reported down to the IDL if running CLP protocol? Yes No	NA .
7. Were all sample results reported down to MDL if running SW-846 methods? Yes No	NA
7. Were air sample results reported down to mide in romaing or y-o-o methods:	
Were sample weights, volumes, percent solids, and dilutions used correctly when reporting the results? Yes No	
	115
COMMENTS Social 13-20 102-1 Hg 039-250-1	
F2-~13	
FOLIN 12/12 137 5- For 10-2 Shull a cry	
× 2:	
0028-E his TX on 12128 run only a 1x	
Row on his (x for reflects (x	

H; PL 0.2 × 0.05 = 0.033

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Ken Schroeder – TechLaw, Inc.

Report Date:

February 17, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

D3L110408

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, 7471A, and 7470A for Laboratory Lot No. D3L110408 from Severn Trent Laboratories, Inc. This report consists of the validation of 20 solid samples and one water sample collected on December 10 and 11, 2003 and analyzed on December 16-28, 2003 for ICP metals; on December 19, 2003 for ICPMS metals (water sample only); and on December 15-18, 2003 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

	romanera de la composición del composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la
Field Sample Number.	
01-VBOU3-SB-0020-A	D3L110408-001
01-VBOU3-SB-0020-B	D3L110408-002
01-VBOU3-SB-0014-A	D3L110408-003
01-VBOU3-SB-0014-B	D3L110408-004
01-VBOU3-SB-0014-C	D3L110408-005
01-VBOU3-SB-0031-A	D3L110408-006
01-VBOU3-SB-0031-B	D3L110408-007
01-VBOU3-SB-0031-C	D3L110408-008
01-VBOU3-SB-0017-A	D3L110408-009
01-VBOU3-SB-0017-B	D3L110408-010
01-VBOU3-SB-0017-C	D3L110408-011
01-VBOU3-SB-0017-D	D3L110408-012
01-VBOU3-SB-0021-A	D3L110408-013
01-VBOU3-SB-0021-B +	D3L110408-014
01-VBOU3-SB-0021-C	D3L110408-015
01-VBOU3-SB-0018-A +	D3L110408-016
01-VBOU3-SB-0018-B	D3L110408-017
01-VBOU3-SB-0018-C	D3L110408-018
01-VBOU3-SB-0018-D	D3L110408-019
01-VBOU3-SB-0030-A	D3L110408-020
01-VBOU3-RIN-0002	D3L110408-021

⁺ denotes full validation

alidated By: Alla

Reviewed By:

Amy Ballow

Ken Schroeder

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples 01-VBOU3-SB-0021-B and 01-VBOU3-SB-0018-A were randomly selected for full validation. Cursory validation was conducted on all remaining samples. The data were evaluated based on the following parameters:

Data Completeness

- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided. However, various transcription errors were noted on the summary forms.

On Form 14 (page 197), the result for mercury in sample 01-VBOU3-SB-0021-A at 18:09 was not used and should not be indicated with an "X". Additionally, the mercury result for this sample at 18:14 should have a dilution factor of 10 rather than 1.0.

On Form 14 (page 192), sample 01-VBOU3-SB-0021-A should have a dilution factor of 1.0 rather than 5.0. Additionally, the zinc column for this sample should not have an "X", since the result for zinc was obtained from a reanalysis.

On Form 14 (page 195), sample 01-VBOU3-SB-0021-A should have a dilution factor of 1.0 rather than 5.0.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

<u>Blanks</u>

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

The rinsate sample, 01-VBOU3-RIN-0002, reported detected results for aluminum, calcium, and iron. Qualification was not necessary because the results for these analytes in the solid samples were above the blank action levels (greater than the RL and five times the rinsate blank value).

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The aluminum, calcium, iron, and magnesium concentrations in the full validation samples were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on solid sample 01-VBOU3-SB-0018-A for ICP metals and mercury analyses and on solid sample 01-VBOU3-SB-0020-A for mercury analyses. MS/MSD analyses were performed on water sample 01-VBOU3-RIN-0002 for ICP metals and on a water sample from another SDG for mercury.

The following detected sample results were qualified as estimated (J) because the spike recoveries were greater than 125%:

Manganese (174%/145%) in all solid samples

The following sample results were qualified as estimated (J/UJ) because the spike recoveries were less than 75%, but greater than 30%:

Lead (66%/57%) and antimony (46%/45%) in all solid samples

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the unspiked sample amount was greater than four times the spike value and the recoveries were not applicable.

The laboratory evaluated the spike recoveries against the laboratory QC limits. As a result, manganese and antimony were not flagged as being outside QC limits in the MS/MSD of sample 01-VBOU3-SB-0018-A because the recoveries were within the laboratory QC limits.

Post-digestion spike recoveries were not provided for manganese, lead, or antimony. No action is taken based on post-digestion results.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected. Additionally, recoveries for detected results were calculated using actual results rather than the rounded results reported on the summary Form 5A.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD RPDs. All duplicate criteria were met. No calculation errors or transcription errors were found.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses for both matrices. All recoveries were within the laboratory QC limits for the solid analysis and within 80-120% for the water analysis. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on solid sample 01-VBOU3-SB-0018-A and on water sample 01-VBOU3-RIN-0002. All serial dilution criteria were met. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. No calculation or transcription errors were found. However, although the laboratory reported percent moisture values, the results were not adjusted for dry weight.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

I. INORGANIC ANALYSIS WORKSHEET -- HOLDING TIMES

6020 7470A

BATCH: D3 L 110 408 /

List all analytes which do not meet holding time criteria

6010B 747/A

	Sample ID	Ma	atrix	List f serva (A, B	tive		Date liected	Ana	etals alysis ate/s	Ana	CVAA ilysis ate	*CN Analysis Date	Analysis Date/s	Past	of Days Holding Time	A	ction
0/-	VB043-58-0020-A	50	il	5	>	12	10/03	12/19	-28/03	12/1	7/03				0	N	on e
	J −B	<u>. </u>	1					<u> </u>	/					<u> </u>	1 .		.1
· L	-0014-A			ļ			<u> </u>	<u> </u>									
	-B															_	
-[↓ -c						/										
	-0031-A					12	11 03										
	1-3						<u> </u>										
	y -c																
	-0017-A																
	1 -B				_	_	<u> </u>	<u> </u>					·	<u> </u>			
	-c						<u> </u>				! 			<u> </u>	<u> </u>		<u> </u>
	V −D			<u> </u>		<u> </u>											
	-0021-A			ļ	<u> </u>									<u> </u>	ļ		1
<u>-</u>	<u>-В</u>			ļ				1-1			<u>, , , , , , , , , , , , , , , , , , , </u>			 	ļ ·		<u> </u>
_	<u> </u>	-		<u> </u>	-					12	18/03		<u> </u>	-			\vdash
_	-00/8-A	-		<u> </u>	 			1			ļ			-	ļ		\vdash
<u> </u>) -B				 									ļ	 		-
<u> </u>	-c	- 				-		1 1		<u> </u>				┼	-		+
۱	↓ -D	-	<u> </u>			-	}	╂				<u> </u>		<u> </u>			+
·	-0030-A	 	<u> </u>	 		-	-	1	-3103	- 4	-1-2			<u> </u>	 	-	 ,-
01-	VB043-RIN-0002	Wa	ter	A		-	<u> </u>			$n\mu$	5/03	 		-	<u>v</u>	'	₩_
-		+-				├—		1	}				[·	 			/
-		+				-		┤	<u> </u>	1							
\vdash				 	*****	-		<u> </u>	20	1			<u> </u>	+			<u> </u>
CO.	MMENTS		700			1		00	12/1	90:	3	<u> </u>	L	!		·	
	MMENTS TEMP	<u> </u>	٠ ر														
-	Full		1 - 1	1.				21	b -		16						
-	- rull	<u> </u>	//&. Q	160	`	øn			\ <u> </u>	<u>- </u>	10		<u>-</u>		-		

Actions:

- 1. If holding times are exceeded, all sample results are estimated (J)/(UJ).
- 2. If holding times are grossly exceeded (>=2*holding time), detected results are estimated (J), and non-detected results are rejected (R).

Preservatives:

- A. Preserved w/HNO3 and cooled to 4°C
- B. Cooled to 4°C
- C. No Preservative

Validated by:	50	cheordin	Date: .
		7	
Review By:	٨	· ·	Date:

ANALYTE	HOLDING TIME	PRESERVATIVE	
		AQUEOUS	SOIL
Metals	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C

Holding Time = Analysis Date - Collection Date

BATCH: D3L110408

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (ICV)

Analyte	CCA	TRUE	Found	% R	Action	Samples Affected
**	· · .				None	All within 90-1107
	 				7,5,5,5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· · · · · · · · · · · · · · · · · · ·		<u> </u>				
	•					
		·				
			,			
		 -	` <u> </u>			
	 					
	 					
	<u> </u>					
						
			·			
	<u> </u>					
						
	 					
						
		 		ļ. ·		
			·			·
	 		· · · · · ·			
		l	<u> </u>	1		L
run after CRI.	every 10 sample	es and at end of	sequences? (CLP only) (es No	
CRDL check	sample (CRI) a	nalyzed at the t	peginning and a	at the end of ea	ch sample run (C	LP only)? Yes No W.
MENTS		<u> </u>				
	··					
		· · · · · · · · · · · · · · · · · · ·				
				····		<u> </u>

ICV/CCV Actions:

	PERCENT RECOVERY						
	<75%	75-89%	90-110%	111-125%	>125		
Detected results	R	J.	V	J	R		
Non-detected Desuits	P	111	· V	V	V		

BATCH: D3L110408

CCV	TRUE	Found	% R	Action		Samples /	Affected
				None	All	criteria	met.
							<u>/</u>
	- 1 · 1						
			i i				
						·····	
		- 	 	 	***		· · · · · · · · · · · · · · · · · · ·
			1	 			
·			<u> </u>	 			
				 			<u></u>
	-			+	<u>.</u>		
	-			 			·
			 	+			
			<u> </u>	- 			
	<u> </u>		 	 			
<u></u>			<u> </u>	- 		_ 	
			 	1			
						· · · · · · · · · · · · · · · · · · ·	·
					•		·
						·	
Were the	correct number	of standards a	nd blanks used	to calibrate the inst	rument? (Yes No	
	al calibration co			(Yes) No		0.9999	, 0.9999, 0.990
	affected analyte)
				inning of each same	ole run? (CLP o	only) (Yes)	No
	fter CRA, every				Yes	No	
MMENTS							· · · · · · · · · · · · · · · · · · ·
			<u> </u>				
					··		
tions:							

1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

80-120%

٧

٧

121-135%

>135%

R

٧

2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

65-79%

UJ

<65%

R

R

Detected results

Non-detected Results

MATRIX:	Soil /wate	BATCH: D3L110408	

Analyte	ICB CCB PB/MB	RL mg/L	Blank Conc.	RL Blank Conc. mg/L mg/L	Conc. 5 * Bl. Conc. Mg Action		Conc. 5 * Bl. Conc.	5 * Bl. Conc.	mg Action 2		Samples Affected	
AI	FieldBLK	0.100	0.210	1.05	105	None	(ALL 75X)					
ca	1	0,200	0.240	1,20	120	1	1					
Fe	1 1	0 ,100	0.420	2,10	210							
	Y					· V						
	 		<u> </u>	 								
							 					
· · · · · -						-						
· · · · · · · · · · · · · · · · · · ·	<u> </u>						HII grep blanks					
							and calibration					
							blanks < RL.					
	1											
							h ') () 1					
							N/U ann					
							10					
							100					
						-						
	ii			 								
-												
	 											
	1		<u> </u>				· · · · · · · · · · · · · · · · · · ·					
	+		 	ļ ——								
	1											
	- 			· · · · ·	<u> </u>							
···	+ +		-									
	 			 								
=- \/a=if.4b=:41	no obsolute ustr	n of one on -1-	to concepte:	on in the DD ==	PAID :	CBDI •						
E: Verity that the	ne absolute valu	e or any analy	ne concentrati	on in the PB of	IVID 15 <	CKUL						
orep blank per			··· ···									
orep blank per	· · · · · · · · · · · · · · · · · · ·	/										
	diately after ICV			•								
analyzed after		14 - 1		1		<u> </u>						
MENTS F	ield blan	K = #	021	(01-V)	<u>3043</u>	- KI	N-000Z)					
				-								

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

	721	110100
BATCH:	D3L	110408

NOTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any AI, Ca, Fe or Mg results that are greater than the ICSA values.

Sample ID

Analyte

Sample Result

ICS Value

Comments

AII

AII

ICS A values

in full validation

samples

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte % R Action Samples Affected

All widhin \$0 - 12 0 78

CLP Protocol Only
Were Interference Check Samples run at the beginning and end of each sample analysis run, or a minimum of twice per 8-hour shift (whichever is more frequent)? Yes No

COMMENTS

50-79%

J

UJ

80-120%

>120%

PERCENT RECOVERY

<50%
5

R

R

Actions:

Detected results

Non-detected results

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: D3L110408

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > [IDL] that should not be present apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result
					·. ·			
Λ/								
X								-
Λ								
						-		
						•		
					-			
								-
	·							
·								
<u> </u>								
-								i
	<u> </u>	· · · · · · · · · · · · · · · · · · ·						
	 			· · ·				
	1							·
								
								
	1							
·								
				-				
· · · · · · · · · · · · · · · · · · ·	1						<u> </u>	

Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5°ICSA.

If the ICSA value < -IDL:

- . Estimate (J) detected results < = 5* |ICSA|.
- 2. Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX: Soil/Water

BATCH: D3L110408

List all parameters that do not meet the percent recovery criteria. Note: The pre-digestion spike recovery criteria are not evaluated for Ca, Mg, K, Na, Al and Fe for soil samples, and Ca, Mg, K and Na for water samples.

If the sample result exceeds the spike added by a factor of 4 or more, no action is taken.

Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
016	Mn	251	170	49.5	164	D J€	All soils (all are Refect
		237	<u> </u>	1	135	J	
	PB	76.8	44	49.5	. 66	25/45	All soils
		72.4	↓	· +	57	ν .	
	56	22.7	ND	49.5	46	R J/45	All soils
		22.4		+	45	<u> </u>	<u> </u>
							Values used abov.
						<u> </u>	are from Ocsumas
					'.	<u> </u>	a differ from
	<u> </u>					ļ	results obtained from
		ļ				-	randata.
	· · · · · ·			ļ		ļ	
						ļ	Note: Lab QC limits
				ļ		<u> </u>	are not 75-125% -
		ļ				<u> </u>	Massb were not
				<u> </u>			flagged.
					·		
				1			
			•			··	
					 		
		<u> </u>	1		,		000 ())
more frequer			ared at the re	equirea trequen	cy of once ev	ery 20 samples	s, or every SDG (whichever is
		atrix spike ana	lyzed for all l	CP elements, e	except Silver.	that did not me	eet tine pre-
digestion ma	trix spike reco	very criteria?	Yes		NA		
3. Was a ma		pared for each			(es)	No	
COMMENTS	Sa.	ple > 47	X spike	For Al,	Cu, F	e	
		•	-				
P) for 1	vater na	Lrix	M5/M51) on #	021.	All with	in 75-125% Dom sample from enothing St. G. Allwithing criteria:
		. ,	•		_		

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

< 30% J Non-detected Results R IJ

Detected results

Soil

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
				·		None	All criteria met
							RPD < :
							All soils <35%.
							All waters <2090
							<u> </u>
	,		-				
-							
	-		 				
		<u> </u>					
			 			-	
-			 				<u> </u>
			-		-		
							
			<u> </u>				
							· · · · · · · · · · · · · · · · · · ·
			·				
					<u> </u>		
				•			
OMMENTS	ILSE.	ms/ms	D in p	lace	ef d	up lica-	tes.
			1			1	
				····-		· — · · · · · · · · · · · · · · · · · ·	

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

³Difference = |Sample result - Duplicate sample result|

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

ist all parameters					1	· · · · · · · · · · · · · · · · · · ·
LCS ID	Analyte	True Value	Found Value	% R	Action	Samples Affected
					None	All criteria met
		<u> </u>				
						Water LCS withis 80-12
	· ·					Soil LCS within lab lin
			<u> </u>			
		·				
						
		 				
						
	 					
		 				
ote:				1	<u> </u>	
CS with the same	e matrix as sa	moles must be	prepared for eac	h SDG.		
OMMENTS			5.055.00			· · · · · · · · · · · · · · · · · · ·
OMMENTS			· · · · · · · · · · · · · · · · · · ·			
		<u> </u>			· · · · · · · · · · · · · · · · · · ·	
					1.1	
						
Actions:						
Exception: Antim	ony and silve	r have no contro	l limits. An aque	ous LCS is not	required for CN	and mercury.
				DEDOEN	IT RECOVERY	/.
. AQUEOUS			<50%	50-79%	80-120%	>120%
etected results			R	J	V	J
lon-detected rest	ults		R	UJ	V	V
SOLID LCS						
ecoveries stipula	ated by EMSL	-				
			BELOW	•	WITHIN 4	ABOVE
			CONTROL		CONTROL	CONTROL
Detected results			LIMITS J		LIMITS V	LIMITS

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

nalyte	IDL	50°IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
						None	All criteria net
						•	
				· .			
						<u> </u>	
<u> </u>							
				1			
						<u> </u>	
							·
		··					
			<u> </u>			<u> </u>	
			ļ				
					·- 		
	OUPLED PLA				··		· · · · · · · · · · · · · · · · · · ·
rcent of the	original undil	uted analysis.	Yes	of the diluted sam	ple analysis	agreed witnin	
dilutions w	ere not perfor	med for the fol	llowing:			, -	
MENTS	see M:	5/M56) fr	WC 50	emp!	e ID	>,

A.ctions:

Eistimate (J) detected results if %D is > 10%.

MOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. METAL ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: D3 L 110 408

1. Describe any raw data anomalies (i.e., baseline shifts, negative				, etc
(1) Form 13 shows 1.00 for all				(weight
are on preplogs. (ICP)) For	1+9	Form 13	40w 3 0,
Actual weights are on pre	eplogs.	d		·
,	•		•	
(2) Pals of Form 10 do not in	natch RL	5 m F	orm 1	· · ·
for the following:		- Milai		
To the total wing.			 	······································
<u> </u>			- <u> </u>	
				· · · · · · · · · · · · · · · · · · ·
			<u> </u>	·· · · · · · · · · · · · · · · · · · ·
2. List results that fall outside the linear range of the ICP instrument	nt or the calibrated ra	nge of the AA o	Cvanide instrumen	t. and
were not reanalyzed.			,	•,
		· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·	
				
3. Were ICP linear ranges obtained within 3 months of, and precede	ding, the sample anal	yses? Y	es N	NA C
3 months on some	ICPS.			
 vvere USP interelement corrections obtained within 12 months of 	of and preceding the	sample analyse	s? (Fes.)	No NA
				No NA
5. Were instrument detection limits present, found to be less than preceding, the sample analyses?				
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? > 3 months old.	or equal to the CRDL	, and obtained v	vithin 3 months of, a	ind
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? > 3 months old.	or equal to the CRDL	, and obtained v		
5. Were instrument detection limits present, found to be less than preceding, the sample analyses?	or equal to the CRDL No	, and obtained v NA Yes	vithin 3 months of, a	ind .
5. Were instrument detection limits present, found to be less than preceding, the sample analyses?	or equal to the CRDL No	, and obtained v	vithin 3 months of, a	ind
Were instrument detection limits present, found to be less than preceding, the sample analyses? Yes 3 months old Were all pample results reported down to the IDL if running CLF Were all sample results reported down to MDL if running SW-8. Reported to RL	or equal to the CRDL No P protocol? 46 methods?	yes Yes	vithin 3 months of, a	ind .
Were instrument detection limits present, found to be less than preceding, the sample analyses? Yes 3 months old Were all pample results reported down to the IDL if running CLF Were all sample results reported down to MDL if running SW-8. Reported to RL	or equal to the CRDL No P protocol? 46 methods?	yes Yes	vithin 3 months of, a	ind .
Were instrument detection limits present, found to be less than preceding, the sample analyses? Yes 3 months old Were all pample results reported down to the IDL if running CLF Were all sample results reported down to MDL if running SW-8. Reported to RL	or equal to the CRDL No P protocol? 46 methods?	yes Yes	vithin 3 months of, a	nd (N
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? Yes 3 months old 6. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported for RL	or equal to the CRDL No P protocol? 46 methods?	yes Yes	vithin 3 months of, a	nd (N
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 3 months old	or equal to the CRDL No P protocol? 46 methods? . sed correctly when re	yes Yes	vithin 3 months of, a	nd (N
Were instrument detection limits present, found to be less than preceding, the sample analyses? Yes 3 months old Were all cample results reported down to the IDL if running CLF Were all sample results reported down to MDL if running SW-6. Reported to RL B. Were sample weights, volumes, percent solids, and dilutions us	or equal to the CRDL No P protocol? 46 methods? . sed correctly when re	yes Yes	vithin 3 months of, a	nd (N
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 3 months old. 5. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported to RL 8. Were sample weights, volumes, percent solids, and dilutions us	or equal to the CRDL No P protocol? 46 methods? . sed correctly when res	Yes Yes Yes Yes	No No Yes	nd (N
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 3 months old. 5. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported to RL 8. Were sample weights, volumes, percent solids, and dilutions us	or equal to the CRDL No P protocol? 46 methods? . sed correctly when res	Yes Yes Yes Yes	No No Yes	nd (N
b. Were instrument detection limits present, found to be less than preceding, the sample analyses? 3 months old	or equal to the CRDL No P protocol? 46 methods? . sed correctly when res	Yes Yes Yes Yes	No No Yes	nd (N
December 2 Separated All results of the sample weights, volumes, percent solids, and dilutions us the sample weights. ONE of the sample results reported down to the IDL if running CLF or the sample results reported down to MDL if running SW-8. Reported to RL B. Were sample weights, volumes, percent solids, and dilutions us the sample weights.	or equal to the CRDL No P protocol? 46 methods? . sed correctly when res	Yes Yes Yes Yes	No No Yes	nd (N
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 2 3 months old. 5. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported to RL 8. Were sample weights, volumes, percent solids, and dilutions us COMMENTS Full validation Old - All results completed to the complete solids.	or equal to the CRDL No P protocol? 46 methods? sed correctly when res Samples: alculated	Yes Yes Yes porting the resul	No No Yes	No No
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 2 3 months old. 5. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported for RL 3. Were sample weights, volumes, percent solids, and dilutions us COMMENTS Full validation Old - All results c Old - All results c From 5 on Form 14: Page 197 - The Haresult at 18:09 was not we	or equal to the CRDL No P protocol? 46 methods? . sed correctly when res a c u a fe d 1 l and should	Yes Yes Yes porting the result Locarece Li Anothe	No No No No No No No No No No No No No N	No No
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 23 months old. 6. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported to RL 8. Were sample weights, volumes, percent solids, and dilutions us COMMENTS Full validation Old - All results could -	or equal to the CRDL No P protocol? 46 methods? . sed correctly when res a c u a fe d 1 l and should	Yes Yes Yes porting the result Locarece Li Anothe	No No No No No No No No No No No No No N	No No
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 2 3 months old. 5. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported for RL 8. Were sample weights, volumes, percent solids, and dilutions us COMMENTS Full validation Old - All results c Old - All results c From 5 on Form 14: Page 197 - The Harcoult of 18:09 was not we	or equal to the CRDL No P protocol? 46 methods? Sed correctly when res a (c w a fe d () and should eve a dil.foc	Yes Yes Yes porting the result Located to the control of the c	No No No Tag Tradicatel with the property of the property	No No
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 23 months old. 5. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported to RL 8. Were sample weights, volumes, percent solids, and dilutions us COMMENTS Full validation 014 - All results c 016 - 11 Errors on Form 14: Paccia7 - The Haresult at 18:09 was not m 11 The Haresult at 18:14 should be (These are Both sample 01	or equal to the CRDL No P protocol? 46 methods? Sed correctly when res a (c w (a fe d 1) and and should eve a dil. fac — VBOU3 — 5.	Yes Yes Yes porting the result Locate Locate Anothe Anothe B-0021	No No No No No No No No No No No No No N	No No
5. Were instrument detection limits present, found to be less than preceding, the sample analyses? 2 3 months old. 5. Were all cample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported to RL 8. Were sample weights, volumes, percent solids, and dilutions us COMMENTS Full validation Old - All results color of the present of 18:09 was not as a color of the present at 18:14 should be a complex of fage 192 - (Same sample) - Should be	or equal to the CRDL No P protocol? 46 methods? Sed correctly when res a (c w a fe d 1) and should eve a dil.fac VBOU3-5, 20 e dil.fac	Yes Yes Yes Orting the result Correct I I I not be For all 10 B - 00 21 For all 1.	No No No No No No No No No No No No No N	No No . Also,
3 months old. 6. Were all sample results reported down to the IDL if running CLF 7. Were all sample results reported down to MDL if running SW-8. Reported to RL 8. Were sample weights, volumes, percent solids, and dilutions us COMMENTS Full validation Old - All results c Old - Ll Erro-s on Form 14: Page 197 - The Haresult of 18:09 was not us (These are Both sample Ol	or equal to the CRDL No P protocol? 46 methods? Sed correctly when res a (c w lated 1) and should eve a dil.fac VBOU3-5. 202 dil face Siace it wa	Yes Yes Yes Dorling the result A not be To be 10 B - 00 21 To be 10	No No No No No No No No No No	No No No No No No No No No No No No No N

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Amy Ballow - TechLaw, Inc.

Report Date:

February 17, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

D3L190390

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, 7471A, and 7470A for Laboratory No. D3L190390 from Severn Trent Laboratories, Inc. This report consists of the validation of 20 solid samples and one water sample collected on December 11-12, 2003, and analyzed on December 23, 24, 29, and 30, 2003 for ICP metals; on December 24, 2003 for ICPMS (water sample only); and on December 22, 23, and 27, 2003 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number 是美国	Laboratory Sample Number seri
01-VBOU3-SB-0030-B	D3L190390-001
01-VBOU3-SB-0030-C ⁺	D3L190390-002
01-VBOU3-SB-0027-A	D3L190390-003
01-VBOU3-SB-0027-B	D3L190390-004
01-VBOU3-SB-0027-C	D3L190390-005
01-VBOU3-SB-0027-D	D3L190390-006
01-VBOU3-SB-0027-E	D3L190390-007
01-VBOU3-SB-0032-A	D3L190390-008
01-VBOU3-SB-0032-B	D3L190390-009
01-VBOU3-SB-0032-C	D3L190390-010
01-VBOU3-SB-0032-D	D3L190390-011
01-VBOU3-SB-0032-E	D3L190390-012
01-VBOU3-SB-0022-A ⁺	D3L190390-013
01-VBOU3-SB-0022-B	D3L190390-014
01-VBOU3-SB-0022-C	D3L190390-015
01-VBOU3-SB-0022-E **	D3L190390-016
01-VBOU3-SB-0009-A	D3L190390-017
01-VBOU3-SB-0009-B	D3L190390-018
01-VBOU3-SB-0009-C	D3L190390-019
01-VBOU3-SB-0009-D	D3L190390-020
01-VBOU3-RIN-0003	D3L190390-021

* denotes full validation

Validated By:

Amy Ballow

Reviewed By:

Jill Fear

D3L190390m

** Although sample 01-VBOU3-SB-0022-E was listed with an "E" on the Form 1 and in the EDD, this sample was listed with a "D" on the chain-of-custody record. The table above reflects the EDD field sample number.

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples 01-VBOU3-SB-0030-C and 01-VBOU3-SB-0022-A were randomly selected for full validation. Cursory validation was conducted on all remaining samples. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
 Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
 Serial Dilution for ICP Analysis
 Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recovery of mercury was within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery, with one exception.

The CCV analyzed on 12/23/03 at 0151 reported a percent recovery for selenium at 110.5%. This CCV was associated with samples 01-VBOU3-SB-0022-E, 01-VBOU3-SB-0009-A, 01-VBOU3-SB-0009-B, 01-VBOU3-SB-0009-C, and 01-VBOU3-SB-0009-D. No action was taken for a percent recovery less than 111%.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

The rinsate sample, 01-VBOU3-RIN-0003, reported detected results for calcium at 520 ug/L, iron at 170 ug/L, and magnesium at 200 ug/L. Qualification was not necessary because the sample results for these elements were above the blank action levels (greater than the RL and five times the rinsate blank value).

Interference Check Samples

All interference check sample percent recoveries were within acceptable limits.

The aluminum, calcium, iron, and magnesium concentrations in the full validation samples were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed sample 01-VBOU3-SB-0027-B (solids), 01-VBOU3-SB-0009-C (solids), 01-VBOU3-RIN-0003 (waters) and on a sample from another SDG (D3L190390-002 waters) for ICP metals and mercury analyses.

The following detected sample results were qualified as estimated (J) because the spike recovery at 329% was greater than 125%:

• Lead in all solid samples (all samples except 01-VBOU3-RIN-0003)

The following sample results were qualified as estimated (J/UJ) because the spike recoveries were less than 75% but greater than 30%:

 Antimony (35%/35%) and zinc (65%) in all solid samples (all samples except 01-VBOU3-RIN-0003) The following non-detected sample result was qualified as rejected (R) because the spike recoveries at 14% and 3.5% were less than 30%:

Mercury in the water sample 01-VBOU3-RIN-0003

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were no applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, antimony was not flagged as being outside QC limits in the MS/MSD of sample 01-VBOU3-SB-0027-B because the recoveries of 35% and 35% were within the laboratory limits of 20-200%.

Post-digestion spike recoveries were not provided for lead, antimony, zinc, and mercury. No action is taken based on post-digestion results.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected. Additionally, recoveries for detected results were calculated using actual results rather than the rounded results reported on the summary Form 5A.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD RPDs.

The following sample results are qualified as estimated (J/UJ) because the RPDs for lead in the MS/MSD analyses of sample 01-VBOU3-SB-0027-B and for mercury in the MS/MSD analyses performed on a sample from another SDG exceeded 35%:

- Lead (74%) in all solid samples (all samples except 01-VBOU3-RIN-0003)
- Mercury (120%) in the water sample 01-VBOU3-RIN-0003
 (The non-detected result for mercury was ultimately qualified as rejected due to extremely low MS/MSD recoveries.)

Laboratory Control Samples

The laboratory performed laboratory control sample analyses for both matrices. All recoveries were within the laboratory QC limits for the solid analysis and within 80-120% for the water analysis. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on solid sample 01-VBOU3-SB-0027-B and on water sample 01-VBOU3-SB-0003.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

Manganese in all solid samples

All other %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. No calculation or transcription errors were found. However, although the laboratory reported percent moisture values, the results were not adjusted for dry weight.

The result for zinc in sample 01-VBOU3-SB-0022-A was reported from a 5x dilution. The result and reporting limit were correctly reported.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

BATCH: D3L190390

		List all analytes which do not	meet holdi	ng time crite	ria						
	Γ			List Pre-	Date	*Metals	*Hg CVAA	*CN Angly Sis		No. of Days	
	-	Sample ID	Matrix	servative (A, B, C)	Collected	Analysis Date/s	Analysis Date	Eate	Analysis Date/s	Past Holding Time	Action
ا.م		(1 1 1/2 ALL 22 - ALL 1/2)	6 1		10.11.42	1	12-22 12-29			None	Nove
-01	- 1	OI-VBOU3-SB-0034B	201	None	12-11-03	7224 (12:30)	12:23	1		700%	10000
		01.VB0113-5B-0430-C		 	 	}	 			 	
		01 VB043-SB-0027-A		 	 		 	<u> </u>	_		
		01-VB0U3 58-0027 B			 	 	 				
		01-VB043-5B-0027C		<u> </u>			<u> </u>			1 1	
•		01-VB013:58-0027-D		<u> </u>			 	· ·			
	-	01-VB043-5B 0027-E									
-0	8	01-VB045-5B-0032-A			12-12-03		<u> </u>				
-0	9	01-VB043-5B-0032-B									
-14	<u>o</u> [01-VB043 SB0032-C				l l					
- }	1	01-VB043 5B-0032-D									
- j	2	01-V BOUS SB-0032-E									
# 1	31	01-V8043-5B -0022-A									1
	-	01-vB043-SB-0022-B									
- 1	থ্ৰ	01-VB0U3-SB-0022-C		1				1			
1,	6	01-VBOUS-SB 0022-E (DAG								
. '	2	01-VB043-58-0009-A			1						
-		01.VB003.SB.0009.B									
		0+V8043-58-0009-C						ļ			
-	٠,	OWBOUS-SB DODA . D	501								
	Ī	-	·								
21	ı	OI-VBOUS-RINGOOS	Water	1+1503	12.22-03	12.24	12-22-05		0		
	ſ	(Rinsade)				12 23					
	Ī			<u> </u>							
	Ī	COMMENTS 6008 /7	171 A-Ha	Al C. Fe	MY K. No	-12/29/03	/ Hy	= 12:22:03			
	-	Temp 2.0°C	7		12-23 03	12/30/03	1	12-23-05	·············	2 Full-othe	is Cuisary
	-	VALSIED as 00220 -	on COC.	but 00221	on Form 1	,					J
		Use	COC ?	0022E	EDD						
		Actions:									
		 If holding times are exceeded, If holding times are grossly exc 				s are					
		estimated (J), and non-detected re	esults are rej	ected (R).				4	^		
		* Full					Validated by:	Amy 1	ריערוש() (ל	12-	Date: 09-04
		Preservatives:							3 ALLOW	02-0	J , J ,
		A. Preserved w/HNO3 and cooled	d to 4°C				Review By:	6	()		Date:
		B. Cooled to 4°C						<u> </u>	762		·
		C. No Preservative									
		ANALYTE	HOLDING T	IIVE	PRESERVAT	IVE					
					AQUEOUS			SOIL			
	- 1	Metals	180 days		10H < 2 w/HN0		······	4 Deg. C			•
	- 1	Mercury Cyanide	28 days 14 days		.H < 2 w/HN0	O3, 4 Deg. C		4 Deg. C			
		Holding Time = Analysis Date C									

BATCH:	D3L1	90390

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	% R	Action	Samples Affected
CP 5	7CV \			90.110%	None	All Win criteria
····	CCV'S)]	1	except J
Se	CCH6/ca	15 iau)		110.5	- No Action	0022-E/0009-A/0009-B, 0209-C,0009-1
		(0151) last 5	ل	(4111)	4117.	
		·				
				•		
					-	
						·
	-					,
V run after CRI	, every 10 sample	s and at end of	sequences? (CLP only) Y	es No	Non CLP
as a CRDL chec	k sample (CRI) a	nalyzed at the b	eginning and	at the end of eac	h sample run (C	LP only)? Yes No Non CLP
OMMENTS						

ICV/CCV Actions:

BATCH:	D3L190390	
BATUH'		

List all merc	ury results that d	id not meet the percer	nt recovery criteria for	the ICV and/or CCV standard.

CCV	TRUE	Found	% R	Action	Samples Affected
Hy ICV			80-1207.	None	All W/in critory
C/s)				· · · · · · · · · · · · · · · · · · ·
					
<u> </u>					
			<u> </u>		
					· · · · · · · · · · · · · · · · · · ·
			-		
					· · · · · · · · · · · · · · · · · · ·
					·
		· · · · · · · · · · · · · · · · · · ·		•	
			 		
Were the co	rrect number	of standards an	d blanks used to	calibrate the instr	ument? Yes No
s the initial	calibration co	relation coeffic	ient > 0.995?	Yes No	0.9999/-12
		es and samples			
		· · · · · · · · · · · · · · · · · · ·			e run? (CLP only) Yes No No No CLP
	er CRA, every	ten samples a	nd at end of secu	Jence?	es No
MMENTS			·		<u> </u>

Actions:

	P	ERCENT REC	OVERY		
	<65%	65-79%	(80-120%)	121-135%	>135%
Detected results	R	J	V	. J	R
Non-detected Results	R	ับป	V	V	V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

MATRIX: Soil / Water	BATCH: D3L190390

ist the highest positive AND negative blank result >=[DL] below. Use one worksheet for soil matrix and another for water matrix. . ICB CCB IDL Blank Conc. 5 * Bl. Conc. Samples Affected Analyte Action PB/MB ICP All ND -No Adia MBS - None AI, No Action -None ICP TCBS HO CB3 Ringale Rtas 10-15-19/19-5 -0.5 -021 No Action A)1>5x DI-VBOU 3-RIN 200 520/5/2 19/2000 None -0003 85 mg/kg Fc 100 170 100 mg/kg 200 200 NOTE: Verify that the absolute value of any analyte concentration in the PB or MB is < CRDL* Verify One prep blank per matrix One prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. F eld/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS Actions:

- 1. If [Blank] < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* [Blank] are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all derected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: **D3L190390**

NOTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca, Fe or Mg results that are greater than the ICSA values.

	Sample ID	Analyte	Sample Result	ICS Value	Comments
Folls {	-02 -013	/-	Okag Okan		Ched Full only
	-01-3		<u> </u>		
		<u> </u>			

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	% R	Action	Samples Affected
			80-120/ - All /
•			
	_		
LP Protocol Only Vere Interference Che	ck Samples ru	un at the beginning and end o	f each sample analysis run, or a minimum of twice per 8-hour shift (whicheve
more frequent)?	Yes	No	
COMMENTS			
	-		
		<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
			<u> </u>

Actions:

Detected results

Non-detected results

PERCENT RECOVERY

<50% 50-79% 80-120% >120% R J V J R UJ V V

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: D3L190390

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result
NA								
					NA	<u> </u>		<u> </u>
	-				70/1		<u> </u>	
								
							<u> </u>	ļ
		· .	·					
	1							
	-							
	+			<u> </u>			! 	
							1	1
					<u> </u>			<u> </u>
	1						·	
			•					
		•						
	· .				 			
	i			<u> </u>			 	
<u></u>								
	<u> </u>							
					<u> </u>			ļ
					·			
							1	<u> </u>
						, •		
								
	 						<u> </u>	
								
	 				!			
····						· .		
			!					
							1	
	 		<u> </u>		 			

Actions:

If the ICSA value > the positive IDL:

- 1 For non-detected results, no action is taken.
- 2 Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1 Estimate (J) detected results < = 5* |ICSA|.
- 2 Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX: Ooi / Will BATCH: USLINUSYO	MATRIX: Soil / Water	BATCH: D3L190390
-------------------------------------	----------------------	------------------

List all parameters that do not meet the percent recovery criteria. Note: The pre-digestion spike recovery criteria are not evaluated for Ca, Mg, K, Na, Al and Fe for soil samples, and Ca, Mg, K and Na for water samples.

Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
004	Pb ms	93.5	40	49.5	1081		RPD= 74% F
Solida	1 MSD	203	1	T	3299	J+	Solony-All > RL = All J"
1	50 ms	17.3	MD	149.5	35 ₺	5/45	RPDV) NOT F
	1 MSD	17.5	I	TI	351	1	Julin 2
	Zn MS	166	130		651	1/45	RPD=11
1	Crw r	186	I	1	1051		
119/59	1 Hg -	0ka5 -5	وأنأه				·
	. 0						
	411		0 - 5.5				
-021	A "/10	75.125	2 RE	Ds/			All Was
Woler /	TCPUL						<u> </u>
-19-115		ļ				ļ	
A IL CN	- 11			1 4 000		-65	ilste
Andbosss Water-a	Ha	020069	ND	0.005	14 hb 3511	JR) -	
~wu-w	<u>z</u>	0.00017	ND	1 8- 1	2248	1	
		<u> </u>	[- 		<u> </u>		
Post-dia	,,,					 	
1 03: -010	5b =	94.4	oken			 	Notall &R reacherable
	As	90.4	No sher for	/me			Not all I.R reproducable, see commont in report
	Se Se	985	7 VO 57 HS 7 VO	<i>"</i> S		.	Okan
	Th .	97					
							Spikes a/NO smale valve -/ R soft
I. Was a pre	e-digestion ma	trix spike prep	pared at the re	equired frequent	cy of once eve	ery 20 sample	s, or every SDG (whichever is
nore frequer	nt)? Yes) No					
	st-digestion m trix spike reco		alyzed for all Yes	ICP elements, e No N	xcept Silver, t !A	that did not m	eet the pre-
	trix spike pre:				Yes	No	
COMMENTS				nc >4=5p	ike - No 1	Adien	
		····	•	•	•		
			No F	ost-dia res	suls for	Ph. Sh	, Zn, Ha - No Adion
						<u> </u>	

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

	PERCENT RECOVERY				
	< 30%	30-74%	75-125%	> 125%	
Detected results	J	J	V	J	
Non-detected Results	R	UJ	· V	V	

<u>Note</u>

MATRIX: Soil /Wde	ватсн: D3L190390
-------------------	------------------

Sample ID	Analyte .	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
- 004	Pb			749.			RPD for MS/MSD used
-004 Sold	Ĭ						All others
Ancho SIG Wde	Нд			1209			
Wde	J						
							
				· · · · · · · · · · · · · · · · · · ·			
					<u> </u>		
							,
MMENTS			1		11	. –	
	· · · · · · · · · · · · · · · · · · ·						
	·						-

Actions:

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5 CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = [Sample result - Duplicate sample result] Include outliers for field duplicates (if applicable)

Note

A duplicate sample must be prepared for each sar ple matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

			Soil /W			BATCH: D3L190390
List all paramete	rs that do not m Analyte	True Value	Found Value	9. %.R	Action	Samples Affected
100.9	Analyte	1700 Value	1 outle veide	70.11	71011017	Campie / Medica
LCS. Solid	- ICP	 		Tin Solid In 3	None	%'s cutora
463.7011	Ha/Ha	 			10016	/:0 C114614
J.	<i>त्व ।</i> सन्		1	ا ا		:
LCS-Woder	Ha			80-126/	None	Thin citting both 80-120? V
	ICP				٦	d Lab / imit of
				. 1		
				<u> </u>		
		ļ		,		
		1	<u> </u>			
			· · · · · · · · · · · · · · · · · · ·		· ·	
	** **					·
		 				
		<u> </u>				
[<u> </u>		 	· · · · · · · · · · · · · · · · · · ·	
				<u> </u>		
Note:			L	<u> </u>		
LCS with the sar	ne matrix as se	mples must be r	prepared for each	th SDG	· · · · · · · · · · · · · · · · · · ·	
COMMENTS			,			
					7.1	
	·					
Actions: Exception: Antir	mony and silver	have no control	limits. An ague	ous LCS is not req	uired for CN	and mercury.
,	•		•	_		,
1. AQUEOUS			<50%	PERCENT R 50-79%	ECOVERY 1 80-120%	>120%
Detected results			~30 % R	J	V	- J
Non-detected re			R	UJ	V	V
2. SOLID LCS Recoveries stipu	ilated by EMSL					
•	•		BELOW	/	WITHIN.	ABOVE
			CONTROL	(CONTROL	CONTROL
Detected results			LIMITS J		LIMITS) LIMITS .
Non-detected re			ດາ 1		V	V

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

MATRIX:	Sal/Water	BATCH:	D3L190390

Serial dilution criteria only applies if the original sample result is at least 50* IDL and %D > 10%. Serial Dilution Sample IDL 50*IDL % D Samples Affected Analyte Action Results Result 15/4 0/2 0.54/3/2 27 6535 7238 All result(+) INDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results of the diluted sample analysis agreed within ten percent of the original undiluted analysis. Serial dilutions were not performed for the following: COMMENTS

Actions:

Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH	l: [)3L	1903	90

	anomanes (i.e., ba			nscription or calculation	on enors, regionity	y, etc.	
/	-ull Validio	on -02/					
	· · · · · · · · · · · · · · · · · · ·	-13 -	Inc = ×5	= other			
 		·		<u></u>			
							•
	· · ·						
				<u> </u>		· · · ·	
. List results that fall outs	side the linear rang	ge of the ICP instru	ument or the calibrated	i range of the AA or C	Cyanide instrume	nt, and	
oto not realiziyasa.							
							-
. Were ICP linear ranges			eceding, the sample a	nalyses? Yes) N	lo	NA
	9/6/63		10/6/02				
Were ICP interelement						NI o	
There is, i here entered			hs of, and preceding, t	ne sample analyses?	Yes	No	N.A
	9.603	18.1.03					
i. Were instrument detect receding, the sample ana	9-6-03 ion limits present, lyses?	/ 8·1·0 3 found to be less to Yes	han or equal to the CR	DL, and obtained wit	hin 3 months of,		N.A
. Were instrument detect receding, the sample ana 03-2403	9-6-03 ion limits present, lyses? 4-2-0-8	found to be less to Yes - Not	han or equal to the CR No //n 光 3 morth	DL, and obtained with NA 8-220	hin 3 months of,		NA NA
. Were instrument detect receding, the sample ana 03-2403	9-6-03 ion limits present, lyses? 4-2-0-8	found to be less to Yes - Not	han or equal to the CR No //n 光 3 morth	DL, and obtained wit	hin 3 months of,		
. Were instrument detect receding, the sample ana 03:2603.	9:603 ion limits present, lyses? 1-2-0-3 reported down to	found to be less to Yes Note: Modification of the IDL if running	han or equal to the CR No '/'n M 3 morsh CLP protocol?	DL, and obtained with NA 8-220	hin 3 months of,		
. Were instrument detect receding, the sample ana O3-2403 . Were all sample results	9:603 ion limits present, lyses? 4-2-0-8 reported down to	found to be less to Yes Note: MDL if running St	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No	and	NA
. Were instrument detect receding, the sample ana O3-2403 . Were all sample results	9:603 ion limits present, lyses? 4-2-0-8 reported down to	found to be less to Yes Note: MDL if running St	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No		NA
. Were instrument detect receding, the sample and O3-2603. Were all sample results. Were all sample results.	9-6-03 ion limits present, lyses? 4-2-0-3 reported down to reported down to	found to be less to Yes Note: The IDL if running MDL if running States and cilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No	and	NA
. Were instrument detect receding, the sample and O3-2603. Were all sample results. Were all sample results.	9-6-03 ion limits present, lyses? 4-2-0-3 reported down to reported down to	found to be less to Yes Note: The IDL if running MDL if running States and cilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No	and	NA
. Were instrument detect receding, the sample and O3-2603. Were all sample results. Were all sample results.	9:603 ion limits present, lyses? 4-2-0-8 reported down to	found to be less to Yes Note: The IDL if running MDL if running States and cilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No	and	NA
. Were instrument detect receding, the sample and O3-2603 Were all sample results Were all sample results Were sample weights, victorial and of the sample weights.	9:603 ion limits present, lyses? 4-2-0-3 reported down to reported down to volumes, percent s	found to be less to Yes Note The IDL if running Standing, and dilution Society, and dilution Society, and dilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No	and	NA
. Were instrument detect receding, the sample and O3-2603. . Were all sample results. . Were all sample results. . Were sample weights, victorial and and and and and and and and and and	9:603 ion limits present, lyses? 4-2-0-3 reported down to reported down to volumes, percent s	found to be less to Yes Note The IDL if running Standing, and dilution Society, and dilution Society, and dilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No No Yes	and	NA
Were instrument detectoreceding, the sample and O3-2603 Were all sample results Were all sample results Were sample weights, were sample weights, were sample weights, were sample weights, were sample weights, were sample weights, were sample weights, we comments.	9:603 ion limits present, lyses? 4-2-0-3 reported down to reported down to volumes, percent s	found to be less to Yes Note: The IDL if running MDL if running States and cilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No No Yes	and	NA
Were instrument detect receding, the sample and O3-2603. Were all sample results. Were all sample results. Were sample weights, v. COMMENTS User ZCP	9:603 ion limits present, lyses? 4-2-0-3 reported down to reported down to volumes, percent s	found to be less to Yes Note The IDL if running Standing, and dilution Society, and dilution Society, and dilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No No Yes	and	NA
. Were instrument detect receding, the sample and O3-2603. . Were all sample results. . Were all sample results. . Were sample weights, victorial and and and and and and and and and and	9:603 ion limits present, lyses? 4-2-0-3 reported down to reported down to volumes, percent s	found to be less to Yes Note The IDL if running Standing, and dilution Society, and dilution Society, and dilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No No Yes	and	NA
Were instrument detect receding, the sample and O3-2603. Were all sample results. Were all sample results. Were sample weights, we comment to the comment of the comment	9:603 ion limits present, lyses? 4-2-0-3 reported down to reported down to volumes, percent s	found to be less to Yes Note The IDL if running Standing, and dilution Society, and dilution Society, and dilution	han or equal to the CR No //n 12 3 more CLP protocol? N-846 methods?	DL, and obtained with NA Yes	hin 3 months of, No No Yes	and	NA

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Lisa Tyson - TechLaw, Inc.

Report Date:

February 17, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

D3L190405

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B and 7471A for Laboratory Lot No. D3L190405 from Severn Trent Laboratories, Inc. This report consists of the validation of 20 solid samples collected on December 12, 2003, and analyzed on December 23, 27, 28, and 30, 2003 for ICP metals and on December 23 and 27, 2003 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Eaboratory-Sample Number
01-VBOU3-SB-0008-A	D3L190405-001
01-VBOU3-SB-0008-B	D3L190405-002
01-VBOU3-SB-0008-C	D3L190405-003
01-VBOU3-SB-0008-D	D3L190405-004
01-VBOU3-SB-0002-A +	D3L190405-005
01-VBOU3-SB-0002-B	D3L190405-006
01-VBOU3-SB-0002-C	D3L190405-007
01-VBOU3-SB-0002-E **	D3L190405-008
01-VBOU3-SB-0006-A	D3L190405-009
01-VBOU3-SB-0006-B	D3L190405-010
01-VBOU3-SB-0006-C ⁺	D3L190405-011
01-VBOU3-SB-0006-D	D3L190405-012
01-VBOU3-SB-0007-A	D3L190405-013
01-VBOU3-SB-0007-B	D3L190405-014
01-VBOU3-SB-0007-C	D3L190405-015
01-VBOU3-SB-0007-D	D3L190405-016
01-VBOU3-SB-0007-E	D3L190405-017
01-VBOU3-SB-0015-A	D3L190405-018
01-VBOU3-SB-0015-B	D3L190405-019
01-VBOU3-SB-0015-C	D3L190405-020

denotes full validation

Validated Rv.

ว3L190405ฑ์

Reviewed By:

Amy Ballow

** Although sample 01-VBOU3-SB-0002-E was listed with an "E" on the Form 1 and in the EDD, this sample was listed with a "D" on the chain-of-custody record. The table above reflects the EDD field sample number.

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples 01-VBOU3-SB-0002-A and 01-VBOU3-SB-0006-C were randomly selected for full validation. Cursory validation was conducted on all remaining samples. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
 Serial Dilution for ICP Analysis
 Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The aluminum, calcium, iron, and magnesium concentrations in the full validation samples were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed solid sample 01-VBOU3-SB-0007-D for ICP metals and mercury analyses. Additional mercury MS/MSD analyses were also provided from another SDG.

The following detected sample results were qualified as estimated (J) because the associated spike recoveries at 190% and 130% were greater than 125%:

Copper in all samples

The following sample results were qualified as estimated (J/UJ) because the associated spike recoveries at 41% in the MS/MSD were less than 75%, but greater than 30%:

Antimony in all samples

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were no applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. Antimony was not flagged as being outside QC limits in the MS/MSD because the recoveries of 41% were within the laboratory limits of 20-200%.

Post-digestion spike recoveries were not provided. No action is taken based on post-digestion results.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected. Additionally, recoveries for detected results were calculated using actual results rather than the rounded results reported on the summary Form 5A.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated from the MS/MSD RPDs. All RPDS were within QC limits. Summary forms and raw data were evaluated.

It should be noted that the RPDs were not calculated by the laboratory for aluminum, cadmium, iron, manganese, or zinc. These RPDs were evaluated using raw data and criteria were met.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses. All recoveries were within the laboratory QC limits for the solid analysis. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on solid sample 01-VBOU3-SB-0007-D.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

• Chromium in all samples

The serial dilution result for chromium was not flagged by the laboratory. All other %Ds in the solid serial dilution were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

The case narrative indicated that manganese was outside criteria in the serial dilution; however, this information appears incorrect because the manganese criteria were met.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. No calculation or transcription errors were found. However, although the laboratory reported percent moisture values, the results were not adjusted for dry weight.

The result for zinc in sample 01-VBOU3-SB-0006-C was reported from a 5x dilution. The result and reporting limit were correctly reported.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

BATCH: 03 L190405

Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg-CVAA Analysis Date	CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
1-VBQ15-5B-0008-A	/ 5	B	12/12/03	12/25/14/27	12-120	12/12/03		b	مرمسنرن .
1 -B	1		/ /			/ ,'			, , , ,
1 1-0									
1 1-0	1								
-0002-A									
1-0		1							
T -C			_						
V-E	1								
-no6-A				i					
1-0									
F 1 1-C							,		
V-0									
-00-7-A									
1-3									
1 -c	ļ								
-0					1				
V-E				V.		1/			
- coi 5 - A				12/25/12/0	Pesto	12/23/03			
1-3			/		130				
1 1-0	V	¥	1	1					
						'			
OMMENTS									
3,1°C A2	400-	- oL		/		米に	11 50-	-nles	
								7	_
20 5011									

2. If holding times are grossly exceeded (>=2*holding time), detected results are

estimated (J), and non-detected results are rejected (R).

Dre	ser	 	•

A. Preserved w/HNO3 and cooled to 4°C

B. Cooled to 4°C

C. No Preservative

Validated by:	, —)	Date:
	-, Tyse~	
Review By:	AMY BALLOW	Date: 02 - 1カ- 084-

ANALYTE	HOLDING TIME	PRESERVATIVE			
		AQUEOUS	SOIL		
Metals	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C		
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C		
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C		

Holding Time = Analysis Date - Collection Date

IIA. INORGANIC ANALYSIS WORKSHEET - ICP CALIBRATIONS

BATCH: 03490905

List all ICP analytes that did not meet the percent recovery	y criteria for initial calibration verification (ICV) and
continuing calibration verification (CCV).	

Analyte	CCA	TRUE	Found	% R	Action	Samples Affected
Collect	. Me	1				
	/ / 5	1				
· ;						
						·
						
				· · · · · · · · · · · · · · · · · · ·		
·						
	·					
			<u> </u>			
						
run after CRI, ev	ery 10 sample	s and at end of	sequences?((C	LP only	res No	
a CRDL check s	ample (CRI) a	nalyzed at the t	peginning and a	t the end of ea	ch sample run (C	LP only)? Yes No
MENTS C	KOL OL	<u></u> _				
			·			

ICV/CCV Actions:

PERCENT R

	PER	CENT RECOV	VI RECOVERY				
	<75%	75-89%	90-110%	111-125%	>125%		
Delected results	R	J		J	R		
Non-detected Results	R	บJ	V	V	V		

BATCH: 136190405

t all mercury	results that	did not meet the p	ercent recove	ry criteria for the	e ICV and/or CCV standard.
ICV CCV	TRUE	Found	% R	Action	Samples Affected
				1	·
Conta	ورر	mes /	_/		
		7			
					·
					·
				<u> </u>	
			·		
				<u> </u>	
Were the co	rrect numbe	r of standards and	blanks used	to calibrate the i	instrument? (Yes) No
Is the initial	calibration c	orrelation coefficie	ent > 0.995?	(Yes	No 0,95580
If no, list a	ffected analy	tes and samples:			
Was a CRD	L check sam	npie (CRA) analyz	ed at the begi	nning of each sa	emple run? (CLP only) Yes No
CCV run af	ter CRA, eve	ry ten samples an	d at end of se	quence?	Yes No
MMENTS					
		···			
tions:		-	-		

PERCENT RECOVERY

	<65%	65-79%	80-120%	121-135%	>135%
Detected results	R	J	V	J	R
Non-detected Results	R	บม	V	V	٧

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS		MATRIX:			····		BATCH: <u>034190405</u>
Analyte CB PBMB IDL Blank Conc. 5 * Bl. Conc. Action Samples Affected Press NO 15 * Mark Conc. Samples Affected Press NO 15 * Mark Conc. Samples Affected Fres NO 15 * Mark Conc. Samples Affected Action Samples Affected Samp		-				•	
Analyte CCB PBMB IDL Blank Conc. 5 * Bl. Conc. Action Samples Affected PGMB IDL Blank Conc. 5 * Bl. Conc. Action Samples Affected FGM - W D - W B -	List the highest pos		ive blank resul	t >= DL below	. Use one work	sheet for soil r	natrix and another for water matrix.
Tubs - ND In House I the Act I the A	Analyte	ССВ	IDL	Blank Conc.	5 * Bl. Conc.	Action	Samples Affected
Tubs - ND In House I the Act I the A	Pren		to +	he RI			
C.B., — VD I. Harded A Company of the content of t	InB 2 -		1 1				
NOTE: Verify that the absolute value of any analyte concentration in the PB or MB is < CRDL.* Verify Che prep blank per matrix Che prep blank per matrix Che prep blank per matrix CRO prep blank per m	CAB: 3 -		In +	hal			
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS	 			/			
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS			<u> </u>				
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS				<u> </u>			
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS				ļ			
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS					ļ		
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS			ļ				
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS					ļ		
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS	- 			ļ		<u> </u>	
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS	- 			ļ			
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS			 			:	
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS							
Verify Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS	NOTE: Verify that t	he absolute valu	ue of any analy	rte concentration	on in the PB or	MB is < CRDL	*
Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS	Verify						
ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS		matrix					
CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS	Cine prep blank per	batch					
Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS	ICB analyzed imme	diately after ICV					
COMMENTS	CCB analyzed after	each CCV.					
	Field/equipment/rin	sate blanks anal	yzed? If so, ir	clude above if	applicable to p	roject.	
Actions:	COMMENTS						
Actions:							
	Actions:						

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE .

		BATCH:	D34190905
NOTE: The sample results can be accepted without qu			, Fe and Mg are less than or
equal to the concentration found in the ICSA solution.	12/30-6529 emple	11 26/1130	
	د نانن		

Examine the sample results in ug/L and list any AI, Ca, Fe or Mg results that are greater than the ICSA values.

Sample ID	Analyte	Sample Result	ICS Value	Comments
ah-				

Actions:

PERCENT RECOVERY

 <50%</th>
 50-79%
 80-120%
 >120%

 Detected results
 R
 J
 V
 J

 Non-detected results
 R
 UJ
 V
 V

IVB. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

BATCH:	DSL19040S

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample <i>l</i> Result
-	2_4							
NA	11							
′ /′								
		·						

					· · ·			
		-						
								
	-							
				· · · · · · · · · · · · · · · · · · ·				
							-	
						ļ <u></u>		
								İ

Actions:

If the ICSA value > the positive IDL:

- 1 For non-detected results, no action is taken.
- 2 Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1 Estimate (J) detected results <= 5* |ICSA|.
- 2 Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

TIC SULTIPIC	result exceed	, 						
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	%Ŕ	Action	S	amples Affected
#16ms	Cu	130 1	83	25	188(190)	15	all	
-020		115 ,	83	25	128(130)	(1	<u></u>	<u> </u>
								· · · · · · · · · · · · · · · · · · ·
,	5 b		1	50	(2) (1	
<u>ms</u>	39	50.5	1 SONO 150 NO	50	40,5	J/UT	1 21 V	
শ্চ্য		÷ e, H	20,711	1	40, 3	W	-	
				1			·	
	VMS	0012	570 -	in ro	-Jan -	1 h 1	5	
					, , , , , , , , , , , , , , , , , , ,			
	RPPS	òL					 	
	1-1,100						-	
								
								-
								· · · · · · · · · · · · · · · · · · ·

		1	ared at the re	quired frequen	cy of once eve	ry 20 sample	s, or every SDG (whichever is
ore frequen			-1 11 N	on - Cir		h a b a b a b a b a b a b a b a b a b a		· · · · · · · · · · · · · · · · · · ·
vvas a po: pestion mai	rix spike reco	atrix spike and very criteria?	Yes		except Silver, t	nat did not mi	set the pre-	
	trix spike prep				/Yes/	No	 	······································
OMMENTS								
Not	e: (se Naci	when in	dreated	that.	Ca o	روسہ ہے، ہے	ms0 - 61+
	Ĉa	~0+ c	المداسير	1 50	30115	- ~0.	20-16	Also Long
	C_{ν}	. h.A.	17-15h	-		/		
		/						
	iyte does not r	meet the % R	criteria, qualif	y all associate	d samples usin	g the followin	g criteria:	
ctions:			_	EDOENT DEO	OVEDV			
			< 30%	ERCENT REC 30-74%	75-125%	> 125%		

Note

Detected results
Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

υJ

R

03490905

BATCH:

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX:

ample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
×16 m	/msn	RPDS	04				
	<u></u> _						
			<u> </u>				
					T		
					Ť		
							
					1		
	·			*	1		
						./	
MENTS	LPDS	wet and	rulated	6/	Al Cd	Fe m	0172
	1-12/20	I. / /2	Carl &	RPI	2 ih		
		7		····		· · · · · · · · · · · · · · · · · · ·	

1. AQUEOUS

Actions:

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:				BATCH: <u>0349040</u>
List all paramete	ers that do not r	neet the percent	recovery criteria.		,	
LCS ID	Analyte	True Value	Found Value	, % R	Action	Samples Affected
		1.				
					 	
	c. r. r.	1-1				
<u> </u>	· · · · · / ·	7/22			 	
<u> </u>		 			<u> </u>	
		 	<u> </u>		 	
				 	 	
						
		-				
i		 			 	
		-	 			
						
						<u> </u>
				<u>.</u>	 	
					<u> </u>	
		ļ				
		ļ			ļ	
		<u> </u>		.:	<u> </u>	
					 	
	·					
		<u> </u>			<u>.</u>	<u> </u>
Note:				·		
LCS with the sar	me matrix as s	amples must be i	prepared for each	SDG.		
COMMENTS						
Actions:						
Exception: Anti	mony and silve	r have no control	l limits. An aqueo	cus LCS is no		
				PERCEN	IT RECOVERY	(de la constante de la consta
1. AQUEOUS			<50%	50-79%	(80-120%)) >120%
Detected results Non-detected re			R R	N J	V	A A
Non-detected re	Suits		IX.		V	
2. SOLID LCS						
Recoveries stipu	ulated by EMSI	-).*
			BELOW CONTROL	•	/ WITHIN CONTROL	ABOVE CONTROL
			LIMITS		LIMITS	LIMITS
Detected results			J		\ v /	, J
Non-detected re	sults		ບຸງ		V	V

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action		Sample	s Affected	
		 					7111			
	2.1	105	110,25	121,49	10, 2	5	<u> </u>		- Nal	Flage
	<u> </u>	ļ '						<u> </u>		
			J	<u> </u>						
										-
			<u> </u>							
			 							
			 	<u> </u>			·			
		 								
			 				 			
		 								 :-
	<u> </u>		 	<u> </u>						
	ļ		 							
		<u> </u>	ļ							
			·							··
		<u> </u>								
							,		•	·
		<u> </u>								
		1	1				/			
		 								
		+		 					•	
	-									
				1						
JCTIVELY	Were performs	ASMA SERIA	L DILUTION A	of the diluted san	nle analysis s	arreed within				
ercent of t	he original und	tituted analysis	s. / Yes)	No		igreed within				
al dilutions	were not perfo	rmed for the f	ollowing:							
MENTS	Notes	Case -	cratice	· decit-	that	· m~	25 0.2	+ _	100	52
			<u></u>		 	<u></u>	<u></u>			

Actions:

Estimate (J) detected results if %D is > 10%.

MATRIX:

NOTES

If 'esults from diluted samples are higher than concentrated sample, matrix interference should be suspected ard sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: 034190405

1. Describe any raw data anomalies (i.e., baseline shifts, negative absorbances, tran	scription or calculation	n errors, legibility, etc	
			
			
			
			·····
		·	
,			•
List results that fall outside the linear range of the ICP instrument or the calibrated	range of the AA or C	yanide instrument, an	ıd
were not reanalyzed.			·
,			
i-vi			
			
			
 Were ICP linear ranges obtained within 3-months of, and preceding, the sample at 	nalyses? Yes) No	N.A.
Mars IOD internal and a state of the state o	ha aanala aaalaaa?	· Van	
4. Were ICP interelement corrections obtained within 12 months of, and preceding, ti	he sample analyses?	(Yes; N	o NA
4. Were ICP interelement corrections obtained within 12 months of, and preceding, ti	he sample analyses?	(Yes, N	o NA
			o NA
5. Were instrument detection limits present, found to be less than or equal to the CR	DL, a nd obtained with		o NA
			o NA
5. Were instrument detection limits present, found-to be less than or equal to the CR preceding, the sample analyses? No No	DL, a nd obtained with		
5. Were instrument detection limits present, found to be less than or equal to the CR	DL, a nd obtained with		o NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No Were all sample results reported down to the IDL if running CLP protocol?	DL, a nd obtained with NA	in 3 months of, and	
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No Were all sample results reported down to the IDL if running CLP protocol?	DL, a nd obtained with NA Yes	in 3 months of, and	(NA')
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No Were all sample results reported down to the IDL if running CLP protocol?	DL, a nd obtained with NA	in 3 months of, and	
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No Were all sample results reported down to the IDL if running CLP protocol?	DL, a nd obtained with NA Yes	in 3 months of, and	(NA')
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes (Yes	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No Were all sample results reported down to the IDL if running CLP protocol?	DL, and obtained with NA Yes (Yes	in 3 months of, and No No	(NA')
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes (Yes	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes (Yes	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes (Yes	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found-to be less than or equal to the CR preceding, the sample analyses? Yes No 6. Were all sample results reported down to the IDL if running CLP protocol? 7. Were all sample results reported down to MDL if running SW-846 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly when COMMENTS Various could apply a DL/ #5 - 6/X #11 - Zw & Sx	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found-to be less than or equal to the CR preceding, the sample analyses? Yes No 6. Were all sample results reported down to the IDL if running CLP protocol? 7. Were all sample results reported down to MDL if running SW-846 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly when COMMENTS Various could apply a DL/ #5 - 6/X #11 - Zw & Sx	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found to be less than or equal to the CR preceding, the sample analyses? (Yes No No No No No No No No No No No No No	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found-to be less than or equal to the CR preceding, the sample analyses? Yes No 6. Were all sample results reported down to the IDL if running CLP protocol? 7. Were all sample results reported down to MDL if running SW-846 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly when COMMENTS Various could apply a DL/ #5 - 6/X #11 - Zw & Sx	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found-to be less than or equal to the CR preceding, the sample analyses? Yes No 6. Were all sample results reported down to the IDL if running CLP protocol? 7. Were all sample results reported down to MDL if running SW-846 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly when COMMENTS Various could apply a DL/ #5 - 6/X #11 - Zw & Sx	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found-to be less than or equal to the CR preceding, the sample analyses? Yes No 6. Were all sample results reported down to the IDL if running CLP protocol? 7. Were all sample results reported down to MDL if running SW-846 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly when COMMENTS Various could apply a DL/ #5 - 6/X #11 - Zw & Sx	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA
5. Were instrument detection limits present, found-to be less than or equal to the CR preceding, the sample analyses? Yes No 6. Were all sample results reported down to the IDL if running CLP protocol? 7. Were all sample results reported down to MDL if running SW-846 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly when COMMENTS Various could apply a DL/ #5 - 6/X #11 - Zw & Sx	DL, and obtained with NA Yes Yes reporting the results?	in 3 months of, and No No	NA NA

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear – TechLaw, Inc.

Report Date:

February 17, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

D3L190419

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, 7471A, and 7470A for Laboratory Lot No. D3L190419 from Severn Trent Laboratories, Inc. This report consists of the validation of 20 solid samples and one water sample collected on December 18, 2003, and analyzed on December 30, 2003 and January 5, 7 and 15, 2004 for ICP metals; on January 7, 2004 for ICPMS (water sample only); and on December 30 and 31, 2003 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
01-VBOU3-SB-0004-A	D3L190419-001
01-VBOU3-SB-0004-B	D3L190419-002
01-VBOU3-SB-0004-C	D3L190419-003
01-VBOU3-SB-0004-D	D3L190419-004
01-VBOU3-SB-0003-A	D3L190419-005
01-VBOU3-SB-0003-B	D3L190419-006
01-VBOU3-SB-0003-C	D3L190419-007
01-VBOU3-SB-0003-D	D3L190419-008
01-VBOU3-SB-0002-D	D3L190419-009
01-VBOU3-SB-0022-D	D3L190419-010
01-VBOU3-SB-0005-A	D3L190419-011
01-VBOU3-SB-0005-B	D3L190419-012
01-VBOU3-SB-0005-C	D3L190419-013
01-VBOU3-SB-0005-D ⁺	D3L190419-014
01-VBOU3-SB-0034-A	D3L190419-015
01-VBOU3-SB-0034-B	D3L190419-016
01-VBOU3-SB-0034-C	D3L190419-017
01-VBOU3-SB-0034-D	D3L190419-018
01-VBOU3-SB-0034-E	D3L190419-019
01-VBOU3-SB-0034-F	D3L190419-020
01-VBOU3-RIN-0004	D3L190419-021

denotes full validation

Validated By:_ D3L190419m

ill Fear

Reviewed By:_

Amy Balløy

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples 01-VBOU3-SB-0004-A and 01-VBOU3-SB-0005-D were randomly selected for full validation. Cursory validation was conducted on all remaining samples. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
 Serial Dilution for ICP Analysis
 Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

A calibration blank from the 12/30/03 ICP analysis was contaminated with iron at 201.8 ug/L and with zinc at 59.41 ug/L, which were above the reporting limits. No action was required because the associated sample results were greater than 10 times the blank value or the sample was reanalyzed for the effected analyte. Zinc was reported from the 01/15/04 analysis for samples 01-VBOU3-SB-0004-B, 01-VBOU3-SB-0003-B, 01-VBOU3-SB-0005-C.

The rinsate sample, 01-VBOU3-RIN-0004, reported detected results for aluminum at 120 ug/L, calcium at 270 ug/L, iron at 180 ug/L, and lead at 3 ug/L. Qualification was not necessary, as the sample results for these analytes were above the blank action levels (greater than the RL and five times the rinsate blank value).

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The aluminum, calcium, iron, and magnesium concentrations in the full validation samples 01-VBOU3-SB-0004-A and 01-VBOU3-SB-0005-D were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed solid sample 01-VBOU3-SB-0004-A for ICP metals and mercury analyses Water MS/MSD analyses were performed on samples from other SDGs for ICP metals and mercury analyses.

The following detected sample results were qualified as estimated (J) because the associated spike recoveries were greater than 125%:

- Silver (131%/138%) in samples 01-VBOU3-SB-0004-A, 01-VBOU3-SB-0003-A, and 01-VBOU3-SB-0005-A
- Barium (134%), manganese (129%/179%), and lead (315%/375%) in all solid samples

The following sample results were qualified as estimated (J/UJ) because the spike recoveries at 56% and 52% were less than 75%, but greater than 30%:

Antimony in all solid samples

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were no applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory flagged the water recovery for aluminum at 122% as outside the laboratory QC limits of 83-119%. No action was taken as the recovery was within the validation limits of 75-125%. Additionally, antimony, silver, and manganese were not flagged as being outside QC limits in the MS/MSD of sample 01-VBOU3-SB-0004-A because the recoveries were within the laboratory limits.

The laboratory only provided a post digestion spike for the water ICPMS analysis. No action is taken based on post-digestion results.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected. Additionally, recoveries for detected results were calculated using actual results rather than the rounded results reported on the summary Form 5A.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated from the MS/MSD RPDs. All RPDS were within QC limits.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses for both matrices. All recoveries were within the laboratory QC limits for the solid analysis and within 80-120% for the water analysis. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on solid sample 01-VBOU3-SB-0004-A and on a water sample from another SDG.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

• Cadmium in samples 01-VBOU3-SB-0004-A, 01-VBOU3-SB-0004-C, VBOU3-SB-0004-D, 01-VBOU3-SB-0005-A, and VBOU3-SB-0005-D

The serial dilution result for manganese was not flagged by the laboratory. All other %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. No calculation or transcription errors were found. However, although the laboratory reported percent moisture values, the results were not adjusted for dry weight.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

BATCH: PZLIGO 419

List all analytes which	n do not	meet	holdi	ng time	criter	ia									
Sample ID	^	Ma	ıtrix	List i serva (A, B	ative	Da Colie		Ana	etals alysis ate/s		CVAA Iysis ate	*CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
7 -573-0004		5:	17	is	ر ص	12/4	1/02	115	12/30	121	Z (-0-	
	B	1		,		12.1			rilo		1 1				1.0
	ے	 							1		13			1	100
	D								V		1	<u>:</u>		 	₩~
			├					 	ļ		+	· · · · · · · · · · · · · · · · · · ·			10
-213-0003		 					· .	-	1		1				
	त	—	 						115	ļ				 	
	۲	ļ	<u> </u>			ļ	ļ		1115	<u> </u>				ļ	
17/2	5	<u> </u>					<u> </u>							<u> </u>	
	<u> </u>	<u> </u>				<u> </u>	<u> </u>				+	NO Se-	ورس الم	性	
-23-0005	- <u>5/</u> C	•													
-53-0022			1							i					
- 513 - 0005	-A		1				\top			l	1	1			· ·
	B		i -				1		كلاه		+			 	
	ے		 	-			1	}	145		† 	 		 	
D	٥	\vdash	-		-		-		1 11-		+			 	<u> </u>
-50 -0034							┼	-	+		+			 	
	-B			 			1		1	 -	 	 			
1		 					 	<u> </u>		<u> </u>	<u> </u>			<u> </u>	
	h						<u> </u>	<u> </u>	 			ļ		ļ	
	MIC	<u> </u>					<u> </u>							ļ	
	=		,				<u> </u>							<u> </u>	
			!	4			<u> </u>		<u></u>	ď					
REN-0	بەرن	1	?シ	A		i	1	1/7	4	121	30		3 6-	1 5- Hz	o
									-				c (\	U~ 17	
													. 3	CP. ICPA	h <u>s</u>
			, · ·					1.						J- TERLE	
COMMENTS 2	کنی	ブ		L				!		<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
20 53.1		1 1	+2-2					E)	ر دا		2				
2~					.1. ~	-10-4			رع د			·2 2	2 (53 L.S.	
7-5	:-	<u>~</u>	<u>ت</u>		1162	. (.		~~	٠	20	.,,	<u> </u>	>C }	23 725	
Actions:			 -			-2/	-								
If holding times are ex	ceeded.	all san	nole re	sults are	e estim	ated (J)/	_ใ น.ภ.					•			
If holding times are gr	ossly exc	ceeded	(>=2"	holding 1	ume), c	petected	result	s are							
estimated (J), and non-de	elected re	350!15 6	are reje	ected (R	.).					Validat	ad hir	D - C			Date:
				-						Validat	eu by.	RICH			Dett.
Preservatives: A. Preserved w/HNO3 a	nd coole	d to 4°	С							Review	v By:		QR.	May AB	Date:
B. Cooled to 4°C C. No Preservative												Thinks I	<u>-() ()</u>	Clien 11	02-17
O. 140 F TESSIVATIVE												U			
ANALYTE		HOLD	ING T	ME		PRESE	RVAT	IVE				•			÷
						AQUEC						SOIL			
Metals		180 da	- -			pH < 2						4 Deg. C			
Mercury		28 da				pH < 2			<u> </u>	-		4 Deg. C			

Hoiding Time = Analysis Date - Collection Date

BATCH: DZLLEJULY

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	% R	Action	Samples Affected
K-115	CLV	يربرعان	5000	89.4	~~	@80 work-
11						
		1		 		
		1		 		

	<u> </u>	 		 		
				 	 	
		<u></u>			 /	
	ļ			<u> </u>) .
				ļ	1/5	<u> </u>
				ļ		
	<u> </u>	<u> </u>			IN	
·		ļ			X	
					14	
					, , , , , , , , , , , , , , , , , , , ,	
						
	· · · · · · · · · · · · · · · · · · ·				 	
					+	
	<u> </u>				 	
	-			-	 	
	 	-			 	
	 	 		 	 	
			L	1	1	
		es and at end o			Yes No	
	sample (CRI) a	inalyzed at the l	beginning and	at the end of e	ach sample run (C	CLP only)? Yes No
MENTS						
						
· · · · · ·						

ICV/CCV Actions:

^{1.} If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH: 0 3/19

ICV CCV	TRUE	Found	% R	Action	Samples Affected
			·- <u>-</u>		an when so-120
					/
			· - · · · · · · · · · · · · · · · · · ·		,
·					
				1/2	
		**********		11013	
				TV V	
			11		
	4.5				
					
ere the c	orrect number	of standards and	i blanks used	to calibrate the in	strument? (Res) No
the initial	calibration cor	relation coefficie	ent > 0.995?	(Yes) N	10.98813
f no, list a	ffected analyte	s and samples:			1 Hair Kara
as a CRE	L check samp	le (CRA) analyz	ed at the begi	inning of each san	nple run? (CLP only) Yes No
		ten samples ar			Yes No
MENTS					

Actions:

	PERCENT RECOVERY							
	<65%	65-79%	/ 80-120% \	121-135%	>1359			
Detected results	R	. j	' v ,) ,	R			
Non-detected Results	R	uJ (\ \ <u>\</u>	V	٧			

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

	Analyte	ICB CCB	IDL	T	5 * Bl. Conc.	Action		ther for water matrix. Samples Affected
		PB/MB		isjil		7 1011071		
	fe	CCBS		201.81		·	119	>10x
	2-	· · V	· .	59.417	29.7		211 S	if or term
	AL	2:0506		120	८३		114	€0×
	CA	,		270	135		11	
	FR	<u> </u>		(50			アントル	
	pb.			3	1.5		,,,	
				· ·				
		Se-	N <	104.	22 612	راءن عم	e i	(C/U)
						4-17	<u> </u>	
						-3 (3	<u></u>	hracketeed by
			· · · · · · · · · · · · · · · · · · ·	ļ		-7 C	<u> </u>	
						<u> </u>		
						<u> </u>	<u> </u>	
			·					
			· · · · · · · · · · · · · · · · · · ·					
				<u> </u>				
		<u> </u>		1	1 1	i		
				<u> </u>				
		_						
		-						
NOTE:	Verify that the	absolute valu	e of any analy	/te concentratio		AB is < CRDL *		
	Verify that the	absolute valu	e of any analy	/te concentratio	on in the PB or N	//B is < CRDL *	D ei	14, to 62-
Verify						иВ is < CRDL *	Rei	with to BL
V <u>erify</u> One pr	ep blank per m	atrix •		rte concentration		ИВ is < CRDL *	Lei	2.1/2 to BL
<u>Verify</u> One pro	ep blank per m ep blank per ba	atrix «				//B is < CRDL *	<u>Lei</u>	with to OLL
Verify One pro One pro IC:B an	ep blank per m ep blank per ba alyzed immedi	atrix • etch ately after ICV				//B is < CRDL *	R-ec	-14 to 2L
Verify One pro One pro ICB an	ep blank per m ep blank per ba alyzed immedi nalyzed after e	atrix etch ately after ICV ach CCV.	/ A	~ ~ ~			<u>Rei</u>	-14 to 2L

2. If Blank > = IDL, then all sample results > = IDL and < 5^* Blank are non-detected (U). 3. If Blank = < -IDL, all sample results > = IDL and < 5^* |Blank| are estimated (J).

4. If Blank = < -IDL then all non-detected results are estimated (UJ).

* if blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).

* f blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

				BATCH:	DZC11-) ५ ८६
NOTE: The sample res	ults can be accep	ted without qualification,	if the sample concer			
equal to the concentration	on found in the IC	SA solution.	Fill ve		20-163	
Everning the personal res	uulta in wall and li	ot any Al-Co. En ov Ma-	• • • •		•	
Examine the sample res	suits in ug/L and ii	st any Al, Ca, Fe or Mg r	esuits that are great	er man me 105.4	values.	
Sample ID	Analyte	Sample Result	ICS Value		Comments	
0-200						
000x-A			12/2	> FC:	<u> </u>	
,						
·		 				
		 				
						
						
				L		
	ICS AB solution the	nat did not meet the crite	eria of 80-120% R.		· · · · · · · · · · · · · · · · · · ·	·
Analyte	% R	Action			les Affected	
			, // <u> </u>	<u> </u>	0-1201-	
				·	<u> </u>	
	- :			-		
					······································	
		 				
	.					
	····					
CLP Protocol Only		the beginning and end o	_ن درد	<u> </u>		
vere interrerence Chec s more frequent)?	ж Samples run at Yes	the beginning and end of No.	of each sample analy	sis run, or a mir	nimum of twice per	8-nour sniπ (whichever
COMMENTS	163	140				 :
30					-, ,,,,	
						
actions:				•	•	
		PERCENT RECOV	/FRY			
		<50%	50-79%	80-120%	>120%	
Detected results		-30 % R	J	V	J .	•
Non-detected results		R	ี นั้น	V	V	
		* *				

BATCH: DZLLGOWLG

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

Na, Al and Fe	e for soil samp	les, and Ca, N	vig, K and Na f	or water samp	les		recovery criteria are not evaluated for Ca, Mg, K,
Sample ID	Analyte	Spiked Spiked Sample Result	Sample Results	Spike Added	no action is ta	Action	Samples Affected
C0074-74	Ai	8.73	2.1	٧٤.٥	1151	77	100 AT R-11 160
	٠.٠	9,28			1381		
	Ba	426	i نوع	202	130	2	BN 52-13
	<u> </u>	12000	5620	5050	127		on sools New good fred
	€ T				•	,/	1 for 5015
	MM	247	160	52-5	129	<u> </u>	an sail
		266			1341	6/	
	ph.	352	190	50,5.	3100	-8	3 C 50-13
	١.٠	.343			3751		
	Sb.	24-2	,	52.5	561	-514-s	AN 531-63 58
₩ .					52"	. /	·
				·			leh Frijsez
احدا	<i>'21</i>				122-1.	(83-119)	No win 25725/
							
·							
175	CA IM	V 7 21	2				It col un octo
	13 to	usce 2	h-(1.b				Form 2 comments
	<u>`~\~</u>	1619	15-+>				not reported
							Bunke 2 court
							vos. volu
			<u> </u>		<u>.</u>	22	
n. was a pre more frequer	-	ınx spike prep No	pared at the re	quirea trequen	cy of once eve	ry 20 samples	s, or every SDG (whichever is
	··		alvzed for all IC	CP elements, e	except Silver, t	hat did not me	et the pre-
	trix spike recov		Yes		Αl		
3. Was a ma	trix spike prep	ared for each	different same	ole matrix?	Yes	No	
COMMENTS			· _ ,				
<u> </u>	y 423	ه مرت	- other s	79627			
DI, CI	4 (~	2-	> - E. ME				
If any ana Actions:	lyte does not n	neet the % R	criteria, qualify	all associated	i samples usin	g the following	goriteria: post only ron for the Az.
•			P	ERCENT REC	OVERY		for the Az
	D . 1 1 - 3 -	ш_	< 30%	30-74%	75-125%	> 125%	-c 2

Note

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX:	Soller	BATCH:	03618341	9
_		_ _		•

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
				1			
İ						1	
						700	1/2/
				•		(
							:
							1.251
							15/1
		·					10 - 0107
						•	1
							· .
			 				
							
	· · ·						
			-		-t		
"			 				
				·		· · · · · · · · · · · · · · · · · · ·	-
OMMENTS		<u> </u>	1 1.		<u></u>		
Y. T. T. T. T. T. T. T. T. T. T. T. T. T.							
	 						

Actions:

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

1720 D34193419 521.51 MATRIX: BATCH: List all parameters that do not meet the percent recovery criteria. LCS ID Analyte True Value Found Value % R Action Samples Affected LCS with the same matrix as samples must be prepared for each SDG. COMMENTS Actions: Exception: Antimony and silver have no control limits. An aqueous LCS is not required for CN and mercury. PERCENT RECOVERY 1. AQUEOUS 50-79% >120% <50% 80-120% Detected results R Non-detected results R UJ 2. SOLID LCS Recoveries stipulated by EMSL WITHIN ABOVE **BELOW** CONTROL CONTROL CONTROL LIMITS LIMITS LIMITS Detected results Non-detected results UJ

IX. INORGANIC ANALYSIS WORKSHEET - ICP SERIAL DILUTION ANALYSIS

l dilution o	IDL	50*IDL	Sample Results	Serial Dilution Result	· % D	Action	Samples Affected
V.	oyn	7 300	resuns	Nesun			270K
<5	0.27	13.5	31.6	28.1	11.1	<u> </u>	42, UC 40
			•				5A,50
	"		·····				
				!		· · · · · · ·	
				1			
	-			 			
			 -				
							· · · · · · · · · · · · · · · · · · ·
			···				
	<u> </u>						
				 			
				1			
				1		٠.	
UCTIVELY	COUPLED PL	ASMA SERIAL	DILUTION A	NALYSIS: ,			
ial dilutions percent of t	were performe: he original und	d for each matri iluted analysis.	x and results Yes	of the diluted sam No	pie analysis a	agreed within	
ial dilutions	were not perfor	med for the foli					
MMENTS		ر ح	460	Flesse			
	·						
						·	
							•

NOTES

Estimate (J) detected results if %D is > 10%.

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: D3 LIFUMI

Describe any raw data anomalies (i	e., baseline shifts, negative absorbances, tra	nscription or calculation	errors, legibility, etc.	
				· · · · · · · · · · · · · · · · · · ·
		·····		
				
	. A V			
	λ			
		·		
				:
				_
·				
		· · · · · · · · · · · · · · · · · · ·	·	
	r range of the ICP instrument or the calibrate	d range of the AA or Cy	ranide instrument, and	
e not reanalyzed.				
,	W/~ Romye	W7 12-17		
	<u> </u>	· .	·	
	mt frederin			
Vere ICP linear ranges obtained wi	thir 3 months of, and preceding, the sample a	analyses? (Ves	No	NA
Were ICP interelement corrections	obtained within 12 months of, and preceding,	the sample analyses?	≻es, No	NA
Were ICP interelement corrections	obtained within 12 months of, and preceding,	the sample analyses?		NA
			not querterly	NA
Were instrument detection limits pre	esent, found to be less than or equal to the CF		not querterly	NA NA
Were instrument detection limits pre	esent, found to be less than or equal to the Cr	RDL, and obtained الم	net que lety	NA NA
Were instrument detection limits preceding, the sample analyses?	esent, found to be less than or equal to the Cr	RDL, and obtained الم	net que lety	NA NA
Were instrument detection limits preceding, the sample analyses?	esent, found to be less than or equal to the Cr	RDL, and obtained with NA	net que lect	
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do	esent, found to be less than or equal to the Cr	RDL, and obtained with NA	net que lect	
Vere instrument detection limits preceding, the sample analyses? Vere all sample results reported do	esent, found to be less than or equal to the CF	RDL, and obtained with NA Yes	net a verterly in 3 months of, and in No Petry	NA NA
Vere instrument detection limits preceding, the sample analyses? Vere all sample results reported do Vere all sample results reported do	esent, found to be less than or equal to the CF	RDL, and obtained with NA Yes Yes	net a verterly in 3 months of, and in No Petry	NA NA
Vere instrument detection limits pre- leding, the sample analyses? Vere all sample results reported do Vere all sample results reported do	esent, found to be less than or equal to the Cr No wn to the IDL if running CLP protocol? wn to MDL if running SW-846 methods?	RDL, and obtained with NA Yes Yes	No Pes No	NA NA
Vere instrument detection limits preceding, the sample analyses? Vere all sample results reported do Vere all sample results reported do	esent, found to be less than or equal to the Cr No wn to the IDL if running CLP protocol? wn to MDL if running SW-846 methods?	RDL, and obtained with NA Yes Yes	No Pes No	NA NA
Were instrument detection limits proceeding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per	esent, found to be less than or equal to the Ci YES No wn to the IDL if running CLP orotocol? wn to MDL if running SW-846 methods? cent solids, and dilutions used correctly when	RDL, and obtained with NA Yes Yes	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per	wn to the IDL if running CLP protocol? wn to MDL if running SW-846 methods? cent solids, and dilutions used correctly where	RDL, and obtained with NA Yes Yes	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per	wn to the IDL if running CLP protocol? wn to MDL if running SW-846 methods? cent solids, and dilutions used correctly where	RDL, and obtained with NA Yes Yes	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per	esent, found to be less than or equal to the Ci YES No wn to the IDL if running CLP orotocol? wn to MDL if running SW-846 methods? cent solids, and dilutions used correctly when	RDL, and obtained with NA Yes Yes	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per MMENTS	wn to MDL if running SW-846 methods? Teent solids, and dilutions used correctly when	RDL, and obtained with NA Yes Yes	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per MMENTS Face 13 Tab 21-3	we to the IDL if running CLP protocol? what to MDL if running SW-846 methods? recent solids, and dilutions used correctly when	Yes Yes Yes reporting the results?	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per MMENTS For 13 Tel 21 - 7	esent, found to be less than or equal to the Cinyes No with the IDL if running CLP protocol? with to MDL if running SW-846 methods? cent solids, and dilutions used correctly when the content of the	Yes Yes Yes Yes Yes Yes A reporting the results?	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per MMENTS For 13 Top 21-3	esent, found to be less than or equal to the Cinyes No wn to the IDL if running CLP protocol? wn to MDL if running SW-846 methods? cent solids, and dilutions used correctly when (1026)	Yes Yes Yes Yes Yes Yes Treporting the results?	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per MMENTS For 13 To 21 7	esent, found to be less than or equal to the Cinyes No with the IDL if running CLP protocol? with to MDL if running SW-846 methods? cent solids, and dilutions used correctly when the content of the	Yes Yes Yes Yes Yes Yes Treporting the results?	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per MMENTS For 13 Top 21-3	esent, found to be less than or equal to the Cinyes No wn to the IDL if running CLP protocol? wn to MDL if running SW-846 methods? cent solids, and dilutions used correctly when (1026)	Yes Yes Yes Yes Yes Yes Treporting the results?	No Pes No	NA NA
Were instrument detection limits preceding, the sample analyses? Were all sample results reported do Were all sample results reported do Were sample weights, volumes, per MMENTS From 13 Top 21-7	esent, found to be less than or equal to the Cinyes No wn to the IDL if running CLP protocol? wn to MDL if running SW-846 methods? cent solids, and dilutions used correctly when (1026)	Yes Yes Yes Yes Yes Yes Treporting the results?	No Pes No	NA NA

this page left intentionally blank

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Amy Ballow - TechLaw, Inc.

Report Date:

February 17, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

D3L190461

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, 7471A, and 7470A for Laboratory No. D3L190461 from Severn Trent Laboratories, Inc. This report consists of the validation of 14 solid samples and one water sample collected on December 19, 2003, and analyzed on December 31, 2003 and January 5, 2004 for ICP metals; on January 7, 2004 for ICPMS (water sample only); and on December 30-31, 2003 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
01-VBOU3-SB-0001-A ⁺	D3L190461-001
01-VBOU3-SB-0001-B	D3L190461-002
01-VBOU3-SB-0001-C	D3L190461-003
01-VBOU3-SB-0001-D	D3L190461-004
01-VBOU3-SB-0036-A ⁺	D3L190461-005
01-VBOU3-SB-0036-B	D3L190461-006
01-VBOU3-SB-0036-C	D3L190461-007
01-VBOU3-SB-0026-A	D3L190461-008
01-VBOU3-SB-0026-B	D3L190461-009
01-VBOU3-SB-0026-C	D3L190461-010
01-VBOU3-SB-0012-A	D3L190461-011
01-VBOU3-SB-0012-B	D3L190461-012
01-VBOU3-SB-0013-A	D3L190461-013
01-VBOU3-SB-0013-B	D3L190461-014
01-VBOU3-RIN-0005	D3L190461-015

denotes full validation

Validated By:_

Amy Ballow /

Reviewed By:

Rill Fear

D3L190461m

1

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples 01-VBOU3-SB-0001-A and 01-VBOU3-SB-0036-A were randomly selected for full validation. Cursory validation was conducted on all remaining samples. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
 Serial Dilution for ICP Analysis
 Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recovery of mercury was within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Blanks -

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

The rinsate sample, 01-VBOU3-RIN-0005, reported detected results for aluminum at 110 ug/L, calcium at 280 ug/L, iron at 220 ug/L, and manganese at 12 ug/L. Qualification was not necessary because the sample results for these elements were above the blank action levels (greater than the RL and five times the rinsate blank value).

Interference Check Samples

All interference check sample percent recoveries were within acceptable limits.

The aluminum, calcium, iron, and magnesium concentrations in the full validation samples were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed sample 01-VBOU3-SB-0026-B and on samples from another SDG (D3L180365-001 and D3L180365-002) for ICP metals and mercury analyses.

The following detected sample results were qualified as estimated (J) because the spike recovery at 134% was greater than 125%:

Vanadium in all solid samples (all samples except 01-VBOU3-RIN-0005)

The following sample results were qualified as estimated (J/UJ) because the spike recoveries were less than 75% but greater than 30%:

 Antimony (33%/35%) in all solid samples (all samples except 01-VBOU3-RIN-0005)

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were no applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory flagged the water recovery for aluminum at 122% as outside the laboratory QC limits of 83-119%. No action was taken as the recovery was within the validation limits of 75-125%. Additionally, antimony and vanadium were not flagged as being outside QC limits in the solid MS/MSD analyses because the recoveries were within the laboratory limits.

Post-digestion spike recoveries were not provided for vanadium and antimony. No action is taken based on post-digestion results.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected. Additionally, recoveries for detected results were calculated using actual results rather than the rounded results reported on the summary Form 5A.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated from the MS/MSD RPDs. All RPDS were within QC limits.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses for both matrices. All recoveries were within the laboratory QC limits for the solid analysis and within 80-120% for the water analysis. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on sample 01-VBOU3-SB-0026-B and on a water sample from another SDG.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

Manganese in all solid samples

The serial dilution result for manganese was not flagged by the laboratory. All other %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. No calculation or transcription errors were found. However, although the laboratory reported percent moisture values, the results were not adjusted for dry weight.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

BATCH: D3 L190 461

	Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	*CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
01.	VB043.58.0001A	Solid	None	12-19-03	1.504 /12:31	123103			Ø	None
	S8-copi-B	1_1_								
	58.0001-C									1
	SB-2001-D									
	5 B-0036-A									
	SB-0036-B									
	58-0036-C					<u> </u>				
	SB-6026-A									
	30.0026B	1_								
L	58-026-2									
	S8-0012-A						İ			
	0012-B									
	J 0013-A							·		
	VB0435\$0013B	1			T 7	L				
01-1	VB0113 RIN-0005	Rinsale	HNO31	<u> </u>	1.703	12-36-03		<u> </u>	1 1	1
	(Rinsole)	<u> </u>		<u> </u>		<u> </u>				
<u>.</u>										
									· .	
									<u> </u>	
									·	
31	full Valid.	<u> </u>								
COM	MENTS Temp =	2.3 °C	1							
	,									
				_						
Actio										
1. If h	no:ding times are exceeded, nolding times are grossly exc	all sample re ceeded (>=2	esults are estim *holding time),	ialed (J)/(UJ). detected result	s are ·			•		
estima	ated (J), and non-detected r	esults are rej	ected (R).				Α	^		
						Validated by:	/ AN	BANA	1 17	Date: <u> </u>
Prese	ervatives:				•		/ 1/47	BAUA	· UZ	010
	eserved w/HNO3 and coole	d to 4°C				Review By:	R -	~ aC =		Date:
	poled to 4°C o Preservative						17:	45	·	
O. NO	5 . 1495140445									
ANAL	YTE	HOLDING 7	IME	PRESERVAT	IVE					
				AQUEOUS			SOIL .			
Metai	S	180 days		pH < 2 w/HN0	J3, 4 Deg. C		4 Deg. C			

pH > 12 w/NaOH, 4 Deg. C

4 Deg. C

moiding Time = Analysis Date - Collection Date

14 days

Cyanide

	Nalianni
BATCH:	D3L190461

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCA	TRUE	Found	% R	Action	Samples Affected	
10				790-1102	- N/	A1) pt/(11 .	
CP	ICV			1)90-1102	None	All Min cuitoria	
	CCV'5		· · · · · · · · · · · · · · · · · · ·	1	<u> </u>		
•						·	
				1			
				i			
				 			_
				+		<u> </u>	
				 	·		
			<u> </u>				
				 			
						<u> </u>	
				.			
				 			
				1 1			
			1	 			-
	. 1		! <u> </u>	YOUR STANK	s No	NonCLP	
	every 10 sample						
	sample (CRI) ar	nalyzed at the !	peginning and	at the end of each	sample run (Ct	LP only)? Yes No	
MENTS							

ICY/CCV Actions:

PERCENT RECOVERY

	<75%	75-89%	90-110%	111-125%	>125%
Detected results	R	J	V	J	R
Non-detected Results	R	UJ	V	V	V

BATCH: D3L190461

List all mercury re	esults that did not	meet the percent re	ecovery criteria fo	or the ICV and/or	CCV standard.
---------------------	---------------------	---------------------	---------------------	-------------------	---------------

CCA	TRUE	Found	% R	Action	Samples Affected
ZCV			80.120.9	None	All Vin critoia
<u>ccvs</u>	1				
		· · · · · · · · · · · · · · · · · · ·			
-					
				<u></u>	
Vere the co	errect number	of standards a	nd blanks used to	calibrate the in	strument? (Yes) No .
			cient > 0.995?	Yes N	
	ffected analyte				
					pole run? (CLP only) Yes No Non -CLP
CCV run aft MMENTS	er CRA, every	ten samples a	and at end of seco	uence?	.Yes No
VIIVICIV I O					

Actions:

	PERCENT RECOVERY							
	<55%	65-79%	80-120%	121-135%	>135%			
Detected results	R	J	V	J	R			
Non-detected Results	R	JJ	V	V	V			

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

MATRIX: Sal/Wale BATCH: D3L14	90461
-------------------------------	-------

List the highest positive AND negative blank result >=[DL] below. Use one worksheet for soil matrix and another for water matrix. ICB. Blank Conc. Analyte CCB IDL 5 * Bl. Conc. Action Samples Affected РВ/МВ ICP Wale MB TUB All MD CCBS Soi Rinsate 14/2 10 15 = AL = mg/45 01- VBOUS . RIN-005 None 55 mg/hu 110 /5/2 >5* 100 l'a 200 280 140 Fc 100 220 110 10 12 6 NOTE: Verify that the absolute value of any analyte concentration in the PB or MB is < CRDL * <u>verity</u> Cine prep blank per matrix Cine prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS

Actions:

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

	V 2 1	inal	111
BATCH:	D3L	1900	161

NOTE: The sample results can be accepted without qualification, if the sample concentrations of Al, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca. Fe or Mg results that are greater than the ICSA values.

Sample ID	Analyte	Sample Result	ICS Value	Comments
OI \ Full	only			Okay LISCAL.
5 /			·	1
			•	
	-			
				•

List any analytes in the ICS AB solution that did not meet the criteria of 89-120% R.

Analyte	% R	Action	Samples Affected
			80.120% / All
	 	·	
		1	
	<u> </u>		
		-	
	1	1	
		1	
CLP Protocol Only			
Were Interference Che			d of each sample analysis run, or a minimum of twice per 8-hour shift (whichever
is more frequent)?	Yes	No	
COMMENTS			
	······································	****	

Actions:

PERCENT RECOVERY

	<50%	- 50-79%	80-120%	>120%
Detected results	R	. J	V	J
Non-detected results	R	. UJ	ν .	V

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: D3L190461

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample Result
M	100. Vitesuit	7.0.1011	1.0301	7.05011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ricour	1103011	- Nesult
		·			NA			
							 	
	 		· · · · · · · · · · · · · · · · · · ·				<u> </u>	
								
						· ·		
					<u> </u>			
						<u> </u>		
····								
	+		·		· ·		<u> </u>	
	1		****			<u> </u>		
							·	· · · · · ·
					·			
		· · · · · · · · · · · · · · · · · · ·		,				
		<u>-</u>						
	<u> </u>	·						
							<u> </u>	
					<u> </u>			
	 		· · · · · · · · · · · · · · · · · · ·				 	
							1	
	-					·		
	1			· · · · · · · · · · · · · · · · · · ·			 	
	+		· · - ·					
							1	

Actions:

I' the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- :. Estimate (J) detected results < = 5* [ICSA].
- 2. Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX: So.)/Wode	BATCH: D3L190461
	

List all parameters that do not meet the percent recovery criteria. Note: The pre-digestion spike recovery criteria are not evaluated for Ca, Mg, K, Na, Al and Fe for soil samples, and Ca, Mg, K and Na for water samples.

Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
Anales SDG	ZCP	\ .			75-1259.	None	Min criteria
Ha-Wilo		الما	y 5.				RPD3
ICP. J					1		
İ							
					·		
51-09-		$c \mid$					
H9.50.		انات			75-125%	None	Win cuito a RPD3
61.009							
TCP_	Ca AS	10500	7005	5 850	69/2	JUS	LEGAN SHAND IN COME
	<i>1</i> 75D	12300	J	Į į	109/		1 -2 (40)s
	Sb MS	50.5	ND	16.9	39↓	3/05	وا رهو-
	MSD	7	7	17.6	35 J		
	V ms		3 <i>5</i>	89.2	1081		1
	<u> MSD</u>	2	J	102	134 9	j.	- Soils = All were + = All Soil = J
	00		A N 20				Co, Sb. V. Not Flogged by la
Post-diaes	h for De.	Sb, As, Be	Cd. Th -0	Transmer an			as the Y.R W/with a Lab Time
				ļ <u>.</u>			1 70 1 1/
		ļ		ļ			Not all / Be exactly reproducable
							Okal
		l					1
-Was a pre- ore frequent		trix spike prep No	ared at the re	quired frequen	cy of once eve	ry 20 sample:	s, or every SDG (whichever is
	'		lyzed for all I	CP elements, e	xrent Silver th	at did not me	eet the nre-
		very criteria?	Yes .		NA	iat alo not ill	cot the pie
	•	pared for each	different sam	noie matrix?	Yes	Ne	
OMMENTS	we Fe	= Smple	result >	74 sp. co	· No hoon	Soil	Al, Fe, Mn results >4. Spile - No h
		•		•		•	
Note	: Al = m	D-1229 -	utside lab	liants but Via	Val. 75-	259.	
		Made		recover			V = No Adien
							N. B. A. L. B. A. L. B. A. B. B. A. B. B. A. B. A. B. A. B. A. B. A. B. A. B. B. A. B. B. A. B. B. B. B. B. B. B. B. B. B. B. B. B.

Actions:

< 30% > 125% Detected results Non-detected Results

<u>Note</u>

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

Calculators for All

Inorg98.xls

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX:	Soil/Water	BATCH:	D3L190461
			

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
							Use MS/MSD RPD/
							1
		· · · · · · · · · · · · · · · · · · ·		<u></u>			
						·	
							
	-	!					
				 		 	
	1						
							
						, _,	
			.				· · · · · · · · · · · · · · · · · · ·
DMMENTS			<u> </u>	····	<u> </u>		<u> </u>

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result Include outliers for field duplicates (if applicable)

<u>N->te</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	So,)/Wa	न्छ .		BATCH: D3L190461
List all parameter	s that do not me	eet the percent	recovery criteria	ı		
LCS ID	Analyte	True Value	Found Value	% R	Action	Samples Affected
1/3-5.1	1650019	-		4/in limits	None	
TOP. Ha	1			501		
1		-				
						/
LCS/LCSD				89-1259	None v	RAD'S.
Water						
ICP + Ha						
						OKOM /
						<u> </u>
						·
-						
				<u> </u>		
					·	· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·	
Note:						·
LCS with the san	ne matrix as sar	mples must be ;	repared for eac	h SDG.	·	
COMMENTS						
						<u></u>
Actions:	 					
Exception: Antin	nony and silver l	have no control	limits. An aque	ous LCS is not r	equired for CN	and mercury.
						•
1. AQUEOUS			<50%	PERCENT 50-79%	RECOVERY	>120%
Detected results			R .	J	V	J
Non-detected res	sults	•	R	UJ	٧	V
2. SOLID LCS						
Recoveries stipu	lated by EMSL					
			BELOW		WITHN	ABOVE
			CONTROL LIMITS	(CONTROL LIMITS	CONTROL LIMITS
Detected results			J			J
Non-detected res	sults		IJ		٧	V

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
1 160	olher						
hoved O.C. Mn	0.54	27	5171.26	5696.93	16.2	J. A))	Mad Floored =
	0.57 003-5B-00	26-B	1 111.26	3676.	10:2	J-A11	- Not Flagged - All Mn-Soil = J -> J
		1	İ				.,
							
							·
				 			
					:		
		 	<u> </u>				<u> </u>
	İ		İ				
		-				<u> </u>	
		ļ	ļ				-
		<u> </u>			•		
							
	 						
		1					
	<u> </u>	<u> </u>			·	<u> </u>	
		ASMA SERIAL		IALYSIS: of the diluted sam	nio analysis	nerced within	
		diluted analysis.		No	pie aliatysis	agreed within	
rial dilutions		ormed for the fo					
MMENTS				1:4.9 (250.21			·
	Ma = 5	171 450	TOLY 70	1:054 (150=	27) (· · · · · · · · · · · · · · · · · · ·

Actions:

Estimate (J) detected results if %D is > 10%.

<u>NOTES</u>

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH:	D3119	1046	1

1. Describe any raw data anomalies (i.e., baseline shifts, negative absorbances, transcription or calculation erro	rs, legibility, etc.	
		·
Okan		
<u> </u>		
		
	······································	
2. List results that fall outside the linear range of the ICP instrument or the calibrated range of the AA or Cyanide	e instrument, and	
were not reanalyzed.		
3. Were ICP linear ranges obtained within 3 months of, and preceding, the sample analyses? Yes	No	NA .
10.3103 /106.03		
	Yes No	NA.
8.1.03 /96.03		
5. Were instrument detection limits present, found to be less than or equal to the CRDL, and obtained within 3 n	nonths of, and	
preceding, the sample analyses? Yes No NA		
4.2.03 / 8.22.03		
6. Were all sample results reported down to the IDL if running CLP protocol? Yes	No	NA
7. Were all sample results reported down to MDL if running SW-846 methods? Yes	No	NA
8. Were sample weights, volumes, percent solids, and dilutions used correctly when reporting the results?	Yes 1	N 0
		
		· -
COMMENTS Was TOP 50m0 ->50mV		
COMMENTS Wase TCP 50m0->50mV Hg: 10ml -> 10ml		
1 MAY TONY		
		
	······································	
	· · · · · · · · · · · · · · · · · · ·	

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Ken Schroeder - TechLaw, Inc.

Report Date:

February 17, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

D3L190464

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B and 7471A for Laboratory Lot No. D3L190464 from Severn Trent Laboratories, Inc. This report consists of the validation of 20 solid samples collected on December 18 and 19, 2003 and analyzed on January 1-5, 2004 for ICP metals and on December 31, 2003 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
01-VBOU3-SB-0033-A	D3L190464-001 ·
01-VBOU3-SB-0033-B	D3L190464-002
01-VBOU3-SB-0033-C	D3L190464-003
01-VBOU3-SB-0033-D +	D3L190464-004
01-VBOU3-SB-0033-E	D3L190464-005
01-VBOU3-SB-0037-A	D3L190464-006
01-VBOU3-SB-0037-B	D3L190464-007
01-VBOU3-SB-0037-C	D3L190464-008
01-VBOU3-SB-0035-A	D3L190464-009
01-VBOU3-SB-0035-B	D3L190464-010
01-VBOU3-SB-0035-C +	D3L190464-011
01-VBOU3-SB-0024-A	D3L190464-012
01-VBOU3-SB-0024-B	D3L190464-013
01-\ 30U3-SB-0024-C	D3L190464-014
01-VBOU3-SB-0024-D	D3L190464-015
01-VBOU3-SB-0025-A	D3L190464-016
01-VBOU3-SB-0025-B	D3L190464-017
01-VBOU3-SB-0023-A	D3L190464-018
01-VBOU3-SB-0023-B	D3L190464-019
01-VBOU3-SB-0023-C	D3L190464-020

⁺ denotes full validation

Reviewed By:

D3L190464m

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples 01-VBOU3-SB-0033-D and 01-VBOU3-SB-0035-C were randomly selected for full validation. Cursory validation was conducted on all remaining samples. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
 Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples) Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

<u>Blanks</u>

The method blanks and calibration blanks were analyzed at the required frequency. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

The following sample results were qualified as non-detected (U) because of contamination found in the calibration blanks bracketing the sample analyses. The sample results were less than five times the blank result.

• Lead and potassium in sample 01-VBOU3-SB-0033-D

No action was required for additional blank contamination because the sample results were above the blank action levels.

No field blanks were provided in this SDG.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The aluminum, calcium, iron, and magnesium concentrations in the full validation samples were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample 01-VBOU3-SB-0023-A for ICP metals and mercury analyses.

The following detected sample results were qualified as estimated (J) because the spike recoveries were greater than 125%:

• Vanadium (127%) in all samples

The following sample results were qualified as estimated (J/UJ) because the spike recoveries were less than 75%, but greater than 30%:

Antimony (38%/39%) and zinc (41%) in all samples

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the unspiked sample amount was greater than four times the spike value and the recoveries were not applicable.

The laboratory evaluated the spike recoveries against the laboratory QC limits. As a result, vanadium and antimony were not flagged as being outside QC limits in the MS/MSD analyses of sample 01-VBOU3-SB-0023-A because the recoveries were within the laboratory QC limits.

Post-digestion spike recoveries were not provided for vanadium, antimony, or zinc. No action is taken based on post-digestion results.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected. Additionally, recoveries for detected results were calculated using actual results rather than the rounded results reported on the summary Form 5A.

<u>Duplicate Sample Analysis</u>

Duplicate precision criteria were evaluated using the MS/MSD RPDs. All duplicate criteria were met. No calculation errors or transcription errors were found.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses and all recoveries were within the laboratory QC limits for the solid analysis. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on sample 01-VBOU3-SB-0023-A.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

- Chromium and vanadium in all samples
- Sodium in samples 01-VBOU3-SB-0033-A, 01-VBOU3-SB-0033-E, 01-VBOU3-SB-0037-B, 01-VBOU3-SB-0037-C, 01-VBOU3-SB-0024-A, 01-VBOU3-SB-0024-B, 01-VBOU3-SB-0024-D, 01-VBOU3-SB-0025-A, 01-VBOU3-SB-0025-B, 01-VBOU3-SB-0023-A, 01-VBOU3-SB-0023-B, and 01-VBOU3-SB-0023-C

All other %Ds in the serial dilution analysis were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. No calculation or transcription errors were found. However, although the laboratory reported percent moisture values, the results were not adjusted for dry weight.

According to the project narrative, due to matrix interferences, the reporting limits for cadmium in five samples were raised.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

BATCH: D31190464,

1 2 3 4 5 6 7 8 9 0 11	1-VBÓU3-	-B -C -D -E 0037-A -B +-C 6035-A		B	12/18/03	1/4-5/04	12/3/03			0	NONE
3 4 5 6 7 8 9 9 0		-C -D -E 0037-A -B -C 0035-A					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
45678990		0037-A 0037-A 0035-A									
5 7 8 9 0		0037-A -B - C 0035-A								1. / 1	' /
7 8 9 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0037-A -B - C 0035-A						1 1		 	
7 8 9	\ \ \	-B √ - c 0035-A				1 1	!				
8		V-C 0035-A								1.	
9		0035-A				 					
0										1 1	
_				 							
11		-B				 	<u> </u>				
	<u>\</u>	y -c			<u> </u>					1.	
12 _		0024-A		 	12/19/03						—
13		1-B									<u> </u>
4 _		-C			 	 	 				
5		V -D					 		· · · · · · · · · · · · · · · · · · ·		
.6		0025-A	 		-					 	
17	_ +	<u> </u>	 	 	 	1	 				
8		0023-A	 	 	 	1/1-5/04	 			 	
19 .		-B	\ 	 	 	 	 				
20		√ -c		_ A	1 1/2	 	V			<u> </u>	¥
-				<u> </u>	ļ	 	 -				<u> </u>
-			-	 						1	
\vdash				 			 				
-				 	 		 	 		 	
C	COMMENTS	Temp =	200/	<u> </u>	L	No 6	020 an	elysis	artor	med.	
	<u> </u>					· · · · · · · · · · · · · · · · · · ·	·		·		
	<u> </u>	ull val	idation	n m	04	110 4					

- 1. If holding times are exceeded, all sample results are estimated (J)/(UJ).
- If holding times are grossly exceeded (>=2*nolding time), detected results are estimated (J), and non-detected results are rejected (R).

Pres	e:va:	tives:

- A. Preserved w/HNO3 and cooled to 4°C
- B. Cooled to 4°C
- C. No Preservative

Validated by:	50	hoody	Date: 2/12/04
Review By:	A	(D	Date:

ANALYTE	HOLDING TIME	PRESERVATIVE	•
		AQUEOUS	SOIL
Metals	180 days	рн < 2 w/н NO3, 4 Deg. С	4 Deg. C
Mercury	28 cays	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C

Holding Time = Analysis Date - Collection Date

IIA. INORGANIC ANALYSIS WORKSHEET -- ICP CALIBRATIONS

BATCH: D3 L 190 464

List all ICP analytes that did not meet the percent recover	ery criteria for initial calibration verification (ICV) and
continuing calibration verification (CCV)	•

Analyte	CCV	TRUE	Found	% R	Action	Samples Affected
					None	All within 90-11070
			· ·			
			<u> </u>			1.
						
				<u> </u>	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	.					
						<u> </u>
	<u> </u>			·	1	<u> </u>
					ļ	
	·				-	
	-					
	 					
	 		·····		 	
	-					1
		[]	 .			
 -	 		· · · · · ·		 	
,			·			1
					 	
- , _,	 				.	
	 					
	<u> </u>					
run after CRI,	every 10 sample	es and at end of	sequences? (C	CLP only)	(Yes No	·
	sample (CRI) a					CLP only)? Yes No NA
MENTS						
				<u> </u>		
						•

Actions:

IC:V/CCV Actions:

PERCENT RECOVERY

	<75%	75-89%	90-110%	111-125%	>1259
Detected results	R	J	V	J	Ŕ
Non-detected Results	R	· UJ	V	V	V

BATCH: D3 L190464

CCV	TRUE	Found	% R	Action	Samples Affected
			· · · · · · · · · · · · · · · · · · ·	None	All criteria met
					
			İ		
		·-···			
· · · · ·		,			
					10 10 10 10 10 10 10 10 10 10 10 10 10 1
· · · · · · · · · · · · · · · · · · ·					
			<u> </u>		
			1		
				I to calibrate the in:	
s the initial	l calibration co	rrelation coeffic	cient > 0.995?	Yes N	0.99983
		es and samples			
					nple run? (CLP only) (Fes) No
	ter CRA, even	y ten samples a	and at end of se	equence? -	(Yes) No
MENTS	 				
					
		·			
ons:					
		F	PERCENT REC	,	
		<65%	65-79%	80-120%	121-135% >135%
ected resu		R	J	\ V) J R

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

Analyte	ICB CCB PB/MB	RL 19E woll	Blank Conc.	5 * Bl. Conc.	Mg Ac	ction Z	Samples Affected
ρЬ	CCB 16	0.003	0,00 393	0.0197	1,97	None	(Assoc. samples >5X)
РЬ	CCB15	J	0.00351	0.0176	1.76	u	004/
K	CCB 17	1.00	1.3588	6.794	679	u	004/
·							
							
			<u></u>				
			<u> </u>				
					<u> </u>		
			ļ				
			<u> </u>		<u> </u>		
					<u> </u>		
							·
				 			
•							
	_				 		
·			<u> </u>	<u> </u>			
	- 		 		 		
					 		
					 		
	-				 		
·					 		
			 				

CCB 17

1001-008 1CCB 18 1009-017

Actions:

COMMENTS

".. If |Blank| < IDL, no action is taken.

ICB analyzed immediately after ICV 🗸 🔫

One prep blank per matrix
One prep blank per batch

CCB analyzed after each CCV.

- ?. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- "If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- ' If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

CCB 19 (018-020) CCB201

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: D3L190464

NOTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca. Fe or Mg results that are greater than the ICSA values.

Sample ID	Analyte	Sample Result	ICS Value	Comments
				All LICSA value
				All < 1C5A value for full validation samples.
				samples.
<u> </u>				
			· · · · · · · · · · · · · · · · · · ·	
				,
	· · · · · · · · · · · · · · · · · · ·			
<u></u>			·	

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	% R	Action	Samples Affected						
		None	All within 80-12000						
		,							

			of each sample analysis run, or a minimum of twice per 8-hour shift (whicheve						
more frequent)?	Yes	No							
	all validat								

Actions:

PERCENT RECOVERY

	<50%	50-79%	80-120%	>120%
Detected results	. R	J	V	J
Non-detected results	R	UJ	V	٧

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: D3 L190464

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL| that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/	Sample/ Result	Sample/ Result	Sample/ Result
Analyte	ICSA Result	Action	Result	Result	. Result	Result	Result	Result
	-		<u>'</u>					
- 111		····						
~ 1 W								
Mri					·····			ļ
1								
			_					-
		:						
								
	 						-	
	 							 -
					,			
	+						<u> </u>	
 -	-	,						
· · · · · · · · · · · · · · · · · · ·	 		-					
	 							
	-							<u> </u>
	 							
			· · · · · · · · · · · · · · · · · · ·					
		,			·			
· · · · · · · · · · · · · · · · · · ·								
			_					
				Ì				
	1							
	 				 	 	i	1

Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA.

I the ICSA value < -IDL:

- 1. Estimate (J) detected results < = 5" |ICSA|.
- 2. Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

				MATRIX:	Soil		_	BATCH: D3L190464
			not meet the p	ercent recove	•	e: The pre-dig	gestion spike re	ecovery criteria are not evaluated for Ca, Mg, K,
If the	sample	result exceed	s the spike ad	ded by a facto	or of 4 or more,	no action is ta	ken.	
Sar	nple ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
0	18 15	Sb	19.2	ND	50.0	38.4	2 5/45	ALL
	254	1	19.5	1	1	39.0	(
	MS	V	94.1	30	50.0	128	J	ALL (all are detects)
,	MSD	Zn	114	93	50.0	42	J/UJ	ALL (10 11)
								Note, Leb QClimits
			_			, <u></u>		are not 75-12590.
								shand V west not
								flagged.
								7 7/
				<u></u>				
				<u> </u>				
		,	<u> </u>					
			<u> </u>					
					<u> </u>			
			ļ					
	Vas a pre			pared at the re	quired frequen	cy of once eve	ery 20 samples	, or every SDG (whichever is
2. V	Vas a po stion ma	st-digestion m	atrix spike and	alyzed for all I	CP elements, e	except Silver, t	hat did not me	et tne pre-
				different sam		(Yes)	No	
$\overline{}$	MENTS		12>4X		n A/ /	Ee Mu		· · · · · · · · · · · · · · · · · · ·
		***************************************	1.5-6	7/		7.11		
					·····			
	01	8 also u	sed In	merci	my G	C		
1. 1:		•		•	•		ng the following	g criteria:

<u>Note</u>

Actions:

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

UJ

< 30%

R

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

	,	•
MATOLV.	5.il	BATCH: D3L190464
MATRIX:	<u> </u>	 BATCH: 227110 (6 +

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
						None	All RPDS 235%
							•
			7				
					1		
MMENTS	Use MS	IMSD	in plac	70 4	Ruplicat	ح و ح	

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2°CRDL, estimate (J)/(UJ) all sample results of the

³Difference = |Sample result - Duplicate sample result|

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

all paramete	ers that do not r	MATRIX:			·		-190464
LCS ID	Analyte	True Value	Found Value	% R	Action	Sar	nples Affected
					None	All with,	n 80-120%
				·		(all withi	soil 6CS
						11mit 5)	
						. ,	
					T		
							· · · · · · · · · · · · · · · · · · ·
	·						
	<u> </u>				 		
	<u> </u>				<u> </u>		
		1		· · · · · · · · · · · · · · · · · · ·			
		† 			 		
		ì					
	i	 			 		 -
	 			······			
 e:	<u> </u>	_!	.1				
	ime matriv as s	amples must be	prepared for each	SDG			
MMENTS	ine mank as s	ampies filust be	prepared for each	300.			
MINIS				 -			
		 		·············			
ions:							
	imony and silve	r have no contro	l limits. An aqueo	ous LCS is no	t required for CN	N and mercury.	
				DED.051	T DE001/EDV		
AQUEOUS			<50%	50-79%	NT RECOVERY 80-120% ک	>120%	
ected result	s		R	j	V	J	
-detected re	esults		R	บป	٧	V	
SOLID LCS						/	
	ulated by EMS	L					
			BELOW		WITHIN	. /	ABOVE
			CONTROL LIMITS		CONTROL LIMITS	V	CONTROL LIMITS
ected result	s		J		V		J
n-detected re	esults		ÚJ.		V		V,

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

	MATRIX:	5 60	. (BAT	CH: D3L190464
Serial dilution of	criteria only appl	ies if the origin	al sample resu	It is at least 50* l	DL and %D >	10%.	
Ánalyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
C۲	2-1 mg/L	105 ug/L	129.06	143.16	10.9	J ⊕	ALC
	2.6 ug/L	130 ug/L	303.60	335,24	10.4	J D	ALL
Na	100 ug/L	5000 mg/L	5207.05	4487.8	13.8	<u>হ €</u>	001,005 007 008 012,
- <u> </u>	<u> </u>						013,015,016,017
· — — — · · · · · · · · · · · · · · · ·					,	···	018,019,020
			<u> </u>				
					·		·
				,	·		
<u> </u>			· · · · · · · · · · · · · · · · · · ·				·
						i 	
			_		•		
	 	•			·		
					·	.;	
					· · · · · · · · · · · · · · · · · · ·		<u> </u>
	ļ						
··· ·							
	 	<u> </u>					
1	 						
			<u> </u>				
					 		
				1			
INDUCTIVELY	COUPLED PL	ASMA SERIAL	DILUTION AN	IALYSIS:		·	
ten percent of	the original undi	luted analysis.	Yes	of the diluted san	nple analysis	agreed within	
Sanal dilutions	were not perfor						
COMMENTS	Scriel	dil. resul	t for No	a obtaine	d from	vaw d	eta. Result
report.	rd on Fo	orm 9 in	50001	۷	·		
							· · · · · · · · · · · · · · · · · · ·
0		-/					· · · · · · · · · · · · · · · · · · ·
see M	5 page	-to7 (C	C 506	ple Il	> •		

Actions:

Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. METAL ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: \$\mathbb{D}36464

1. Describe any raw data anomaliae (i.e., basaline shifts, penative absorbances, transcription or calculation e	vors legibility etc	
		<u>a/</u>
weights mouthly be En 4- Com 12	-1-127 2012	11
weights reported on preplog. For 13	54000 0.50	<u></u>
(2) Pals of Form 10 do not match RLS on the following:	Form	
1. Describe any taw data anomalies (i.e., basedine shifts, negative absorbances, transcription or calculation errors, legibility, etc. (i) Form 13 reports all cample wts as "1.00" rather than actual weights reported a angules. For Hy Form 13 shows "0.30". (ii) Form 15 reported a angules. For Hy Form 13 shows "0.30". (iii) Form 10 do not match RLS an Form 1 shows "0.30". (iii) Form 10 do not match RLS an Form 1 shows "0.30". (iii) Form 10 do not match RLS an Form 1 shows "0.30". (iii) Form 10 do not match RLS an Form 1 shows "0.30". (iii) Form 10 do not match RLS an Form 1 shows "0.30". (iii) Form 10 do not match RLS an Form 1 shows "0.30". (iii) Form 12 reported the form 10 do not match RLS and form 1 shows "0.30". (iii) RLS and that fall outside the linear range of the ICP instrument or the calibrated range of the AA or Cyaride instrument, and ware not rear alyzed. (iii) RLS and RLS and Form 1 shows "0.30". (iii) RLS and RLS and RLS and RLS and preceding, the sample analyses? Yes No NA NA Shared		
- Ca, 18, 3E, 11, 17, 19, 14, 1	<u> </u>	
	ice instrument, and	
NOTE OF TOUR DAY 2001		
	·	
		
3. Were ICP linear ranges obtained within 3 months of and preceding the sample analyses? Yes	No	NA.
	(Yes) No	NA
3		
5. Were instrument detection limits present, found to be less than or equal to the CRDL, and obtained within 1	R months of and	
	1110111113 01, 2.13	
73 months old.		
	No	(NA)
7. Were all sample results reported down to MDL if running SW-846 methods? Yes	No	NA
Reported to RL		
8. Were sample weights, volumes, percent solids, and dilutions used correctly when reporting the results?	(Yes) No	
COMMENTS Full validation samples:		
004 - Results notely raw data. (Results co	alculated con	rectly)
		· · · · ·
	·	
Due to interferences, the RL for cadmin mag	reced	
for five samples,	200	
The Jampies,	-	
No errors noticed on Form 14.	·	 ,
1 11/2 1/10 CA - 1		•

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

March 12, 2004

Project/Site:

VB I-70 OU3

Laboratory No.:

R8-040018

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 200.7, 200.8, and 7470A for Laboratory Lot No. R8-040018 from the USEPA Region 8 Technical & Management Services Laboratory Service Program. This report consists of the validation of three total and two dissolved water samples collected on December 12 and 18, 2003, and analyzed on January 5 and 6, 2004 for ICP metals; on January 7, 2004 for ICPMS; and on January 7, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Eield Sample Number	Tag Number	Laboratory Sample Number
01-VBOU3-GW-0002	8-211149	03-E002562
01-VBOU3-GW-0003	8-211136	03-E002563
01-VBOU3-GW-0005	8-246851	03-E002564
01-VBOU3-GW-0001	8-246852	03-E002560
01-VBOU3-GW-0004	8-246511	03-E002561

The laboratory used the EPA Tag Number rather than the Sample Identification Number to identify these samples. The station numbers (the last four numbers of the sample number) are also included on the results summary forms.

Validated By: Wins children for Bill Fear
Bill Fear

R8-040018m

Reviewed By:

Disa Tyson

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Full validation was conducted on all samples. The data were evaluated based on the following parameters:

Data Completeness

- * Holding Times and Preservation
- * Calibrations
 Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
 Duplicate Samples
 Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided. The raw data were originally not included, but were provided upon request for resubmittal.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

Although no shipping or receiving problems were noted, sample preservation and receipt temperatures were not documented. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficient for mercury was greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency.

The following sample results were qualified as non-detected (U) because of contamination found in the calibration blanks bracketing the sample analyses. The sample results were less than five times the blank result.

- Calcium, nickel, and manganese in sample 01-VBOU3-GW-0005
- Mercury in sample 01-VBOU3-GW-0003

The following detected sample results were qualified as estimated (J) because of negative blank contamination found in the preparation blank analysis. The sample result was less than five times absolute value of the blank.

• Sodium in sample 01-VBOU3-GW-0005

No action was required for additional blank contamination because the sample results were above the blank action levels.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The iron concentration in sample 01-VBOU3-GW-0002 was greater than the ICSA value. However, no action was required because all sample results were well above any interference levels.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on various samples for ICP metals and mercury analyses. No calculation errors or transcription errors were found.

The following detected sample results were qualified as estimated (J) because the associated spike recoveries in the MS/MSD of sample 01-VBOU3-GW-0003 were greater than 125%:

- Arsenic (144.7%/143.8%), lead (159.4%/161.7%), selenium (145.5%/143.9%), silver (139.6%/137.7%), and thallium (141.3%/141.4%) in samples 01-VBOU3-GW-0002, 01-VBOU3-GW-0003, and 01-VBOU3-GW-0005
- Beryllium (136.7%/140.9%) in samples VBOU3-GW-0002 and 01-VBOU3-GW-0005
- Vanadium (141.4%/144.6%) samples 01-VBOU3-GW-0002 and 01-VBOU3-GW-0003

The laboratory prepared a new pre-digestion spike on sample 01-VBOU3-GW-0005 and all recoveries were within 75-125%. However, all sample analyses were reported from the initial preparation batch associated with the MS/MSD not meeting QC limits. The post digestion spike for sample 01-VBOU3-GW-0003 was within QC limits, however, results of the post digestion spike do not affect sample qualification.

All other MS/MSD percent recoveries were within technical validation QC limits of 75-125% or the unspiked sample amount was greater than 4 times the spike value and the recoveries were no applicable.

Potassium was flagged as not meeting the laboratory QC limits of 80-120% in the matrix spike of sample 01-VBOU3-GW-0003. No action is required because the recovery at 121% was within validation limits of 75-125%.

Duplicate Sample Analysis

Duplicate sample analyses were performed on samples 01-VBOU3-GW-0003 and 01-VBOU3-GW-0001. No calculation errors or transcription errors were found.

The following sample results were qualified as estimated (J) because the duplicate RPD exceeded 20% in the duplicate analyses of sample 01-VBOU3-GW-0003:

• Cadmium (23.4%) and lead (22.2%) in samples 01-VBOU3-GW-0002, 01-VBOU3-GW-0003, and 01-VBOU3-GW-0005

Laboratory Control Samples

The laboratory performed a laboratory control sample analysis for the total metals. All recoveries were within the laboratory QC limits of 80-120% except for beryllium. No calculation errors or transcription errors were found.

The following sample results were qualified as estimated (J/UJ) because the associated LCS recovery was less than 80%:

• Beryllium (78.7%) in samples 01-VBOU3-GW-0002, 01-VBOU3-GW-0003, and 01-VBOU3-GW-0005

The beryllium recovery may have been affected by the elevated recovery for the internal standard lithium observed in the LCS analysis.

Serial Dilution Analysis

The laboratory performed the serial dilution analyses on samples 01-VBOU3-GW-0003 and 01-VBOU3-GW-0001. All percent differences (%Ds) were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated. Various sample analyses were analyzed at dilutions of 2x or 4x. No calculation or transcription errors were found.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
 - The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

5200 EUO EU-10

BATCH:	Rs-04001	Š

ist all analytes which do no	t meet holdi:	ng time criter	'a ·	J. C.		ストグラ			
Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	*CN Analysis Date	Analysis Date/s	Nc. of Days Past Holding Time	Action
FW-00072	A23		12/2/51	विधिय	1/3/24	1 (7/34		-0-	3300
	9		12/14/03	· }		(
6(200) 3	+		L	V	\mathcal{Y}	Ŋ			
(へしこ) と	(42)		، كالانعام	1/5/24	コナシ	11710M			
EL-0001	\ \		16/12/-3	do.	<u> </u>	7			
· · · · · · · · · · · · · · · · · · ·	<u> </u>								
······	<u> </u>	<u> </u>			· · · · · · · · · · · · · · · · · · ·				
	ļ · .								
. ···						į			
······································									
	<u> </u>			<u> </u>		ļ	DIV.	His Die	e 0.~
	 								
1ch wie?	Stehn	77			<u> </u>			· · · · · ·	
8-211149	64-2		<u> </u>						
8-211134	0007								
8-5-16821	7000								
2 2 (K 02)									
6 = 2mer11	- 800-								
4-1-6452	Cur				 				·
<u> </u>		<u> </u>			<u> </u>				
	 								
ي کړ MMENTS		23 0.	26 5	بحری سے	.プレ	1	\	·	
(1, 2,	Re. C	ماه رح	SZ	<u> </u>	TL, V	- ICP	w s		
7 7	·)						
									
tions:									

1. If holding times are exceeded, all sample results are estimated (J)/(UJ), 2. If holding times are grossly exceeded (>=2*holding time), detected results are estimated (J), and non-detected results are rejected (\Re).

	Dur					
Preservatives:						
A. Preserved w/HNO3 and cooled to 4°C	Review By:		Date:			
B. Cooled to 4°C	<u> </u>	L15/100				
C. No Preservative						

Validated by:

ANALYTE	HOLDING TIME	PRESERVATIVE			
		AQUEOUS	SOIL		
Metais	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C		
Mercury	28 cays	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C		
Cvanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C		

Holding Time = Analysis Date - Collection Date

Date:

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

BATCH: 28-040018

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (ICV)

Analyte	ICV	TRUE	Found	% R	Action	Samples Affected
						しな工でラルリン
·						1-6 ±co-
					1/4	
					1,10	· · · · · · · · · · · · · · · · · · ·
					10/	
				<u> </u>		
				•		
· · · · · · · · · · · · · · · · · · ·						
	ļ			·		
				 .		
	!					
			· · · · · ·	<u> </u>		·
			····			
					 	
					 	
				15.15	}	
			sequences? (C		Yes No ach sample run (CLF	Tonky? Von No
MENTS	sample (CRi) a	naiyzed at the D	egiring and at	the end of ea	acı sample run (CL)	only)? Yes No
IIVI=IN F O						
	·······					

ICY/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH: 28 - 04 0018

CCA	TRUE	Found	% R	Action	Samples Affected
<u>,. — </u>					- nore of
				ļ	
			<u> </u>	7,	
			<u> </u>	<u> </u>	
				 	
· ——					
				<u> </u>	
		 			
			 		
	-	 .	-		
				· · · · · ·	
		······································			
1. Were the co	orrect number	of standards ar	d blanks used t	to calibrate the in	strument? (res) No
		relation coeffic			No . 0, 9 4 5
If no, list a	ffected analyte	s and samples	:		
3. Was a CRE	L check samp	le (CRA) analy	ed at the begin	ning of each sar	nole run? (CLP only) Yes No
			nd at end of sec		Yes No
COMMENTS					
·					
Actions:					

1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

80-120%

٧

121-135%

>135%

R

2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

65-79%

J

UJ

<65%

R

R

Detected results

Non-detected Results

	MATRIX:	47-	<u> </u>			BATCH:	RS-ounty
st the highest posit	ive AND negative	e blank result	t >= DLI below	. Use one work	sheet for soil r	matrix and anoth	ner for water matrix.
Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action		Samples Affected
1/2 EC	 	ر د د	200	KC.			
C 🗘	CC34		582 1151	1975	U	2000	53(-4
ෙ	11		_/- 4		> でを		Rx. 2 90 ush
· -							U,01 w, Je
My_	acy 3		(25.1	7.02.5		7.	ن ۱۵ سی اد اد می اد
	 		<u> </u>	Jum.		ļ	· · · · · · · · · · · · · · · · · · ·
illa	53		11-12	50		1,,,,=	· · · · · · · · · · · · · · · · · · ·
	-C 13c1		21-68	(28-7	V.	7550	
	CL 13:2		0		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
N			2-58	121	<i>i</i> 1	1	
	6034		7,34	26-7	<u> 4</u>	0005	
NA	P3		-1300	651	18-5	0205	Sa-Die in mel
	1-1/6		-130.5	0,21	7	>24	3- 0.2
	1		22.	24+5%		- 3	
120	CC32		0237	0-34	u	0003	5.4416
	CC93		0.55	0-73			
					will		
Ng Zu	CC32	WILT	4.58.5	2294.5		404	~ U \ . WO~ > 5x
2~	CCBI		210	10.8	<u></u>		Ecolo 201-145 :0
							mg1L
						·	- 01 wor > 5x (5x-4/c Ley-145 in mg1L 5x 502
	<u> </u>			1	·		
:	1						877 -416 -762 /1
	1						11
	-					ļ	
						ļ	
ATTO MODELLA CONTRACTOR	1		<u> </u>	1	ND is a CDD!	<u> </u>	
OTE: Verify that th	ie absolute value	or any analy	rie concentration	on in the PB or	IVIB IS < CRDL	 	
rify e prep blank per r	matrix	~~~	pres E	0- 54	(, \		
ie crep blank per t			in the		<u> </u>		
B analyzed immed			*****				
B analyzed after							
eld/equipment/rins		zed? If so, in	clude above if	applicable to p	roiect.		
OMMENTS					-,	···	
							

Actions:

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * if blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

BATCH: RS-OULOIX

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

NOTE: The sample re equal to the concentrate			if the sample concer	ntrations of AI, Ca, Fe and Mg are less than or	
Examine the sample re	sults in ug/L and li	st any Al. Ca. Fe or Mg r	esults that are greate	er than the ICSA values.	
Sample ID	Analyte	Sample Result	iCS Value	Cómments	
(time				(~ 000 m - 0x 0 (24)	
@w~2	Fe	726	250		
		 			
				,	
List any analytes in the Analyte	R CS AB solution the	nat did not meet the crite Action		Samples Affected	
				・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	!		····		
				, , , , , , , , , , , , , , , , , , ,	
CLP Protocol Only	Ĺ				
Were Interference Che is more frequent)?	ck Samples run at Yes	No		sis run, or a minimum of twice per 8-hour shift (whiche	;ver
COMMENTS	···	(0 1	seguing	<u></u>	
L					
Actions:					
		PERCENT RECOV	/ERY		
		<50%	50-79%	80-120% >120%	
Detected results		R	J ·	V J .	
Non-detected results		R	111	VV	

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

usle

BATCH: RS-OUDDIY

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL| that should not be present

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample Result
		Nive	- Noodi	resort	, toball	7.0501	7.000.1	7.030.1
<u> </u>	(RL=1.0)	1694				,		
	(KT = 1.03							
mer			-					
1000	13.81	1 2/C					,	
								1
2~	5-31							
				· · · · · · · · · · · · · · · · · · ·				·
				<u> </u>	·			-
		<u>·</u>						
····								
·····								
				_				
	 				ĺ			
	1		· · · · · ·			.		<u> </u>
								1
								
	 							
	 " 							-
· · · · · · · · · · · · · · · · · · ·	 							<u> </u>
								
	 						<u> </u>	
	<u> </u>	l			l	1-20, 54 56	<u> </u>	L

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1. Estimate (J) detected results < = 5* |ICSA|.
- 2. Estimate (UJ) non-detected results.

Sample Name Method: IntSt User: admin Comment: 8-2	i4 Mode: CONC Custom ID1:	ired: 01/06/2004 1 C Corr. Facto Custom ID2	r: 1.000000	e: Unk n ID3:			
Line	ب المحارب ب 328.068 {102}	396.152 { 85}	As1890 189.042 {177}	As1937 193.759 {173}	Ba4554 455.403 { 74}	Ba4934 493.409 { 68}	
IS Ref	(Y_3710)	(Y_3710)	(Y_2243)	(Y_2243)	(Sc4246)	(Sc4246)	
Units	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.04594	88.63	2.8194	2.8806	.3518	.3459	
Stddev	.00058	1.28	.0390	.0364	.0063	.0026	
%RSD	1.2698	1.448	1.3828	1.2628	1.796	.7572	
#1	.04527	\$8.36	2.7754	2.8787	.3452	.3434	
#2	.04623	90.03	2.8525	2.8453	.3523	.3458	
#3	.04632	87.50	2.8292	2.9179	.3578	.3486	
Check? Value	None	None	None	None	None	None	
Range							
_							
Elem	Be3130	Ca3158	C23179	Cd2144	Co2286	Cr2677	
Line	313.042 {107}	315.887 {106}	317.933 {105}		228.616 {147}		
IS Ref	(Sc4246)	(Sc4246)	(Sc4246)	(Y_2243)	(Y_2243)	(Y_2243)	_
Units Avg	ppm	ppm	ppm	ppm 1.658	ppm .0497	ppm .1149	†
Stddev	.0053 .0001	184.0 .9	184.2 1.0	.011	.0006	.0029	i
%RSD	2.376	.4793	.5666	.6484	1.203	2.495	
701(31)	2.370	.4753	.5000	.0404	1.200	2.475	
.#1	.0051	183.4	183.0	1.646	.0492	.1123	
#2	.0054	185.0	184.9	1.664	.0564	.1180	
#3	.0053	183.7	184.7	1.664	.0496	.1145	
Check? Value	None	None	None	None	None	None,	
Range	·			7250			
Elem	Cu3247	Fe2382	Fe2599	K_7664	Mg2790	Mn2605	
Line	324.754 {103}	238.204 {141}	259.940 {129}	766.490 { 44}	279.079 {120}	260.569 {129}	
IS Ref	(Y_3710)	(Sc2552)	(Sc2552)	(Sc4246)	(Sc2552)	(Sc2552)	
Units	ppm	ppm	pem	ppm	ppm	ppm	7
Avg	9.3738	280.4	275.7	23.06	37.08	5.6982	,
Stddev %RSD	.0677	2.5	8280	.54	.40 1.077	.0500 .87679	
, MCSD	.72170	.8740	.8380	2.358	1.077	.01019	
#1	9.3234	278.6	273.0	22.49	36.70	5.6466	
#2	9.3474	279.3	276.9	23.10	37.04	5.7019	
#3	9.4507	283.1	277.1	23.58	37.50	5.7463	
Check? Value Range	None	None	None	None	None	None	
					•		

Metho User: 2	d: IntStd4 Mode: CON- admin Custom ID1: ent: 8-241149 @4x	ired: 01/06/2004 : C Corr. Facto Custom ID:	r: 1.000000	n ID3:	·	
Elem Line IS Ref Units Avg Stodev %RSD	.00915 .00061	588.995 { 57} . (Sc4246) ppm 208.2 3.5	Ni2216 221.647 {152} (Y_2243) ppm .22237 .00054 .24138	Pb2203 220.353 {152} (Y_2243) ppm 4.6103 .0359 .77867	Sb2068 206.833 {162} (Y_2243) ppm 1810 .0069 3.799	Se1960 196.090 {171} (Y_2243) ppm .00148 .00289 195.52
#1 #2 #3	.00885 .00985 .00876	204.6 208.5 211.5	.22179 .22284 .22248	4.5719 4.6161 4.6430	1736 1872 1823	.00433 00145 .00156
Check Value Range	? None	None	None	None	None	None
Elem Line IS Ref Units Avg Stddev %RSD	ppm 49.20 1.31	190.864 {175} (Y_2243) ppm 0106	V_2924 292.402 {115} (Y_3710) ppm .0487 .0021 4.375	Zn2062 206.200 {163} (Y_2243) ppm 21.302 .405 1.9006	7	
#1 #2 #3	47.72 50.21 49.66	0115 0100 0102	.0469 .0511 .0482	20.909 21.718 21.278		
Check Value Range	? None	None	None	None	•	
Int. Sto Line • Units Avg Stddev %RSD #1 #2 #3	255.237 {132} Cts/S 5.0667 .0404	424.583 { 79} Cts/S 62.662	Y_2243 224.306 {150} Cts/S 44.703 .254 .56780 44.415 44.800 44.894	Y_3710 371.030 { 90} Cts/S 604.43 .27 .04417 604.34 604.23 604.74	. •	. ·
п э	5.0236	01447	77.024	00-1.7-1		

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX: Has BATCH: L8-040018

	neters that do r e for soil samp					gestion spike re	ecovery criteria are not evalu	ated for Ca, Mg, k	ζ,
	result exceed:					aken.			
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added		Action	Samples Affe	cted	
<i>0</i> 00 }	As	157	12-2	رىن	144-2		1~1	DO 144	7
	Re	68-3		50	136.7	1		ic i	
	<i>O</i> 's.	202	426	(50	1597			162	
	ري'	83.8	11,25	50	145.5		·	144	_
	Ah	71-92	2-14	20	1786			138	
	-17	25.35	4.00	1.	1412			iul	_
	V	232	4).7	دد کر	141-7		· · · · · · · · · · · · · · · · · · ·	145	_
									4
000,2	14				151.7		-25- min		4.
	<u> </u>			<u> </u>		<u> </u>	Risped 9	· Teb from te	∴ * '
-							 		4
									\dashv
(۱)	IN TO POST						***		\dashv
	756 (1)				· · · · · · · · · · · · · · · · · · ·				┥
									┥.
				 				·	\dashv
				 					-
									7
				-					┪.
									7
									7
									7
Was a promore frequent		trix spike prep No	ared at the re	quired frequen	cy of once eve	ry 20 samples	, or every SDG (whichever is		
	st-digestion ma trix spike recov		alyzed for all I		except Silver, t	hat did not me	et the pre-	310	
3. Was a ma	atrix spike prep	ared for each	different sam	ole matrix?	Yes	No	10000 200 per	ا ورد	\Box
COMMENTS	5) (2	フダメ					6.7 does	1~,	_
							change	4-13	_
<u> </u>					<u> </u>				_
							······································		╛
	alyte does not r	neet the % R	criteria, qualif	y all associated	d samples usir	ng the following	g criteria:		
Actions:			_	EDOENT DEA	OVERY				
			< 30%	ERCENT REC 30-74%	75-125%	> 125%	•		
	Detected resu	lts	- 30 % J	J	V	J - 12576	•		
	Non-detected		R	กา	. V	V			

<u>Note</u>

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

	note Februs when of S.	wir redi-ited	Er Siere / brb	دار ه (د	rt
المرادة عيم محركة عيم	gratificate sistemy	(2003 mg/h	nis obsul		Inorg98.xls
	us Z du rem	~ 2(2 - 3k	e 6-4 so-4	ses of for	_

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

P8-040018 BATCH:

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
03	دک	२०४	11 44	23.4	_		
	<u> </u>	<u>4276</u>	255	222		7	
	- رر	درروج	2.91		42		
01	IC Buc >						
	IW.						
					······································		
		<u> </u>					
·							
		<u> </u>					
		·			· .		
				·			
		· · · · · · · · · · · · · · · · · · ·	<u> </u>				
	·		<u> </u>			<u></u>	1
1							<u> </u>
MMENTS							
							

Αı	tions	

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result|

Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	423			BATCH: KS - 04 60	-გ
List all paramete	ers that do not	meet the percent	recovery criteria				
LCS ID	Analyte	True Value	Found Value	% R	Action	Samples Affected	i
Frem 3	Be	1357	787-37	75%	ブル		
		1000					
	76	50.0	3986.4	ر ه ۲۰		٠ معادر رح.	· 16-7
		1.5				. بعد روح. درم	· +> £0
ICO 116						1~120	
					·		
							······································
		 					
						· · · · · · · · · · · · · · · · · · ·	
		1					
	ļ						·
							·
ļ						· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	 -
Note:	!	_ f	<u> </u>		L		
	me matrix as	samples must be	prepared for each	h SDG			
COMMENTS	1) O	LCS For		CPM2	Roru	~ 1/21/24	
COMMENTS	1/0	<u> </u>	11/7		2010	112(15)	
		دي لمحادث		(,,	مدي		
		203 701	~~ <u> </u>	14	7.03	<u>;</u>	_
							· · · · · · · · · · · · · · · · · · ·
Actions:							
Exception: Anti	mony and silv	er have no contro	l limits. An aque	ous LCS is not i	required for CN a	nd mercury.	
				PERCENT	T RECOVERY		-
1. AQUEOUS			<50%	50-79%	80-120%	>120%	
Detected results			R	J	V	J	•
Non-detected re	esults		R	UJ	V	V	
2. SOLID LCS						,	
Recoveries stip	ulated by EMS	SL.					
			BELOW .		WITHIN	ABOVE	
		•	CONTROL LIMITS		CONTROL LIMITS	CONTROL LIMITS	
Detected results	\$		J	•	V .	J	
Non-detected re			UJ		V	V	
				•			

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

	riteria only appli		Sample	Serial Dilution			
Analyte	IDL	50*1DL	Results	Result	% D	Action	Samples Affected
ICA~	} -						01C _30 K
3 II				·			
正にあり	->						
· · · · · · · · · · · · · · · · · · ·							
				 			
		·					
				1			
			·····				
				 			
				 			
		· ·					
	-			 			
				-			
· · · · · · · · · · · · · · · · · · ·							
· · · · · ·	 			 			
	<u> </u>			 			
· · · · · ·					·		
			-				
							·
· .]			<u> </u>			
UCTIVELY	COUPLED PLA	SMA SERIAL	DILUTION AN	NALYSIS:	-1 1 -1	and data!	·
				of the diluted sam; No		greed within	
al dilutions	were not perform	ned for the fol	lowing:				
MMENTS							
				,		···· ·· ·	
		······					

Actions:

Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected ard sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH:	28-04031	۲

					1-20-004	
1. Describe any raw o	cata anomalies (i.e., paseime snins, r	negative absorbances, tran	scription or calculati	on errors, legiolity, etc	•
	· · · · · · · · · · · · · · · · · · ·					
					· · · · · · · · · · · · · · · · · · ·	
		<i></i>	ne.			
						·
List results that fall were not reanalyzed.	outside the line	ar range of the ICP is	nstrument or the calibrated	range of the AA or	Cyanide instrument, ar	nd ·
3,	<i>چ</i> ،	- ples e	د ۱۰-۱۰۵۰	24 ., 47		
	·-···					
				·		
	-				·	
3. Were ICP linear ra	nges obtained w	vithin 3 months of, an	nd preceding, the sample a	nalyses? Ye	s No	(A)
Were ICP interelen	nent corrections	obtained within 12 n	nonths of, and preceding, t	ne sample analyses	? Yes N	lo (NA)
5. Were instrument de preceding, the sample		resent, found to be le	ess than or equal to the CR No	DL, and obtained wi NA	thin 3 months of, and	· · · · · · · · · · · · · · · · · · ·
6. Were all sample re	sults reported d	own to the IDL if runi	ning CLP protocol?	Yes	No	NA
7. Were all sample re	esults reported d	own to MDL if runnin	g SW-846 methods?	(fee	. No	NA
8. Were sample weig	hts, volumes, pe	ercent solids, and dilu	utions used correctly when	reporting the results	? Kes\	No
			· · · · · · · · · · · · · · · · · · ·			
COMMENTS	- 1 1	<u> </u>	8-821 × 7=	12x e	127-	.
		·				
	(2	<i>⊙</i> ∪∪ <i>Ч</i>	487 82	= 177-6	(+) ~	
·			······			
						
			<u> </u>			
		·		· · · · · · · · · · · · · · · · · · ·	·	
1		· · · · · · · · · · · · · · · · · · ·				

Diff. Between EDD + Rew Date Park

Date Peak

DEOD has B quals for per pack, Fesch between the anotyt pack, however, Formal closes not.

BAY results on EDD in uglk suft form (his mg/k CA, K, M, & N9 in mg/k

Slight rounding a difference of sind over 6.43 vs. 604

our Fire 1296 130 vs. 129.8

LABORATORY SERVICES PROGRAM

CERTIFICATE OF ANALYSIS

SAMPLE NUMBER: 8-211149

DATE-TIME SAMPLED: 12/12/03 14:15

MATRIX: WATER

STATION ID: GW-02

PROJECT: ARGO SMELTER 04-18

ULSA NUMBER: 04-18

TEST: TR-METALS

(AACV) 5 E

ANALYSIS COMPLETE DATE: see below

ANALYST: (ICP) SBW

(ICPMS) SBW

LAB NUMBER: 03-E002562

REMARKS: ICP-OE and ICP-MS analysis required a 4x dilution.

Mercury analyzed at a 2x dilution. Detection limits

raised.

METHOD	PARAMETER	RESULT	COMP DATE
7470	AACV GROUP Mercury ICP MS GROUP	AACV MERCURY 17.7 ICPMS RESULTS	1/ 7/04 5 1/ 7/04
200.8	Antimony	40.1	
200.8	Arsenic	11600	•
200.8	Beryllium	26.1	,
200.8	Cadmium	7400	
200.8	Lead	15800	
200.8	SELENIUM	39.4	
200.8	Silver	219.	
200.8	Thallium	300.	·
200.8	Vanadium	541.0 %.	3/5/01
000 7	ICP GROUP	ICP RESULTS	1/ 6/04
200.7	ALUMINUM	354500	
200.7	BARIUM	1410	
200.7	CALCIUM *	736.80 459.6	
200.7	CHROMIUM COBALT	199.	
200.7	COPPER	37495.	
200.7	IRON	1102800	·
200.7 200.7	MAGNESIUM *	148.3	
200.7	MANGANESE	22792.8	
200.7	NICKEL	889.5	
200.7	POTASSIUM *	92.2	
200.7	SODIUM *	832.8	
200.7	ZINC	85208.	

LABORATORY SERVICES PROGRAM

CERTIFICATE OF ANALYSIS

SAMPLE NUMBER: 8-211136

DATE-TIME SAMPLED: 12/18/03 13:10

MATRIX: WATER

STATION ID: 0003

ULSA NUMBER: 04-18

PROJECT: ARGO SMELTER 04-18

MEST: TR-METALS

ANALYSIS COMPLETE DATE: see below

ANALYST: (ICP) SBW S.W.

LAB NUMBER: 03-E002563

(AACV) 5F (ICPMS) SBW

REMARKS: ICP-OE and ICP-MS analysis required a 4x dilution.

Mercury analyzed at a 2x dilution. Detection limits

raised.

METHOD	PARAMETER	RESULT	COMP DATE
	AACV GROUP	AACV MERCURY	
7470	Mercury	0.10 U.	
200.8	ICP_MS GROUP Antimony	ICPMS RESULT	S 1/7/04
200.8	Arsenic	12.2	
200.8	Beryllium	< 2 UJ	
1 200.8	Cadmium	908.	•
200.8	Lead	42.6	,
200.8	SELENIUM	11.0	•
200.8	Silver	2.19	,
200.8	Thallium	4.68	
200.8	Vanadium	47.4	,
	ICP GROUP	ICP RESULTS	1/ 6/04
200.7	ALUMINUM	27150	
200.7	BARIUM	414.	
200.7	CALCIUM *	360.12	
200.7	CHROMIUM	< 4	·
200.7	COBALT	31.6	
200.7	COPPER	153.3	
200.7	IRON	25676.	
200.7	MAGNESIUM *	53.04	· .
200.7	MANGANESE	5691.2	
200.7	NICKEL	56.2	
200.7	POTASSIUM *	11.2	
200.7	SODIUM *	899.6	· ļ
.200.7	ZINC	11170.	

LABORATORY SERVICES PROGRAM

CERTIFICATE OF ANALYSIS

SAMPLE NUMBER: 8-246851

DATE-TIME SAMPLED: 12/18/03 13:15

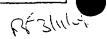
MATRIX: WATER

STATION ID: 0005

PROJECT: ARGO SMELTER 04-18

ULSA NUMBER: 04-18

TEST: TR-METALS


(AACV) 5€

ANALYSIS COMPLETE DATE: see below (ICPMS) SBW

ANALYST: (ICP) SBW S.W. LAB NUMBER: 03-E002564

REMARKS: Mercury analyzed at a 2x dilution. Detection limit raised.

METHOD	PARAMETER	RESULT	COMP DATE
7470	AACV GROUP Mercury	AACV MERCURY	1/ 7/04
7470	ICP MS GROUP	ICPMS RESULTS	1/7/04
200.8	Antimony	138.	
200.8	Arsenic	41.4	j
200.8	Beryllium	22.1	İ
200.8	Cadmium	24.8	
200.8	Lead	19.1	· ·
200.8	SELENIUM	83.4	
200.8	Silver	35.2	
200.8	Thallium	30.0	
200.8	Vanadium	< 3	
	ICP GROUP	ICP RESULTS	1/6/04
200.7	ALUMINUM	< 10	
200.7	BARIUM	637.	
200.7	CALCIUM *	0.09	
200.7	CHROMIUM	< 1	
200.7	CCBALT	183.	
200.7	COPPER	6.4	
200.7	IRON	283.	
200.7	MAGNESIUM *	13.55	·
200.7	MANGANESE	89.4	
200.7	NICKEL	6.3	•
200.7	POTASSIUM *	17.6	
200.7	SODIUM *	1 0.1	,
200.7	ZINC	129.8	

LABORATORY SERVICES PROGRAM

CERTIFICATE OF ANALYSIS

SAMPLE NUMBER: 8-246852

DATE-TIME SAMPLED: 12/12/03 14:15

MATRIX: WATER

STATION ID: GW-01

PROJECT: ARGO SMELTER 04-18

TEST: D-METALS

ULSA NUMBER: 04-18

ANALYST: (ICP) SBW S.W.

ANALYSIS COMPLETE DATE: see below

(AACV) SE (ICPMS) SBW

LAB NUMBER: 03-E002560

REMARKS: ICP-OE and ICP-MS analysis required a 2x dilution.

Mercury analyzed at a 2x dilution. Detection limits

raised.

METHOD	PARAMETER	RESULT	COMP DATE
7470	AACV GROUP Mercury	AACV MERCURY < 0.06	
200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8	ICP_MS GROUP Antimony Arsenic Beryllium Cadmium Lead SELENIUM Silver Thallium Vanadium	ICPMS RESULTS 2.46 32.8 < 1 8.73 2.30 10.6 < 0.4 0.62 12.5	3 1/ 7/04
2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7 2CO.7	ICP GROUP ALUMINUM BARIUM CALCIUM * CHROMIUM COBALT COPPER IRON MAGNESIUM * MANGANESE NICKEL POTASSIUM * SODIUM * ZINC Harchess	ICP RESULTS 108. 25.0 382.00 < 2 13.6 < 8 25820. 60.90 8187.6 36.6 14.4 764.0 1239.5 1200	1/ 5/04

LABORATORY SERVICES PROGRAM

CERTIFICATE OF ANALYSIS

SAMPLE NUMBER: 8-246511 DATE-TIME SAMPLED: 12/18/03 13:10

MATRIX: WATER STATION ID: 0004
PROJECT: ARGO SMELTER 04-18 ULSA NUMBER: 04-18

TEST: D-METALS ANALYSIS COMPLETE DATE: see below

ANALYST: (ICP) SBW >W' (AACV) SE (ICPMS) SBW

LAB NUMBER: 03-E002561

REMARKS: ICP-OE and ICP-MS analysis required a 2x dilution.

Mercury analyzed at a 2x dilution. Detection limits

raised.

C

METHOD	PARAMETER	RESULT -	COMP DATE
	AACV GROUP	AACV MERCURY	1/ 7/04
7470	Mercury	< 0.06 ICPMS RESULTS	3 1/ 7/04
200.8	ICP_MS GROUP Antimony	< 2	5 1/ //04
200.8	Arsenic	3.2	
200.8	Beryllium	< 1	
200.8	Cadmium	1770	
200.8	Lead	1.35	
200.8	SELENIUM	7.1	
200.8	Silver	< 0.4	
200.8	Thallium	2.03	
200.8	Vanadium	12.1	
	ICP GROUP	ICP RESULTS	1/ 5/04
200.7	ALUMINUM	63.	
200.7	BARIUM	36.4	
200.7	CALCIUM *	375.60	•
200.7	CHROMIUM	< 2	
200.7	COBALT	35.8	
200.7	COPPER	30.6	
200.7	IRON	261.	
200.7	MAGNESIUM *	48.28	
200.7	MANGANESE	5421.4	
200.7	NICKEL	30.3	
200.7	POTASSIUM *	9.9	
200.7	SODIUM *	877.0	
200.7	ZINC	10322.	
SM 2340B	Hardness	1140	

ROUND 2: GROUNDWATER VALIDATION REPORTS

SDG: D4E040112 **SDG:** D4E260121 **SDG:** D4G010356 **SDG:** D4G280388 this page left intentionally blank

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4G010356

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4G010356 from Severn Trent Laboratories, Inc. This report consists of the validation of five total and four dissolved water samples collected on July 1, 2004 and analyzed on July 13 and 22, 2004 for ICP metals; July 12, 2004 for ICPMS; and on July 14, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
MW-33-070104 (total)	D4G010356-001
MW-33-070104 (dissolved)	D4G010356-001
MW-34-070104 (total)	D4G010356-002
MW-34-070104 (dissolved)	D4G010356-002
MW-31-070104 (total)	D4G010356-003
MW-32-070104 (total) ⁺	D4G010356-004
MW-32-070104 (dissolved) +	D4G010356-004
MW-30-070104 (total)	D4G010356-005
MW-36-070104 (dissolved)	D4G010356-006

[†] denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Validated By:

Bill Fear

D4G010356m

Reviewed By

Lisa Tyson

Samples MW-32-070104 (total) and MW-32-070104 (dissolved) were randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
- * Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery criteria.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample MW-33-070104 (total and dissolved).

All MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that recoveries for aluminum were outside the laboratory percent recovery QC limits. No action was taken on these results because the recoveries were within 75-125%.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%. The RPD for dissolved mercury at 14% was flagged as exceeding the laboratory QC limit of 10%. No action was required.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on MW-33-070104 (total and dissolved).

All %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the
 associated value. The associated value is either the sample quantitation
 limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

BATCH: DYGO103r6

	List all analytes which do not	meet holdi	ng time criter	ia	JCP	H5	Trace	FCPM	S .	
	Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	→CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
t	MOIOFO-CELUMI	452	Δ	7-1-04	7-22-0-	7-14-09	7-13-04	7-12-04	-0-	None
۲	MU-37.						-			
3	mu-31.					4		\		•
Ц	mu-32.					<u> </u>				
ς	mu-31. mu-32. mu-30	1	<u> </u>	ą,			4	<u> </u>		
										
	Dissolvez									
l	mw-33	420	17	7-1-04	7/22/2	7-14-04	7/13/04	7-12-04		
2	mw-37			1						
4	MW-32									
٤	Mu1-36	₩.	<i>V</i>	nd n	-	4	1	<u>b</u>		
										· · · · · · · · · · · · · · · · · · ·
		<u> </u>								
	· · · · · · · · · · · · · · · · · · ·	ļ								
		ļ				<u> </u>	<u> </u>	ļ	<u> </u>	
										
		 								<u> </u>
	<u> </u>						<u> </u>			
	COMMENTS 2.7'L			<i>F111</i>	<u>, ~</u>	imus	, 2	C+0		
						1 (<u> </u>		<u> </u>	
		-			_	ر دل	#4			
	Actions:						·		 	
	I holding times are exceeded,	all sample re	sults are estim	ated (J)/(UJ).					,	

 i holding times are grossly exceeded (>=2"noiding time), detected results are estimated (J), and non-detected results are rejected (R).

	Validated by: Bull-	Date:
<u>Preservatives:</u> A. Preserved w/HNO3 and cooled to 4°C	Review By:	Date:
B. Cooled to 4°C	6. Phs.	

ANALYTE	HOLDING TIME	PRESERVATIVE	
		AQUEOUS	SOIL
Me als	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Me cury	28 days	pH < 2 w/HNO3, 4 Deg. C	. 4 Deg. C
Cynnide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C

Holding Time = Analysis Date - Collection Date

C. No Preservative

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

IIA. INORGANIC ANALYSIS WORKSHEET -- ICP CALIBRATIONS

BATCH: DYGOID 350

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	% R	Action	Samples Affected
·				***************************************		DU W/W 90-401
					 	ICP /
		<u> </u>				True
	 		<u> </u>		-	Iclas
						20142
					1/-5/	
		 			12	
		ļ		 -		
	 					
					ļ	
			<u> </u>			
		<u> </u>				i
				<u> </u>		
			-		<u> </u>	
						· .
					1	
		<u> </u>				
						
					-	
				<u> </u>		
	- 				 	
6		L				
	every 10 sample				Yes No	
	k sample (CRI) a	analyzed at the	beginning and a	t the end of ea	ach sample run (Cl	
MENTS						(e) -
						
			···.			·

ICV/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

IIC. INORGANIC ANALYSIS WORKSHEET -- Hg CALIBRATIONS

BATCH:	Dide	01034	Ų

CCA	TRUE	Found	% R	Action		Samples Affected	
				none	1	- 80-120	
					·		
						•	
			_				
						·	
						•	
Were the c	orrect number	of standards an	d blanks used	to calibrate the in	nstrument? Y	(és) No	
Is the initia	l calibration cor	relation coeffici	ent > 0.995?	(Yes)	No	०-९९९९	
If no, list	affected analyte	es and samples				•	
Was a CR	DL check samp	ole (CRA) analyz	ed at the begi	nning of each sa	mple run? (CLP or	ıly) Yeş No	
CCV run a	fter CRA, every	ten samples ar	nd at end of se	quence?	Yes	No	
OMMENTS							
tions:							

	<65%	65-79%	80-120%	121-135%	>135%
Detected results	Ř	J	٧	J	R
Non-detected Results	R	UJ	V	V	V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

	MATRIX:	1/2 3)			BATCH:	DEHOUSER	
List the highest posi				. Use one work	sheet for soil r		other for water matrix.	
	ICB					100.000		
Analyte	CCB PB/MB	. IDL	Blank Conc.	5 * Bl. Conc.	Action		Samples Affected	
	P3 0						Q RC	
	PB-T	/	(V:V)					
	ICB	₹ ∠	1	10 -		-		
	CCD	7 (1					
								\neg
								\neg
					- /			
						1.1		
						1		\neg
					/			
						37		
						/		
-								
					•			<i>.</i>
]
				<u></u>				
NOTE: Verify that t	the absolute val	ue of any ana	lyte concentrati	on in the PB or	MB is < CRDL	•	\	
<u>Verify</u>								
One prep blank per	matrix							
One prep blank per	batch							
ICB analyzed imme	diately after IC\	J						
CCB analyzed after	each CCV.							
Field/equipment/rin	sate blanks ana	lyzed? If so,	include above i	f applicable to p	oroject.			
COMMENTS								

Actions:

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* [Blank] are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: DYG U0356

NOTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca, Fe or Mg results that are greater than the ICSA values. Sample ID Analyte Sample Result ICS Value Comments サイ てもり コセシエ List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R. Analyte Action Samples Affected 80-12011 NA 1 CSA

		<u> </u>	
CLP Protocol Only Were Interference Check Samplis more frequent)? Yes	es run at the beginning and er No	nd of each sample analysis run, or	a minimum of twice per 8-hour shift (whichever
COMMENTS			
			1930
	•		
Actions:			

PERCENT RECOVERY

	<50%	50-79%	80-120%	>120%
Detected results	R	J	V	J
Non-detected results	· R	UJ	٧	V

V	INOPGANIC	ΔΝΔΙ ΥΟΙΟ	MORKSHEET	PRE-DIGESTIC	INI MATRIY SPIKE
v.	INURGANIC	ANALISIS	WORKSHEEL	FRE-DIGESTIC	IN MAIRIA SPINE

BATCH:

Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
017	14				120		w/: ~ 35~25
					121		ash side 100
010	Hey					ند	
						1	
		<u> </u>		1	 		
		<u> </u>		<u>. </u>		NIC	
				1			
							·····
}				1			
				<u> </u>			·
							<u> </u>
				 			
		<u> </u>		1.			
		ļ			 .	<u> </u>	
		ļ					
		<u> </u>		1			
	 			<u> </u>			
					<u> </u>	1	· · · · · · · · · · · · · · · · · · ·
		<u> </u>		1	·	<u> </u>	
			ared at the re	equired frequenc	y of once eve	ery 20 samples,	or every SDG (whichever is
nore frequen				100			A. W
Was a pos ligestion mat	st-digestión m rix spike reco	atrix spike ana very criteria?	alyzed for all: Yes	ICP elements, ex		that did not mee	et the pre-
		pared for each			Yes	No	
OMMENTS							
	·						

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

PERCENT RECOVERY

	< 30%	30-74%	75-125%	> 125%
Detected results	J	J	V	J
Non-detected Results	R	UJ	V	V

Note

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET - LABORATORY DUPLICATES

ample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
010	49			(4			<23
							100 ming 1071.
			 				
					 -		
			-		 -		4.61.13
	·				<u> </u>		/US/MID
			<u> </u>	 	ļ		
			 		<u> </u>		
			<u> </u>				105 91- 141
						-011	
						1	
					-		
	·				7,	\bigcirc / \bigcirc	
					1		
···			1				
					-		
					 		
·			 		-		
			 		-		
			 		<u> </u>		
			1	.	ļ ·		
				····			
		<u> </u>	<u> </u>		<u> </u>		
·					<u> </u>		
MMENTS							

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2°CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	420	<u> </u>		BATCH:
List all paramete	ers that do not r	neet the percent	recovery criteria.		· · · · · · · · · · · · · · · · · · ·	
LCS ID	Analyte	True Value	Found Value	:%R	Action	Samples Affected
73	tel					80-120
						7
0	ارج عاسو					- 60-11º
	!					
				·	1	
		 	 		/ /	
		+	 		57	
					1	
		 	 		\smile	
			 		 	
		 				
		 	 	 -	 	
			 			
		<u> </u>	-			
	<u> </u>	 	 			
		 			 	
		 	 		 	<u> </u>
		 	 		 	
		 	 	 	ļ	
	l	<u> </u>	<u> </u>		<u> </u>	<u> </u>
Note:						
	me matrix as s	amples must be	prepared for each	SDG.		· · · · · · · · · · · · · · · · · · ·
COMMENTS						
						
				······		
Actions:	mony and cilyo	r have no control	l limits. An aqueo	us LCS is not	required for CN	and mercuny.
Exception: And	mony and silve	Thave no control	mine. An equeo			and meredity.
					T RECOVERY	
 AQUEOUS Detected results 	•		<50% R	50-79% J	80-120% V	>120%
Non-detected re			Ŕ	ÚJ	v	V
2. SOLID LCS	ulated by EMSI					•
Recoveries stip	niated by EMSI	_	BELOW		WITHIN	ABOVE
			CONTROL		CONTROL	CONTROL
			LIMITS		LIMITS	LIMITS
Detected results			J		V	J
Non-detected re	esults		UJ		V	v

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

	MATRIX:		· · · · · · · · · · · · · · · · · · ·	·		BAT	CH: DU (1010376
Serial dilution o	riteria only appl	ies if the origin:	al sample res	ult is at least 50*	IDL and %D:	> 10%.	
Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
Ba	0.77	(6.3	2173	504	(-2	<u> </u>	not reporting < RE
W-0	0,50	23	32	50~	[0,2		10×1= 00 26
						 	
				ļ	- /	100	
	 			<u> </u>			
	ļ					<u> </u>	
					<u> </u>		
	ļ ·				ļ	 	
	ļ				 		
	<u> </u>				 	 	
					<u> </u>		
				1	 	 	
							
				<u> </u>]		
	COUPLED PLA					·	
ten percent of t	the original undi	iluted analysis.	(Yes /	of the diluted sar No	nple analysis	agreed within	
Se ial dilutions	were not perfor	med for the fol	lowing.				
CCMMENTS							
							· · · · · · · · · · · · · · · · · · ·
						·	

Actions:

Estimate (J) detected results if %D is > 10%.

NCITES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: Die Col:	53 TG	
1. Describe any raw data anomalies (i.e., baseline shifts, negative absorbances, transcription or calculation errors, legib	vility, etc.	
		_
List results that fall outside the linear range of the ICP instrument or the calibrated range of the AA or Cyanide instrur were not reanalyzed.	nent, and	
3. Were ICP linear ranges obtained within 3 months of, and preceding, the sample analyses?	No I	NA
4. Were ICP interelement corrections obtained within 12 months of, and preceding, the sample analyses? (ves)	No N	۱A

5. Were instrument detection limits present, found to be less than or equal to the CRDL, and obtained within 3 months of, and preceding, the sample analyses?

Yes

No

NA

6. Were all sample results reported down to the IDL if running CLP protocol? Yes No NA

7. Were all sample results reported down to MDL if running SW-846 methods? Yes No NA

8. Were sample weights, volumes, percent solids, and dilutions used correctly when reporting the results? Yes No

COMMENTS

100% couplete-

DATA VALIDATION REPORT

To:

Jennifer Walter – Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4E260121

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4E260121 from Severn Trent Laboratories, Inc. This report consists of the validation of three total and four dissolved water samples collected on May 21 and 24, 2004 and analyzed on June 1 and 4, 2004 for ICP metals; June 19, 2004 for ICPMS; and on June 6, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Nümber
MW-33-052104 (total)	D4E260121-001
MW-33-052104 (dissolved)	D4E260121-001
MW-34-052104 (total) [†]	D4E260121-002
MW-34-052104 (dissolved)	D4E260121-002
MW-36-052104 (total)	D4E260121-003
MW-35-052404 (dissolved)	D4E260121-004
MW-36-052404 (dissolved)	D4E260121-005

⁺ denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Validated By:

Bill Fear

D4E260121m

Opularied By

Lisa Tyson

Samples MW-34-052104 (total) and MW-34-052104 (dissolved) were randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
 Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples) Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

<u>Calibrations</u>

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery with the exception of recoveries for beryllium (110.9%, 110.9%, and 114.5%) and thallium (112.1%) in CCV standards bracketing the samples. No action was required as beryllium and thallium were non-detected in the associated sample analyses.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks with the exception of arsenic in one CCB at 0.118 ug/L. No action was required as the sample results were non-detected or greater than five times the blank value. All non-detected results were

reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The results for calcium in the full validation samples MW-34-052104 (total) and MW-34-052104 (dissolved) exceeded the ICSA value of 500 ppm.

The following sample results were qualified as estimated (J/UJ) because the calcium result was greater than the ICSA value and the absolute value of the associated element was greater than the MDL in the ICSA analysis:

• Silver, vanadium, and cadmium in samples MW-34-052104 (total) and MW-34-052104 (dissolved)

Silver and vanadium were reported in the ICSA at -6.2 ug/L and -8.5 ug/L, respectively, which exceeds the positive MDLs of 0.7 ug/L and 2.6 ug/L. Non-detected results are qualified as estimated for negative ICSA values. Cadmium was reported at 2.04 ug/L, which exceeds the MDL of 0.028 ug/L. Detected results less than five times the ICSA value are qualified as estimated.

No action was required for additional analytes reported above the MDL in the ICSA, as the sample results were greater than five times the ICSA value.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on samples MW-33-052104, MW-34-052104, and on a sample from another SDG.

The following detected sample results were qualified as estimated (J) because the associated spike recoveries at 133% and 135% recoveries were greater than 125%:

 Total aluminum in samples MW-33-052104, MW-34-052104, and MW-36-052104.

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that recoveries for total beryllium and thallium were outside the laboratory percent recovery QC limits. No action was taken on these results because the recoveries were within 75-125%.

The post-digestion spike recovery for antimony was within QC limits. Post digestion recoveries do not effect sample qualifications.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on samples MW-33-052104, MW-34-052104, and on a sample from another SDG.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

• Total arsenic in samples MW-33-052104 and MW-36-052104.

The serial dilution result for arsenic was not flagged by the laboratory. All other %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

DU 5260121-	ا دا	5	26.	2\C	1	_
-------------	------	---	-----	-----	---	---

BATCH: DUEZEO (2)

List all analytes which	do not meet holdi	ng time criter	ia	IC 20					
Sample ID		List Pre- servative	Date Collected	*Metals Analysis	*Hg CVAA Analysis	ON Analys is Date	Anaiysis	No. of Days Past Holding	Action
(7041)		(A, B, C)		Date/s	Date		Date/s	Time	
MW-33-05216	ou Hu	Krus	5/27/04	6/4	نوالهامير	نه/ر	لوارح	-0-1	bre
المرسدي مرز	ſ			l Į	}			\	
MU-36 ,		\		1	1	1	₩.		
NU-35252	404		Starly						
00		V	4						
30	<u> </u>		<u> </u>		-			<u> </u>	
(Dissolve 1)		 						 	,
mu-32-057	2104 14-3	A	5/21	614	6\C	ددار	(e \x.5		······································
		<u> </u>	1	1	- 10	<u> </u>	(.		
WN-24-05	2.54		5/24	 		 	1	 	
Mw-36-061		 	1 L	 		1			
W 17- 70-011		ļ	 	- V	4	d,	V		
				 				<u> </u>	
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	
				ļ				-	
			ļ					 	· · · · · · · · · · · · · · · · · · ·
	له ده ری			12 12	As V	1; 7	ļ	ļ	
700	ai, C-4, F	E, M4	16, -1	1.9		L		<u> </u>	
			<u> </u>						
Ferms	S, A	, be	50	てし					
								<u> </u>	
			· · · · · ·						
COMMENTS		 	<u> </u>		<u> </u>		·	 .	·
نون د	DB 6020 1	74254	•	→ · ·	۲۰۰				
	-,	· - · · · · · · · · · · · · · · · · · ·	**************************************						
	 				F.1	Voli	zeku-	٥٠	
Actions:					101				
If holding times are ex If holding times are gro				e are		~~34.	-052130	127	7)
estimated (J), and non-de			delected result	.5 616					
					Validated by:	© - •	\sim		Date:
D		_				Du			
Preservatives: A. Preserved w/HNO3 ar	nd cooled to 4°C ≈				Review By:	1			Date:
B. Cooled to 4°C						L, 72 <	ر در د	<u> </u>	
C. No Preservative						Bie L. 775			
ANALYTE	HOLDING T	TRAC	PRESERVAT	FIL/E					
CIAULIE	חטבטויוק ו	IIVIG	AQUEOUS	IVE		SOIL	1		
Metals	180 days		pH < 2 w/HN0	03, 4 Deg. C		4 Deg. C	1		
Mercury	28 days		pH < 2 w/HN0			4 Deg. C]		
Cyanide	14 days		pH > 12 w/Na	OH, 4 Deg. C		4 Deg. C			•

Cyanide 14 days Holding Time = Analysis Date - Collection Date

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

BATCH: DIEZWIZL

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (ICV)

Analyte	ICV CCV	TRUE	Found	% R	Action	Samples Affected
Be	CCYZ	50	53.45	7.011	つりつめ	(() = 2/1/2
	(C13		55.44	113.9		7
V	· <u>አ</u>	7	57.23	114.5		& WI Diss
77	CCAR	7	563	112-1	4	
	<u> </u>					Be 4-71-00
.						BE & TL -NO in essoriales sample
			<u> </u>			
					· .	
·····						
					_	
	<u> </u>		<u> </u>			•
						
						
 .						
						*
						57.23/50 = 110.40
			-			
			-			
I sup offer CD!	, every 10 sample	s and at end a	of coguences? (C	I Ponty) A	es No	
	k sample (CRI) ar					LP only)? Yes No
MENTS		<u> </u>				(5
· · · · · · · · · · · · · · · · · · ·		-				-

ICV/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH: (JYE	260121
----------	-----	--------

List all mercury results that did not meet the percent recovery criteria for the ICV and/or CCV standard.

CCV	TRUE	Found	% R	Action		Samples Affected
					ر_ايب	80-120-1.
		,				
				7 0		
			/	12		
				70		
				1		
		··				
				· T		•
					. .	
		.	-			
				,		
Nere the c	orrect number	of standards and	blanks used t	o calibrate the ins	trument? (Ye	es) No
s the initia	l calibration co	relation coefficie	nt > 0.995?	es No		993
If no, list	effected analyte	es and samples:				
			ed at the begin	ning of each sam	ple run? (CLP onl	y) (Yes) No
		ten samples an			Yes	No V
MMENTS			····			
						

Actions:

PERCENT RECOVERY

•	<65%	65-79%	80-120%	121-135%	>135%
Detected results	R	J	· V	J	R
Non-detected Results	R	UJ	V	V	V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

MATRIX: 4	20	BATCH:	DAESPOIS
-----------	----	--------	----------

Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action	Samples Affected
24	CCB4	0.05-	0.118	٥. ٢٩		NO. 2 R
	RL=	1.5				
		 				
			 			
			 			
		_	-			
			 			·
			 			<u> </u>
		<u></u>	ļ			
		-	 			<u> </u>
			<u> </u>			
			 			
				ļ <u>-</u>		
				<u> </u>		(25)
			<u>.</u>			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			<u>l</u>			
					70	
				7	,	
						
			 			
			 			
			 	 		
 				<u> </u>		
			 			·
	 		 	 		
		ļ	-	 	<u> </u>	
		l	<u> </u>			
	the absolute valu	e of any anal	ne concentration	on in the PB or	MB is < CRDL	-
fy						
prep blank per						· · · · · · · · · · · · · · · · · · ·
prep blank per			·			
	diately after ICV					
analyzed after			. <u>-</u>			
d/equipment/rin	sate blanks anal	yzed? If so, i	nclude above if	applicable to p	roject.	
MENTS						

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH:	PUEZI	60121
--------	-------	-------

NOTE: The sample results can be accepted without qualification, if the sample concentrations of Al, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Analyte	% R	Action	Samples Affected
			An when 50-1201.
			
 – 			
			4/2-30505
			7 -
			·
			,
CLP Protocol Only		<u> </u>	
			of each sample analysis run, or a minimum of twice per 8-hour shift (whichever
s more frequent)?	Yes	No	
COMMENTS			
			

Actions:

P	FR	CEI	VT.	REC	O	/FRY

	<50%	50-79%	80-120%	>120%
Detected results	R	J	V	J
Non-detected results	R	IJ	V	V

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

H2T H2D BATCH: DYE260121

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL| that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result
Ba			7					
Cil			100					
CO			10g ·					
C-X	()		·ァイ×					
ρh.			up					
,n.A			7					
Ay	-62	ルゴ	حند ،	(NV CV)			. :	
	(6.7)							
V	-8-5	い	NB	·~- CD				
	(26)							
<u> </u>	2.54	7	7.5	5.5				
As	حسم							
		C>24	0.024					
		- تعری						
								
								
						<u> </u>		
· · · · · · · · · · · · · · · · · · ·								
			ļ					
				·		 		
	<u> </u>		 	 		<u> </u>		
			ļ.—— <u>—</u>			ļ		
				,				
	1]	·			†	1	

Ful val

Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2 Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1. Estimate (J) detected results <= 5* |ICSA|.
- 2. Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX:_

the sample	result exceed		ded by a facto	or of 4 or more,	no action is ta	ken.	
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
017	AI	9240	580	20-0	133	Ę.	11G 1A latet
		320	4		13<	-	
Auder 526	Be				4 /		
256					8 ।	Enané	
	FL				62		who 75-125
					63		
OID	Trevs	-01c					
<u>න ව</u>	エグラ・	C4>		200-			
		ルシフ	44	-			
					<u></u>		
المساسد و	001 -	H3 0	-01	·			
		 					
				 			
							
						ļ	
				1			
		 		 	·		ingual Rum volue ?
				 			1223 12=0 = 10 x 2107
				 			2-3 3 104 2(0)
		 					T- 74.41-10=14 e12
				 			() () ()
. Was a pr	e-digestion ma	trix spike pren	ared at the re	quired frequenc	v of once eve	ry 20 sample	s, or every SDG (whichever is
nore freque		No No			·		
				CP elements, e		hat did not me	eet the pre-
	trix spike reco		Yes	No N			
	atrix spike pre		ST En	pie matrix?	Yes	No	
COMMENTS	<u> </u>	49 67	24 Km 3			<u></u>	
						•	
							

Note

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

< 30%

R

PERCENT RECOVERY

30-74%

IJ

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX: A 20	BATCH:	D-1 E 260121

Eample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Sa	mples Affected
							DU	65> 1009
	· .					(2)	ure	ins (m) 0
						0		
						·		
				· · · · · · · · · · · · · · · · · · ·			•	- · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			*				
	<u> </u>							
		,						
	-							
								· · · · · · · · · · · · · · · · · · ·
	······································					.		
								·
				· · · · · · · · · · · · · · · · · · ·				·
MMENTS					·			

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

Note

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

TECHLAW

VII. INORGANIC ANALYSIS WORKSHEET - LABORATORY CONTROL SAMPLES

		MATRIX:	420			BATCH: 10	45262121	
List all paramete	ers that do not n	neet the percent	recovery criteria.	. :				
LCS ID	Analyte	True Value	Found Value	% R	Action		Samples Affected	
						JUC.	ul = 60-12	5
					1/9			
				,	11 ~ 1	/ : <u> </u>		
					16			
		<u> </u>		*				·
							····	
		<u> </u>						
								 -
		<u> </u>						
		<u> </u>	<u> </u>		<u> </u>	5121500	=107-	
			ļ					
					ļ		·	<u> </u>
		 			<u> </u>			
	L <u>'</u>	1		L		<u> </u>		
Note:				·				
	me matrix as sa	amples must be	prepared for each	h SDG.				
COMMENTS								
				·				
<u> </u>								
								
Actions:								
	mony and silve	r have no control	l limits. An aque	ous LCS is no	t required for CN	and mercury.		
		•		PERCE	NT RECOVERY			
1. AQUEOUS			<50%	50-79%	80-120%	>120%		
Detected results			R	J	V	j		
Non-detected re	esults		R	ບນ	٧ .	. V		
2. SOLID LCS								
Recoveries stip	ulated by EMSI	-				•		
			BELÖW CONTROL		WITHIN CONTROL		ABOVE CONTROL	
			LIMITS		LIMITS		LIMITS	
Detected results			J		V		j	
Non-detected re	esults		UJ		V		V	

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

•	MATRIX:	H23				BAT	CH: DYEZEVIZI
Serial dilution	criteria only app	lies if the origin	nal sample resu	ult is at least 50*	IDL and %D >	10%	
Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
Bq	0.37	13.5	29	50 M	(00	<u> </u>	· und reporting < RL
							· int reporting < RL
2	20	(0.0	250				<u> </u>
	0.094	4.7	C	6.5	00:1	5	tree name
A'S	oser Sph	-1.4	5.3	6	23-1.)	total Acremi
0/ 64	Dec 7121	<u> </u>	!	 			01,03
				 			Noctor #2 -N
				ļ			
· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ	<u> </u>				
<u> </u>	<u> </u>			 			
	<u> </u>	<u> </u>	<u> </u>				
				1			
	1			 			· · · · · · · · · · · · · · · · · · ·
				 			
	 	 	 	 			
	COUPLED PL						
Serial dilutions	were performe	d for each mat	rix and results	of the diluted san No	npie analysis a	agreed within	
Serial dilutions	were not perfor	med for the fo	llowing:	140			
COMMENTS	· · · · · · · · · · · · · · · · · · ·						

Actions:

Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: Die 260121

Deparibe any my data anomalian (i a		,		
1. Describe any taw cata anomalies (i.e.	, baseline shifts, negative absorba	nces, transcription or calc	ulation errors, legibili	ty, etc.
			<u> </u>	<u> </u>
				
		-		
		<u> </u>		
	11/1/			****
	101			
				
List results that fall outside the linear were not reanalyzed.	range of the iCP instrument or the	calibrated range of the AA	or Cyanide instrume	ent, and
			···	
	VO.			
		·		
3. Were ICP linear ranges obtained with	in 3 months of, and preceding, the	sample analyses?	(Yes)	No NA
				 _
4. Were ICP interelement corrections of	tained within 12 months of, and pro-	eceding, the sample analy	yses? (Yes)	No NA
E late of the control		- 4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
Were instrument detection limits pres	ent, tound to be less than or equal	to the UKUL, and obtaine		
preceding, the sample analyses?	Yes No		od Widim (O Michiello Oi,	, and
preceding, the sample analyses?	Yes No	NA NA		, and
		NA NA	No	, and ,
		NA NA		
6. Were all sample results reported dow	n to the IDL if running CLP protoco	NA DI? Yes		
Were all sample results reported dow Were all sample results reported dow	n to the IDL if running CLP protoco	NA NA NA NA Nes Ods? Yes	No No	, NA
Were all sample results reported dow Were all sample results reported dow	n to the IDL if running CLP protoco	NA NA NA NA NA Yes Ods? Yes	No No	, NA
Were all sample results reported dow Were all sample results reported dow	n to the IDL if running CLP protoco	NA NA NA NA NA Yes Ods? Yes	No No	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc	n to the IDL if running CLP protoco	NA NA NA NA NA Yes Ods? Yes	No No	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc	n to the IDL if running CLP protoco	NA NA NA NA NA Yes Ods? Yes	No No	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA
6. Were all sample results reported dow 7. Were all sample results reported dow 8. Were sample weights, volumes, perc COMMENTS	on to the IDL if running CLP protoco	NA OI? Yes Ods? Yes ectly when reporting the re	No No sults? Yes	NA NA

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4E040112

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4E040112 from Severn Trent Laboratories, Inc. This report consists of the validation of one total and one dissolved water sample collected on May 3, 2004 and analyzed on May 14, 15, and 17, 2004 for ICP metals; May 17 and 18, 2004 for ICPMS; and on May 10 and 13, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Isaboratory Sample Number
MW-33-050304 (total) +	D4E040112-001
MW-33-050304 (dissolved) [†]	D4E040112-001

[†] denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Full validation was conducted on these analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
- * Interference Check Samples Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)

* All criteria were met for this parameter

Validated By:

D4E040112m

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

No shipping or receiving problems were noted. The sample was hand delivered to the laboratory immediately after sampling was therefore not received cooled. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery criteria with the exception of a recovery for beryllium (110.7%) in a CCV standard bracketing the dissolved sample analysis. No action was required as beryllium was non-detected in the associated sample analysis.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample MW-33-050304 and on a sample from another SDG.

The following non-detected sample result was qualified as estimated (UJ) because the associated spike recoveries at 33% and 34% recoveries were less than 75%, but greater than 30%:

Total antimony in sample MW-33-050304

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that a recovery for cadmium was outside the laboratory percent recoveries QC limits. No action was taken on this result because the recovery was within 75-125%.

The post-digestion spike recovery for antimony was within QC limits. Post digestion recoveries do not effect sample qualifications.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

<u>Duplicate Sample Analysis</u>

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on sample MW-33-050304 and on a sample from another SDG.

All %Ds were less than 10% or the initial sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

BATCH: D4 E040112

List all analytes wi	nich do not	meet holdir	ng time	criter	ia
			Liet E	ro.	

÷	list all analytes which do not	meetholaii	ig time cite	ıa	,	,	,			
	Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	TCM S CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
Г	mu-33-050304	420	2 with	5/3/04	5/11/15	Sholon	Sky		- 0-	ハックル
r	(ていたく)				1					
Ī										····
r	MW-73-050314	450	15	513100	5/15/12	Slizby	5/17			
Ī	(D25)				J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
Ī				<u> </u>						
Γ				<u> </u>		1			 	
_						 		<u> </u>		
ľ					<u> </u>					
ŀ	·				· · · · ·		-			
۲									 	
ŀ				 					<u> </u>	
ŀ										
ŀ	rly - (+ +1)	> 6		B 6		bi.		- 1	> _	
ŀ	5/17-17 (R-~ =1)	197	> -2>	150 CC	C3, C~	BBB 100-	1, 1, 1,	2 , 	1. 60	
H	51,2-45 R-42	77		CA, 62					1	
┝	5/12-18 R-AL	(1)	P)	نيم ر وم	1-1-1	ic, N			-	
H	12 2 127		<u> </u>	1 60		· · · · · · · · · · · · · · · · · · ·			 	
ŀ	2(ct 8-m b)	(0)	P1)	A, Fe	1 - 2 4 -	K, N	13		<u> </u>	
L		~6	-						ļ	
L	twos enl	TD	SIP	(<u>C </u>	18e ,	てし				
_	65			J.			ļ		ļ	
H						ļ			<u> </u>	
L					ļ	ļ			<u> </u>	
L					<u> </u>				ļ	
L				<u> </u>	<u> </u>					<u> </u>
1	COMMENTS - Q a-	<u>_ (<: e~}</u>	22.1	ره کر ر	جدك	; much	م دلواس داخلوه	Sevol	·~~	
L	6010 6020 74	३० भ								
ĺ										
•	Actions:									

Actions:

If holding times are exceeded, all sample results are estimated (J)/(UJ).
 If notding times are grossly exceeded (>=2*holding time), detected results are estimated (J), and non-detected results are rejected (R).

committee (a), and not associate results are rejected (11).	Validated by:	Date:
Preservatives: A. Preserved w/HNO3 and cooled to 4°C	Review By:	Date:
B. Cooled to 4°C C. No Preservative	17/50N	

ANALYTE	HOLDING TIME	PRESERVATIVE				
		AQUEOUS	SOIL			
Metals	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C			
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C			
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	· 4 Deg. C			

Holding Time = Analysis Date - Collection Date

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

BATCH: J4E040112

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (ICV)

Analyte	CCA	TRUE	Found	% R	Action	5	Samples Af	fected
Be	CCVS	్యు	55.36	110.7	(une)	D:55		(It Pus
<u> </u>			3-	,		() r	: >	<u>πω</u>
							. 3	7003
	-	•					·	
					·			
			 					
		· · · · · · · · · · · · · · · · · · ·	ļ	 		· · · · · · · · · · · · · · · · · · ·		
		<u> </u>		ļ			·	
						<u> </u>		
		•						
_								
	1							
								
								· · · · · · · · · · · · · · · · · · ·
	- 		 		 			
· 			 	<u> </u>				
			 					
· · · · · · · · · · · · · · · · · · ·	- 			!				
				ļ				
 						······································		
				<u> </u>				
run after CRI,	every 10 sample	s and at end o	of sequences? (0	CLP only) \	res No			
a CRDL check	sample (CRI) ar	nalyzed at the	beginning and a	at the end of ea	ch sample run (CL	P only)? Ye	es	No
IMENTS R	onthic In	JZ ZC	A' CCAID	(i) (i)	((K			
			1/8		् द		CO.Z	
	P-1 2	マットコ	دی در چر ز				٠ريخ	-<->-<->-<->-<->-<->-<->-<->-<->-<->-<-
	124-3		در الالاي					
ns:			500 C S,					
CCV Actions:	Jepus						•	
JOV AUIUIIS.	ICSWZ	4271	ICV CY					
•			CENT RECOVE		444 4050/	>1050/		
		<75% R	75-89% J.	90-110% V	111-125% J	>125% R		
cted results								

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH:	DUEDUUN	<u> </u>

ist all mercur ICV CCV	TRUE	Found	% R	Action	Samples Affected
					63+1- 1-ms
				<u> </u>	TCV ; CLV \$ 80-120
				١/ ١٩	
				1/20	
- w				1115/	
	ļ			<u> </u>	<u> </u>
				<u> </u>	
				<u> </u>	
				<u> </u>	
			<u> </u>	_	
					
	<u> </u>				
	<u> </u>				
	 			 	
					
	 				
				 	
. Were the o	correct number	of standards and	d blanks used	to calibrate the in	strument? Yes No
		rrelation coefficie			10 2-41 6-9963
		es and samples:			10 Run #1 0-9993 Run #2 0. G988K
				inning of each sar	nole run? (CLP only) (Yes) No
		ten samples an			Yes No
COMMENTS					
Actions:					

 <65%</th>
 65-79%
 80-120%
 121-135%
 >135%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

TECHLAW

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

	MATRIX:	42=	3			BATCH: OUS OUSUZ
ist the highest po	sitive AND negative	e blank resu	ilt >= DL below	. Use one work	ksheet for soil	matrix and another for water matrix.
Analyte	CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action	Samples Affected
						(1) 83- AN -NO PIL
			-			D (1)
					100	AIL ICBICE NO
				1		e & C
					./	
				1		10's 100-tm to ac
						·
			-			
	1				1	
						·
			T			
						
IOTE: Verify that	the absolute value	e of any anal	yte concentration	on in the PB or	MB is < CRD	L*
erify						
)ne prep blank pe	r matrix					
ne prep blank pe	r batch					
CB analyzed imm	ediately after ICV					
CB analyzed after	er each CCV.					
iold/coulpmont/ric	neata blanka anali	and? If an i	naluda abaya if	annliaghta ta r	rainat	

Actions:

COMMENTS

- *. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH:	DAEDROUS
BATCH:	1

NCTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Analyte	% R	Action	Samples Affected
		80020 ·	
······································			
·		· ·	VIV >csas
·			(~~ ~~)
	·		
			·
			<u> </u>
			
		 	
P Protocol Only	<u> </u>		
ere Interference Che			d of each sample analysis run, or a minimum of twice per 8-hour shift (whiche
nore frequent)?	Yes	No	
MMENTS			

	<50%	·50-79%	80-120%	>120%
Detected results.	R	J	V	J
Non-detected results	R	· OJ	٧ .	V

BATCH: DIEGGOUZ

70

ندري

108 100

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

Title Sample	Tesuit exceeds	Spiked		or of 4 or more,	no action is	taker.	T :
Sample ID	Analyte	Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
01	55671	(२,२		ىرى	3,3	认了	12404
		13.2		1	34		
جسمانوده محتشر	2cD						
~XX			<u> </u>	75-1	52.1	<u> </u>	
01	∓(6~)					<u> </u>	
			·			<u> </u>	
						ļ	
							<u> </u>
						_	
							AL, Fe Tux
			·				12:0-0K
——-						ļ	
						·	
			 	<u> </u>			
							13.2/40 ×100 = 33
!						 	
		· ·				1	i .
		<u>:</u>		<u> </u>			software using Forms

1. Was a pre-digestion matrix spike prepared at the required frequency of once every 20 samples, or every SDG (whichever is more frequent)? Yes

2. Was a post-digestion matrix spike analyzed for all ICP elements, except Silver, that did not meet the predigestion matrix spike recovery criteria? NΑ Yes

MATRIX:

3. Was a matrix spike prepared for each different sample matrix? Yes

COMMENTS ب لمور تعو

96-K-1.

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

PERCENT RECOVERY

< 30% 30-74% 75-125% > 125% Detected results J R UJ Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

TECHLAW

VI.	INORGANIC	ANALYSIS	WORKSHEET	LABORATORY	DUPLICATES
-----	------------------	-----------------	-----------	------------	------------

MATRIX: 423 BATCH:_	DriE anolls
---------------------	-------------

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
							DIL INSTANCO
							1 2039
							ا هد اسنار
							(201-)
						<u>.</u>	
			<u> </u>				
			<u> </u>				
							<u> </u>
				<u> </u>			
					<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·			····			
			<u> </u>		<u> </u>		
			<u> </u>	·	1		
			 				
			 		-		
DAMENTE			<u>ca</u>		-11.4 =	7-5 -	
OMMENTS			<u> </u>	120		1- 3	
			 		·- •		

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

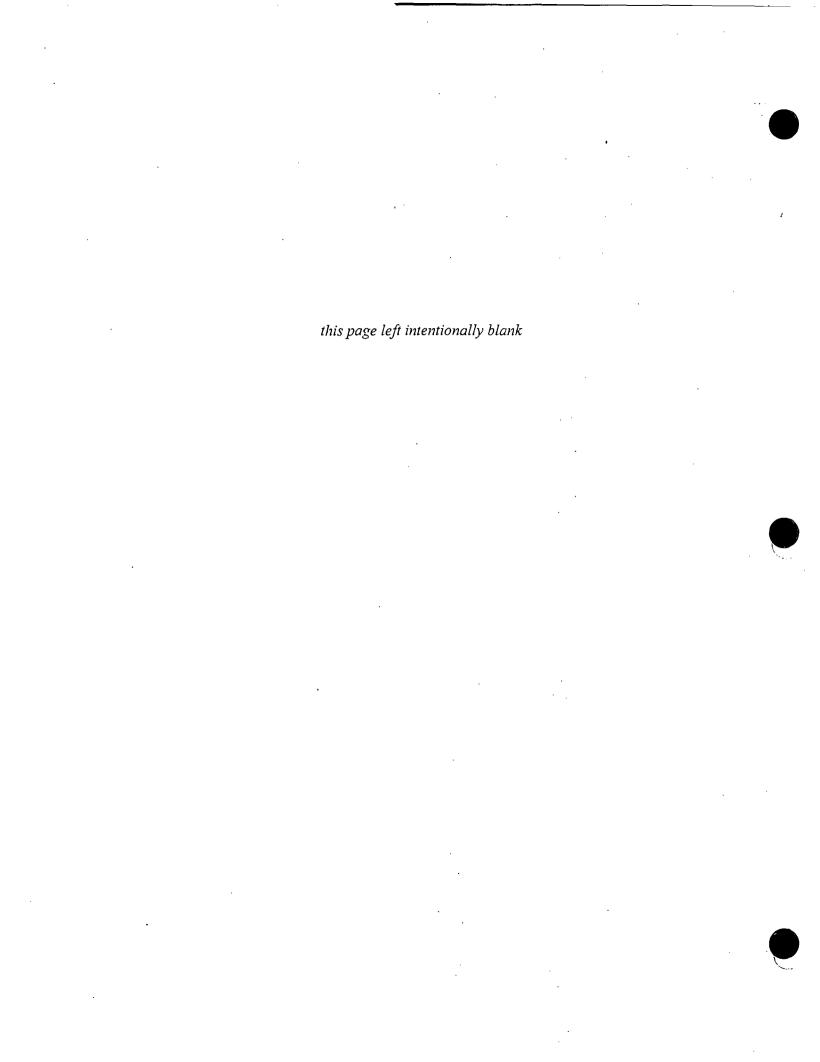
A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	#20	•		BATCH: DYEO401	2 .
_ist all paramet	ers that do not r	meet the percent	recovery criteria				
LCS ID	Analyte	True Value	Found Value	% R	Action	Samples Affected	
٦,	1	J			20-	1201.	
-23	177 =						
							 .
	 						··
					1	:	····
						:	,,,,,=,,=
		,					
						•	
				•			
					J		
					<u> </u>		
Note:							······································
	me matrix as s	amples must be p	prepared for eac	h SDG.	_ 	ueclus 67	
COMMENTS							
ļ	 -	·					
		 			 :		
}						· · · · · · · · · · · · · · · · · · ·	
Actions:	· · · · · · · · · · · · · · · · · · ·	.					
	imony and silve	r have no control	limits. An aque	ous LCS is not	required for CN	and mercury.	
				DEDOEN	T DECOVEDY		
1. AQUEOUS			<50%	50-79%	T RECOVERY 80-120%	>120%	
Detected results			R	J	V	J	
Non-detected re	esults		R	IJ	٧	V	
2. SOLID LCS							
Recoveries stip	ulated by EMSL						
			BELOW		WITHIN	ABOVE	
			CONTROL LIM!TS		CONTROL LIMITS	CONTROL LIMITS	
Detected result	s		J		V	J	
Non-detected re	esults		UJ		V	· V	

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

	MATRIX:						PUE MUITS
rial dilution	criteria only app	lies if the origin		ult is at least 50* I	DL and %D >	10%	
Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action .	Samples Affected
							
	1				-		
<u> </u>						-	
					01	DU,	
	·				10,	, X	
		-			(
				·			
			<u> </u>		<u></u>		
			<u> </u>		 		
	 	 					
			<u> </u>				·
	1						· · · · · · · · · · · · · · · · · · ·
					 :		
	<u> </u>	<u> </u>		1		<u> </u>	
erial dilution	y COUPLED PL s were performe	ASMA SERIAL d for each mat	rix and results	NALYSIS: of the diluted sam	ple analysis	agreed within	
n percent of erial dilution:	the original und were not perfo	rmed for the fo	llowing.	No			
OMMENTS							
			<u> </u>				
							·


Estimate (J) detected results if %D is > 10%.

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: DYE OYOUZ

1. Describe anv raw r	data anomalies (i.e., base	eline shifts, nec	ative absorbance	s, transcription or ca	Iculation errors, legibi	ilitv. etc.	
						···, · · · · · · · · · · · · · · · · ·	
					\\-\\-\\-\\-\\-\\-\\-\\-\\\-\\\-\\\-\\		
				NO			
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
							
		·					
· · · · · · · · · · · · · · · · · · ·						· .	
List results that fall were not reanalyzed.	l outside the linear range	of the ICP instr	rument or the cali	orated range of the A	AA or Cyanide instrum	nent, and	
				ĺ			
					/		
<u> </u>							
							-
3. Were ICP linear ra	nges obtained within 3 m	onths of, and p	receding, the san	nple analyses?	Yes	No	NA
Word ICD interelo	ment corrections obtained	ducithin 12 mon	the of and proces	ting the sample and	lyses? (res)	No	NA NA
. Were ICF intereser	Herit Corrections obtained	Within 12 mon	uis oi, and prece	ang, the sample and	ilyses! (res)		
preceding, the sample	etection limits present, for analyses? esuits reported down to the	Yes	No .	NA Yes	· No	of, and	NA
		to aL		wals pro-	5-5		
'. Were all sample re	esults reported down to M	DL if running S	W-846 methods?	Yes	No		NA
. Were sample weig	hts volumes percent soi	lids, and dilutio	ns used correctly				
	inte, referride, percent ce		no doco concetty	when reporting the r	esults? Yes	No	· ·
	me, volumes, parconic co		ns used correctly	when reporting the r	esults? Yes	No	•
COMMENTS	Fo 10	اب	u\21 ≥	when reporting the r	esults? Yes	No RL L	· · · · · · · · · · · · · · · · · · ·
COMMENTS	Fo 10		د ادری	Luchan	wyrs <		· · · · · · · · · · · · · · · · · · ·
COMMENTS	Fo 10 A1- his	Dic	unals	المسالم	unts <	RL L	
COMMENTS	Fo 10 A1- his		unals	Luchan	wyrs <	RL L	1.0
COMMENTS	Fo- ~ (0 64 - his	Dic	unals	المسالم	unts <	RL L	1.0
	Fo- ~ (0 64 - his (e)	Dic - 45mg	onsis of So	ا سداله عان – ا	unts <	RL L	1.0
COMMENTS	F3- 10 F3- his (e) T Bi 0.22	Dic - 4,4-7	01.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	ا سداله عان – ا	unts <	RL L	1.0
	Form (0 Form (0) Form (0) (c) This or 22 pl. 0.02	Pic - 45mg	e 220	المدكرومم المدالم). المال –). المال – المال	unts <	RL L	1.0
COMMENTS	For 10 For 10	Pic - 45mg	01.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	المدكرومم المدالم). المال –). المال – المال	unts <	RL L	1.0
e	Form (0) FJ - his (e) T Bi 0.22 pi 0.02 T 21.7	2 11-	e 220, 28, 3-3	المدكرومم المدالم). المال –). المال – المال	unts <	RL L	1.0
e	Form (0 Form (0) Form (0) (c) This or 22 pl. 0.02	2 11-	e 220	المدكرومم المدالم). المال –). المال – المال	unts <	RL L	1.3

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4G280388

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4G280388 from Severn Trent Laboratories, Inc. This report consists of the validation of four total and five dissolved water samples collected on July 28, 2004 and analyzed on August 4, 6 and 7, 2004 for ICP metals; August 9 and 12, 2004 for ICPMS; and on August 12 and 13, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number 3	E Laboratory Sample Number
MW-33-072804 (total)	D4G280388-001
MW-33-072804 (dissolved)	D4G280388-001
MW-31-072804 (total)	D4G280388-002
MW-34-072804 (total)	D4G280388-003
MW-34-072804 (dissolved)	D4G280388-003
MW-32-072804 (total) +	D4G280388-004
MW-32-072804 (dissolved) +	D4G280388-004
MW-36-072804 (dissolved)	D4G280388-005
MW-35-072804 (dissolved)	D4G280388-006

⁺ denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Validated By:

D4G280388m

Reviewed By:

Lisa Tyson

Samples MW-32-072804 (total) and MW-32-072804 (dissolved) were randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
- * Interference Check Samples
- * Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery with the exception of a recovery for beryllium (110.8%) in a CCV standard bracketing two total samples. No action was required as beryllium was non-detected in the associated sample analyses.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks with the exception of cobalt in one CCB at 0.0.67 ug/L and for manganese in one CCB at 1.0 ug/L. No action was required as the sample results were non-detected or greater than five times the blank values. All non-detected results were reported to the reporting limits. Detected results

were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on samples MW-33-072804 (total) and MW-31-072804 (total) and on samples from another SDG.

All MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that a recovery for mercury at 81% was outside the laboratory percent recovery QC limits. No action was taken because the recovery was within 75-125%.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

<u>Duplicate Sample Analysis</u>

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%.

<u>Laboratory Control Samples</u>

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on samples MW-33-072804 (total) and MW-31-072804 (total) and on samples from another SDG.

All %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

I. INORGANIC ANALYSIS WORKSHEET -- HOLDING TIMES

BATCH: DYGZSOJAY

Lis	all analytes which do not	meet holdi	ng time criter	ria			Trace	ICP.		
Γ			List Pre-	Date	*Metals	*Hg ÇVAA	*CN Analysis	miz	No. of Days	
	Sample ID	Matrix	servative	Collected	Analysis	Analysis	Date	Analysis	Past Holding	Action
Ľ	Sample ID		(A, B, C)		Date/s	Date	Date	Date/s	Time	•
	NW-37-072804	よっり	A	7/28/09	5-604	かっかっして	8-4-04	8-9-0-	-0-	none
	NW-71- 27224	ĺ	1	Ī	4.	4.	-1	٩٠		
	m. 20 - 3-1-07260-1						,	11		
_	nw-32 -072 =04					4	1.			
		₩				-	2-4	, No.	-	
	المعروب المعروب						274-21		<u> </u>	
_	· · · · · · · · · · · · · · · · · · ·		·						1 6/0	
l									6	
								c17	Fs.	~ / ·í~
_	0,36,0/22									
-	013281002			7 Izaloy	5/7/02	8-42-04	8thora	8-12-24	 	
<u> </u>	MW-33			(1231.04	217/07	2-17-01	ALGIO C	8-65-04		
_	mw-34				<u> </u>		+	1		
	MW-32				1.		٠,			
	としいい				f	1		1		
	mw-35			1	1/	سفيد	V	à d		
					 - ∜	 		<u> </u>	 	
<u> </u>				 		 			 	
						43 H	Eur	M~-	210	
				<u> </u>			3			
	-									
				<u> </u>				<u> </u>		
⊢									 	
-						<u> </u>	<u></u>		<u> </u>	
L.,										
				ŀ	1)			1	
Г										
\vdash				<u> </u>		1				
├—				<u> </u>						<u> </u>
			<u> </u>	<u> L</u>	<u> </u>	l	<u> </u>	<u> </u>		<u> </u>
CC	MMENTS 3.20	<u>ر</u>								
				Fil	DV	U~	Me-37	2 T b	0	
				-1		-				-
_						· · · · · · ·	• • • • • • • • • • • • • • • • • • • •			
A ==	t ons:									···-
	1' holding times are exceeded,	all sample re	sults are estim	ated (J)/(UJ).						
2	I holding times are grossly exc	жевев (>=2°	holding time), i		s are					
esti	imated (J), and non-detected re	esults are reje	ected (R).				<u> </u>	•		
						Validated by:	\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ر		Date:
D	- committees						1-25			
	servatives: Preserved w/HNO3 and cooler	d to 4°C				Review By:	45M			Date:
Α	Cooled to 4°C	•				27.	1- Tu	50		Date.
	No Preservative						11			
В.							V		•	
В.										
B. C.	ALYTE	HOLDING T	IME	PRESERVAT	IVE					
B. C.	ALYTE	HOLDING T	IME	PRESERVAT AQUEOUS	IVE		SOIL]		
B. C.	ALYTE	HOLDING T	IME	AQUEOUS pH < 2 w/HNC	03, 4 Deg. C		4 Deg. C]		
B. C. AN			IME	AQUEOUS	D3, 4 Deg. C					

*VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

IIA. INORGANIC ANALYSIS WORKSHEET -- ICP CALIBRATIONS

BATCH: DY GZZO388

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	% R	Action	Samples Affected
Be	CCVA	52	55.4	115.2	NJ-e	Sulout' Icr core, co
					5.4~ NO	(1231)
						1 4 1 m entr Jercert
						(7-472)
		<u> </u>	<u> </u>			<u> </u>
						S(6 Ict cers-5
		<u> </u>		<u> </u>	<u> </u>	
<u></u>		<u> </u>	ļ		<u> </u>	Time 812? 5456-
						SIGIBLY TEN IEN Sme ~
				<u> </u>	<u> </u>	
			<u> </u>			8(6 Ich-> Jen 5-4-
						chi Icon.
		<u> </u>	ļ	<u> </u>		
			ļ	 	1	:
ļ					1	
		<u> </u>	<u> </u>	1-/A	10 37	
		 		1/		
}		ļ	 	 		
	 	ļ		1		
		ļ	 	 	 	
		 	<u> </u>	 	 	
 		 	 		 	
		<u> </u>	<u> </u>	 -	 	
		 	 	 	 	
			 	 -		
CCV === === CT	l over 40 accord	<u>}</u>	<u> </u>	ICL D artis	√es No	
	II, every 10 sample				(es No ach sample run (C	ILP only)? Yes No
COMMENTS	S (12-	Tr 8	nediuum aug	at the end of e	acii sample run (C	Surviva (res No
COMMENTS	3116	44.00		\-		35, 43,5
						

ICV/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

^{1.} If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH: 046 280 388

CCV	TRUE	Found	% R	Action	Samples Affected
-					-80-120 City pas
					· · · · · · · · · · · · · · · · · · ·
					
				7	/
				1.5	/
,					
				·	
1					
		j			
ere the co	rrect number	of standards and	blanks used t	to calibrate the in	
the initial	calibration cor	relation coefficie	nt > 0.995?	/Yes N	0 0,55953 ,055957
f no, list a	ffected analyte	es and samples:			·
as a CRD	L check samp	ie (CRA) analyze	ed at the begin	ning of each san	nple run? (CLP only) Yes No CM
CV run aft	er CRA, every	ten samples and	d at end of sec	quence?	Yes No
MENTS	····································				

Actions:

PERCENT RECOVERY

	<65%	65-79%	80-120%	121-135%	>135%
Eletected results	R	J	V	J	R
Non-detected Results	R	IJ	٧	V	٧

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

TECHLAW

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

f.c.	
H 2.3	BATCH: DY (280788
MATRIX:	BAICH: DY 6200 . T

List the highest positive AND negative blank result >=|DL| below. Use one worksheet for soil matrix and another for water matrix. ICB IDL 5 * Bl. Conc. Samples Affected CCB Blank Conc. Action Analyte PB/MB C34 sluenz 60.0 NO 05 > 12 60 MM 1.3 5-2 CC35 (NOTE: Verify that the absolute value of any analyte concentration in the PB or MB is < CRDL* Verify One prep blank per matrix One prep blank per batch ICB analyzed immediately after ICV CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project. COMMENTS

Actions:

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5° [Blank] are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

BATCH: DUEZEUZEY

NOTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca, Fe or Mg results that are greater than the ICSA values.

Sample ID	Analyte	Sample Result	ICS Value	Comments			
			.	サイノア			
				サイ マトロ Nune > Ficia			
,							
		 					

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	% R	Action	Samples Affected
		,	ロシーナンーン
			·
			- 1010 Oxt
		· /	
CLP Protocol Only Were Interference Chec is more frequent)?	ck Samples ru Yes	n at the beginning and end o	of each sample analysis run, or a minimum of twice per 8-hour shift (whichever
COMMENTS			

Actions:

PERCENT RECOVERY

	<50%	50-79%	80-120%	>120%
Detected results	R	J	V	J
Non-detected results	R	UJ	V	V

BATCH: 046280388

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX:

				ry criteria. Not for water samp		gestion spike re	ecovery criteria are not evaluated for Ca, Mg, K,
If the sample	result exceeds	s the spike ad	ded by a facto	or of 4 or more,	no action is ta	aken.	
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
#27	エノウヘン						16-121
イイ	ICS						34-131
عسدادره ع	ジナ よく(τ \					
Astero	506						
つける	FCD /	Ich s					マントーハント シェントル
		ifi		إ	113602	· R SI'L	(su-114)
						يربوسو	いいつを ーノン
						/V	
		-					·
		,					
				-			
Was a promore frequent		trix spike prep No	pared at the re	quired frequen	cy of once eve	ery 20 samples	, or every SDG (whichever is
				CP elements, e		that did not me	et the pre-
	trix spike recovatrix spike prep		Yes		NA VOC	No	
		ared for each	different Sami	ipie maux?	Yes	No	
COMMENTS	· · · · · · · · · · · · · · · · · · ·		$\overline{}$		-3.5	<u> </u>	·
			-11	-CCA	<u> </u>	<u>/</u>	
		1-					
							
1. If any ana	alyte does not r	neet the % R	criteria, qualif	y all associate	d samples usir	ng the following	criteria:

Note

Actions:

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

< 30%

j

R

PERCENT RECOVERY

75-125%

> 125%

30-74%

IJ

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX: 473	BATCH: DENSOSSY

List all parameters that do not meet RPD or CRDL criteria. Sample Sample ID Analyte Dup. Results RPD Difference³ Action Samples Affected Result MS (m11) 2005 al 2201.

Actions:

1. AQUEOUS

COMMENTS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2°CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	H23		· .	BATCH:	Drie SPOSOR	
st all paramete	ers that do not r Analyte	True Value	Found Value	% R	Action	1	Samples Affected	
EC3 ID	Allelyte	Tide value	1 Outla Value		Action	・ナーナ・ノ		
							60-120 V	
		 				10-67		_
					1/1/2)V°C-	 		
		 	 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 			
		 						
		 						
		-				-		
		 				 		
		 						
			1					
							· · · · · · · · · · · · · · · · · · ·	
	<u> </u>							
		<u> </u>						
÷.						1		
		T						
					·			
lote:								
CS with the sa	ime matrix as s	amples must be	prepared for each	SDG.				
OMMENTS			·					
							·	
							·	
								-
ctions:			11					
xception: Anti	imony and silve	er nave no contro	l limits. An aqueo	ous LCS is no	ot required for CN	and mercury.		
					NT RECOVERY			
. AQUEOUS Detected results	•		<50% R	50-79% J	80-120% V	>120%		
on-detected result			R	กา	v	۸ 1		
00110100							•	
. SOLID LCS Recoveries stip	ulated by EMSI	L	•					
	3, -	-	BELOW		WITHIN		ABOVE	
			CONTROL		CONTROL		CONTROL	
\			LIMITS		LIMITS		LIMITS	
Detected result Non-detected re			IJ		V V	٠	^ 1	
TOTAL COLOCULA IN					•		•	

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

	MATRIX:	4/50				BAT	CH: Dr	16540348
al dilution (criteria only app	lies if the origin	al sample resu	ult is at least 50* if	OL and %D			a mite a makka situkati kasi
Anaiyte	IDL	50*1DL	Sample Results,	Serial Dilution Result	% D	Action	Att own	Samples Affected
ાઉ લ						i	دىرى	cooly has
MN							22	really to the
	<u> </u>							<u>:</u> :
	<u> </u>			1			··-	
	ļ			 				
 -	<u> </u>	ļ				1/2		
				 	$-\mathcal{N}$	[5]		
·	 			 		10		
	 			<u> </u>	•			
			•			1		
		 	<u>.</u>				····································	
								<u> </u>
 								
		,			·			
	ļ			ļ				
	ļ							····
		ļ						
	ļ	<u> </u>					 	· · · · · · · · · · · · · · · · · · ·
·	 							
	 -	 		 			<u> </u>	
UCTIVELY	COUPLED PL	ASMA SERIAL	DILUTION AN	NALYSIS:				
al dilutions	were performe	d for each matr	ix and results	of the diluted sam	ple analysis	agreed within		· · · · · · · · · · · · · · · · · · ·
percent of al dilutions	the original und were not perfo	liluted analysis.	lowing\ /es	No				
MENTS							 -	<u> </u>
						· · · · · · · · · · · · · · · · · · ·	 	
								
								<u> </u>
				····				

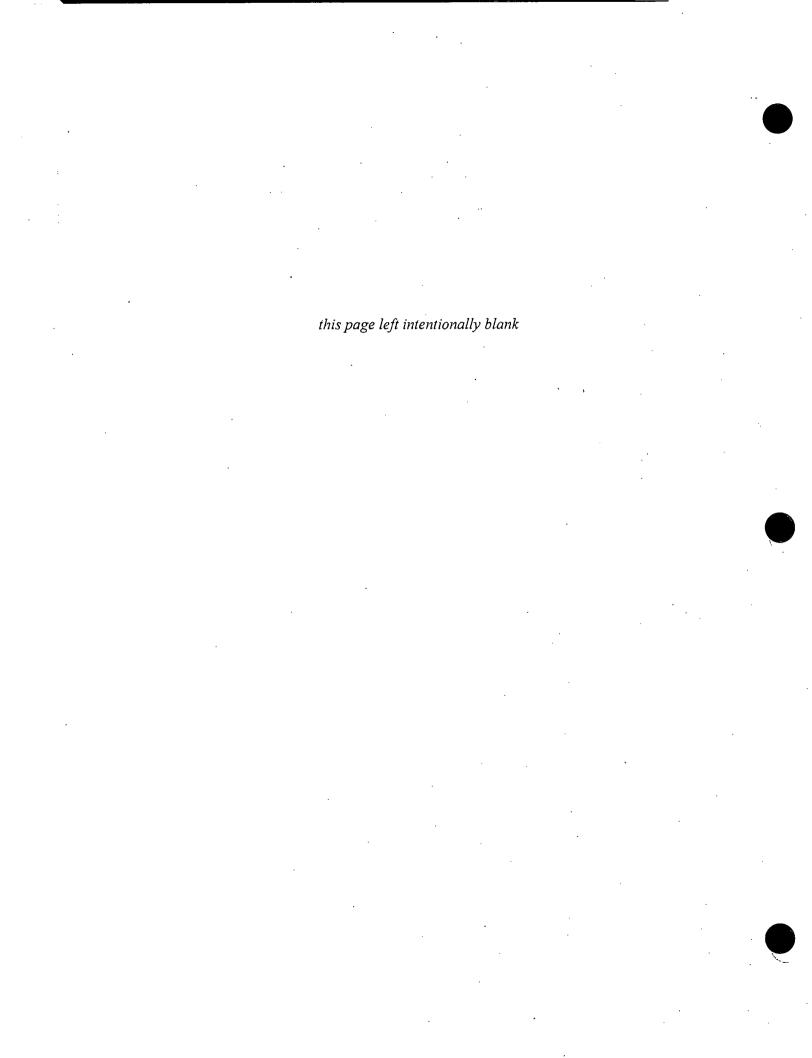
Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected: and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: DYC 230358



 Describe any raw data anor 	malies (i.e., basel	ine shifts, neg	gative absorbances, ti	anscription or calc	ulation er	rors, legibil	ity, etc.	
				·				
	10 0 0				.			
· · · · · · · · · · · · · · · · · · ·	V7V4	· · · · · · · · · · · · · · · · · · ·						
	 		 					
)								
	0 P	100:						
2. List results that fall outside	the linear range of	of the ICP ins	trument or the calibra	ted range of the AA	or Cyan	ide instrum	ent, and	
were not reanalyzed.		+						
6	<u> </u>	1100	PANIL		<u> </u>		<u></u>	
•				•		•		
								
		··						
								
								
Were ICP linear ranges obt	tained within 3 mo	onths of, and	preceding, the sample	e analyses?	(es)		No	NA
4. Were ICP interelement com	rections obtained	within 12 mo	nths of and preceding	the sample analy	vses?	Xes)	No	· NA
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5, - 10	, <u> · </u>	- (3) -		
								
5. Were instrument detection					d within	months o	i, and	
5. Were instrument detection preceding, the sample analyse		und to be less Yes	s than or equal to the No	CRDL, and obtaine	ed within		f, and	
					ed within		~ · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	
preceding, the sample analyse	es? \	/es	No		ed within		~ · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	NA NA
	es? \	/es	No	NA	ed within	<u>い</u>	~ · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	NA
preceding, the sample analyse 6. Were all sample results rep	oorted down to the	e IDL if runnir	No ng CLP protocol?	NA Yes	ed within	No	~ · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	
preceding, the sample analyse	oorted down to the	e IDL if runnir	No ng CLP protocol?	NA	ed within	<u>い</u>	~ · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	NA NA
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	Yes Yes		No	~ · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	
preceding, the sample analyse 6. Were all sample results rep	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	Yes Yes		No	~ · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	Yes Yes		No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	Yes Yes		No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	Yes Yes		No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re		No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	
preceding, the sample analyse 6. Were all sample results rep 7. Were all sample results rep 8. Were sample weights, volu	ported down to the	e IDL if runnin	No ng CLP protocol? SW-846 methods?	NA Yes Yes en reporting the re	sults?	No No	2	

ROUND 2: GROUNDWATER VALIDATION REPORTS

SDG: D4E040112 **SDG:** D4E260121

SDG: D4G010356

SDG: D4G280388

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4G010356

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4G010356 from Severn Trent Laboratories, Inc. This report consists of the validation of five total and four dissolved water samples collected on July 1, 2004 and analyzed on July 13 and 22, 2004 for ICP metals; July 12, 2004 for ICPMS; and on July 14, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Beld Sample Number 113 199	Laboratory Sample Number
MW-33-070104 (total)	D4G010356-001
MW-33-070104 (dissolved)	D4G010356-001
MW-34-070104 (total)	D4G010356-002
MW-34-070104 (dissolved)	D4G010356-002
MW-31-070104 (total)	D4G010356-003
MW-32-070104 (total) ⁺	D4G010356-004
MW-32-070104 (dissolved) †	D4G010356-004
MW-30-070104 (total)	D4G010356-005
MW-36-070104 (dissolved)	D4G010356-006

denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Validated By:

D4G010356m

Reviewed By

3,1 - 3

Samples MW-32-070104 (total) and MW-32-070104 (dissolved) were randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
- * Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery criteria.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample MW-33-070104 (total and dissolved).

All MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that recoveries for aluminum were outside the laboratory percent recovery QC limits. No action was taken on these results because the recoveries were within 75-125%.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%. The RPD for dissolved mercury at 14% was flagged as exceeding the laboratory QC limit of 10%. No action was required.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on MW-33-070104 (total and dissolved).

All %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

BATCH: DYGOOBTG

List all analytes which do not	meet holdii	ng time criter	ia	JCP.	. Hs	Trace	TCPM	\$ 450 - 000	
Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	-*CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
MO10FO-CE-WAI	4.53	Δ	7-1-04	7-22-0-	7-14-09	7-13-04	7-12-04	-0-	Done
- Mc - 34			<u> </u>						
mu-31.					,				
mu-32.			· \						
mer 30	d		₩	<u> </u>		4	-6/		
		<u></u>			<u> </u>				
· Dissolvez .	<u> </u>		<u> </u>		<u> </u>				
mw-33	PLO	12	7-1-04	7/22/0	7-14-04	7 (13104	7-12-04		·
MW-34	1 1		1	1 1		(1,310)	(-12-04)		
mw-32									
My 36		- 	1	-	1	1/	J.		
	 								
			 						
1	 								
COMMENTS 2.7%	1	1	FIL	<u>ن</u> >	in	2 -	= + 10	\ 	l
OCHMINETTIO SC. J.C.		<u></u>	F- 10	71 .54	V-100 1	<u> </u>	~ ~ . U		
				2 to 2 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to	(6)	#4			
									
Actions:								···-	
 if holding times are exceeded, it holding times are grossiy exc 	all sample re ceeded (>=2"	suits are estin noiding time),	iated (J)/(UJ). delected result	are					

estimated (J), and non-detected results are rejected (R)

Preservatives:

B. Cooled to 4°C C. No Preservative

Validated by:	Biller	Date:
Review By:	1 0	Date:

ANALYTE	HOLDING TIME	PRESERVATIVE				
		AQUEOUS	SOIL			
Me als	:80 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C			
Me cury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C			
Cvanide	. 14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C			

Holding Time = Analysis Date - Collection Date

A. Preserved w/HNO3 and cooled to 4°C

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

BATCH: 04600316

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	%R .	Action	Samples Affected
						DU WIN 90-401
6						ICP /
						Trace V
						Ichas
					12	
					(,)	
						·
		ļ				
						
	 					
		<u> </u>			}	
				,		
				`		
		<u> </u>	<u> </u>		لـــــحلِ	
			f sequences? (C		Yes No	
	sample (CRI) a	analyzed at the	beginning and a	t the end of ea	ch sample run (Cl	
IMENTS				···.		(B1 -
						
			·			

ICV/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH:	Pice	010254
· · · · · · · · · · · · · · · · · ·		

ist all mercu	ry results that d	id not meet the	percent recove	ry criteriz for the	ICV and/or CCV standard.
CCA	TRUE	Found	% R	Action	Samples Affected
				none	- w/m 80-120.
		·			·
		·			
			•		
		·			
	ļ <u> </u>			<u> </u>	
				<u> </u>	·
					·
				<u> </u>	
				·	
 				<u> </u>	
					
				ļ	
				<u> </u>	
	ļ			<u> </u>	
	<u> </u>	L		<u> </u>	
		_		to calibrate the i	
. Is the initia	al calibration co	rrelation coefficie	ent > 0.995?	Yes	^{No}
		es and samples:			
					mple run? (CLP only) Yes No
	fter CRA, every	y ten samples ar	nd at end of se	guence?	Yes No
OMMENTS					
					
Actions:		•			•

PERCENT RECOVERY

<65% 65-79% 80-120% >135% Detected results R R UJ ٧ Non-detected Results

1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

MATRIX: #2 =	BATCH: DG4 O10 354
18.77.1.702	D/ (1 O) 1

Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action	Samples Affected
	PGO					ORC
	PBT		U:0			
	140-7					
			 			
	IC B					
	CC (2)	3 .	+->	10 = T		
	$\frac{1}{CC(7)}$	٠ .	 			<u> </u>
			<u></u>			
 -		····				
	_		<u> </u>			
			ļ			
		<u></u>	<u> </u>			
					1	,
					7	
					1	
			1			
			 			
	- 				<u>.</u>	
			 			
	- 		 			
	_{		 			
			 			
			 			
			ļ			
		L	1	<u> </u>		<u> </u>
	the absolute valu	e of any anal	yte concentrati:	on in the PB or	MB is < CRDL	•
Ύ						·
prep blank per	matrix					· · · · · · · · · · · · · · · · · · ·
prep blank per	batch					
analyzed imme	diately after ICV					
analyzed after						
	sate blanks anal	vzed? If so. ii	nclude above if	applicable to p	roject.	
MENTS		<u> </u>	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
					<u></u>	

Actions:

- 1. If [Blank] < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5° |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

NOTE: The sample results can be accepted without qualification, if the sample concentrations of Al, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Sample ID	Analyte	Sample Result	ICS Value	Comments
				44770
	·			pone > Icsa
			/	
	·			
	•		· ·	·
	 		,	
	· · · · · · · · · · · · · · · · · · ·		<u></u>	1
		that did not meet the crit	eria of 80-120% R.	Complete Afficial and
ny analytes in the Analyte	ICS AB solution	Action		Samples Affected
				Samples Affected
			A(\ ,;)	(m 80-120°C
			A(\ ,;)	
Analyte			A(\ ,;)	(m 80-120°C
Analyte			A(\ ,;)	(m 80-120°C
Analyte				(m 80-120°C
Analyte			A(\ ,;)	(m 80-120°C
Analyte Protocol Only Interference Chec	% R	Action	AN .il	(m 80-120°C
Protocol Only Interference Cheere frequent)?	% R	Action	AN .il	1.00-0201.
Protocol Only Interference Cheere frequent)?	% R	Action	AN .il	VSIS-ran, or a minimum of twice per 8-hour shift (wh
Analyte Protocol Only	% R	Action	AN .il	1.00-0201.

PERCENT RECOVERY

	<50%	50-79%	80-120%	>120%
Detected results	R	J	V	j
Non-detected results	R	UJ	V	V

DYCOIOSTE

V. INORGANIC ANALYSIS WORKSHEET - PRE-DIGESTION MATRIX SPIKE

Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
017	A.				120		w/in 27~25
					121	/	and all les
010	Ley			 		ند	
				 			
			<u></u> _	<u> </u>			
			l				0)
				 		1	
				 		14/0,	
				 			
				<u> </u>			
						 	
		·	<u> </u>	 		ļ <u></u> -	
				1		 	
				+	······		
				- 			
			<u> </u>	 		 	
				 			
				1			
		trix spike prep	pared at the re	equired frequenc	y of once ev	ery 20 samples	s, or every SDG (whichever is
nore frequen		No		····			
. Was a pos	it-digestion mi rix spike recov	atrix spike an:	alyzed for all Yes	ICP elements, ex	cept Silver,	that did not me	et the pre-
	trix spike prep				Yes	No	
. 7703 0 1110	in spine preb	arco lor caci	different 3a.	ipie maux:	703	140	

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

PERCENT RECOVERY

	< 30%	30-74%	75-125%	> 125%		
Detected results	J	J	V	j		
Non-detected Peculic	D	111	V	1/		

<u>Note</u>

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

ample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
010	449			. (4.			<i>420</i>
							106 ming 1071.
				<u></u>			MS/MID
					· ·	-	
		 	<u> </u>		 		105 191- 14.
			· ·		/	0/	
						~	
			-		 		
			-		1		
					 		
			 				
							-
			1		ļ		· · · · · · · · · · · · · · · · · · ·
							·
						·	
			 		ļ		
MENTS	 			<u> </u>			

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result|
Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET - LABORATORY CONTROL SAMPLES

		MATRIX:	420	· · · · · ·	· · ·	BATCH: 1) 2(6 6 6 3 5 6
			recovery criteria.			
LCS ID	Analyte	True Value	Found Value	%'R	Action	Samples Affected
そこう	ر کر سند	<u> </u>				80-120
		,		·		
(Q.	رے عامو	<u> </u>				80110
. 1						
					Z	
					57	
	,-					
						,
			1			
Note:						
LCS with the sam	ne matrix as s	amples must be	prepared for each	SDG.		
COMMENTS						
						
Actions:						
Exception: Antim	nony and silve	er have no control	l limits. An aqueo	us LCS is not	required for CN	and mercury.
				PERCEN	TRECOVERY	
1. AQUEOUS			<50%	50-79%	80-120%	>120%
Detected results Non-detected res	ults		R R	J UJ ·	V V	^ 1
		٠,				•
2. SOLID LCS	ated by ENC	1				
Recoveries stipul	ered by EMS	L	BELOW		WITHIN	ABOVE
		•	CONTROL		CONTROL	CONTROL
			LIMITS		LIMITS	LIMITS
Detected results Non-detected res	culte		IJ.		.V .V	V
Monthoelected 165	ouris		00		. v	v

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

Serial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within en percent of the original undiluted analysis. Serial dilutions were not performed for the following.	6010326	1.0111				•			
RG 0.73 (t.; 2173 SOU (w) 1/0× C= CO NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and esuits of the diluted sample analysis agreed within en percent of the original undiluted analysis. (Yes No Serial dilutions were not performed for the following:	amples Affected	T			Serial Dilution	Sample			
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results of the diluted sample analysis agreed within en percent of the original undiluted analysis. Yes No Serial dilutions were not performed for the following:	+ reporting < R		<u> </u>	(بد)	504		· (6.5	0.72	Ba
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results of the diluted sample analysis agreed within expercent of the original undiluted analysis. Yes No Serial dilutions were not performed for the following.	50 -9E	1085		(3)	50~		22		
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results of the diluted sample analysis agreed within the percent of the original undiluted analysis. Yes No Serial dilutions were not performed for the following									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Ferial dilutions were performed for each matrix and results of the diluted sample analysis agreed within the percent of the original undiluted analysis. Yes No No No No No No No No No N									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results) of the diluted sample analysis agreed within expercent of the original undiluted analysis. Yes No Serial dilutions were not performed for the following:		۲				,	•		
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results) of the diluted sample analysis agreed within en percent of the original undiluted analysis. Serial dilutions were not performed for the following:		/	V2,	7					·
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results) of the diluted sample analysis agreed within expercent of the original undiluted analysis. Yes No Serial dilutions were not performed for the following:									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results) of the diluted sample analysis agreed within expercent of the original undiluted analysis. Yes No Serial dilutions were not performed for the following:									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Derial dilutions were performed for each matrix and results of the diluted sample analysis agreed within the percent of the original undiluted analysis. Serial dilutions were not performed for the following:									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Derial dilutions were performed for each matrix and results of the diluted sample analysis agreed within the percent of the original undiluted analysis. Serial dilutions were not performed for the following:									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within en percent of the original undiluted analysis. Serial dilutions were not performed for the following:	 			<u>.</u>					
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within en percent of the original undiluted analysis. Serial dilutions were not performed for the following:									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Gerial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within the percent of the original undiluted analysis. No Serial dilutions were not performed for the following:							·		
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and results of the diluted sample analysis agreed within en percent of the original undiluted analysis. Serial dilutions were not performed for the following:		<u> </u>							
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Gerial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within the percent of the original undiluted analysis. No Serial dilutions were not performed for the following:									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Gerial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within the percent of the original undiluted analysis. No Serial dilutions were not performed for the following:									
NDUCTIVELY COUPLED PLASMA SERIAL DILUTION ANALYSIS: Serial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within en percent of the original undiluted analysis. Serial dilutions were not performed for the following:	· .	· ·	<u> </u>						
Serial dilutions were performed for each matrix and results of the diluted sample analysis agreed within en percent of the original undiluted analysis. Yes No Serial dilutions were not performed for the following:		 	<u> </u>			<u> </u>			
Serial dilutions were performed for each matrix and esults of the diluted sample analysis agreed within en percent of the original undiluted analysis. Serial dilutions were not performed for the following.		-	 		 				
Serial dilutions were performed for each matrix and results of the diluted sample analysis agreed within ten percent of the original undiluted analysis. Serial dilutions were not performed for the following: COMMENTS		,	1		NALYSIS:	DILUTION AN	SMA SERIAL	COUPLED PLA	NDUCTIVELY C
		1	agreed within	iple analysis	of the diluted san No	ix and results Yes	for each mat	vere performed e original undil	Serial dilutions were percent of the
COMMENTS :						llowing.	ned for the fo	vere not perform	Serial dilutions w

Actions:

Estimate (J) detected results if %D is > 10%.

<u>NOTES</u>

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

			BATCH: 0	(60/035	74
		<u> </u>			
. Describe any raw data a	nomalies (i.e., baseline shifts, negati	ve absorbances, trans		errors, legibility, e	etc.
			·	·	
					·
		* * * * * * * * * * * * * * * * * * * *	' ————————————————————————————————————		
					
		· · · · · · · · · · · · · · · · · · ·	54		
					
					
					
	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
List results that fall outside	de the linear range of the ICP instrur	nent or the calibrated r	range of the AA or Cva	nide instrument	and
ere not reanalyzed.					
	· · · · · · · · · · · · · · · · · · ·				
					
			·		
Mare IOD lives			-t		
were ICP linear ranges of	obtained within 3 months of, and pre	ceding, the sample an	alyses? Yes	No.	NA NA
Were ICD interelement of	orrections obtained within 12 month	s of and proceeding th	e sample analyses?	(Yes)	No NA
. Were tor interesement o	Officers obtained within 12 months	s or, and preceding, an	e sample analyses:	(163)	140 145
receding, the sample analy	on limits present, found to be less the rees? Yes reported down to the IDL if running O	No	NA Yes	No No	NA NA
	aportos do Mit to allo (DE II Julium)	74. p. 0.1000.			
. Were all sample results	reported down to MDL if running SW	-846 methods?	Yes	No	NA
. Were sample weights, vo	olumes, percent solids, and dilutions	used correctly when r	eporting the results?	Yes	No.
			····		<u> </u>
			·		
OMMENTS					
_ 	(0)	<u> </u>	<u></u>		
	·			<u> </u>	
<u> </u>					
			+ ()		·
· · · · · · · · · · · · · · · · · · ·	/ / /	<u> </u>			
					
			·		
		1.57) - (- (0 -	ماماه	
•		. (00	/ (c (o)	-01200	

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4E260121

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4E260121 from Severn Trent Laboratories, Inc. This report consists of the validation of three total and four dissolved water samples collected on May 21 and 24, 2004 and analyzed on June 1 and 4, 2004 for ICP metals; June 19, 2004 for ICPMS; and on June 6, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number 3
MW-33-052104 (total)	D4E260121-001
MW-33-052104 (dissolved)	D4E260121-001
MW-34-052104 (total) +	D4E260121-002
MW-34-052104 (dissolved) [†]	D4E260121-002
MW-36-052104 (total)	D4E260121-003
MW-35-052404 (dissolved)	D4E260121-004
MW-36-052404 (dissolved)	D4E260121-005

⁺ denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Validated By:

Rill Fear

D4E260121m

Reviewed By

A isa Tyson

Samples MW-34-052104 (total) and MW-34-052104 (dissolved) were randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
 Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
 Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery with the exception of recoveries for beryllium (110.9%, 110.9%, and 114.5%) and thallium (112.1%) in CCV standards bracketing the samples. No action was required as beryllium and thallium were non-detected in the associated sample analyses.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks with the exception of arsenic in one CCB at 0.118 ug/L. No action was required as the sample results were non-detected or greater than five times the blank value. All non-detected results were

reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The results for calcium in the full validation samples MW-34-052104 (total) and MW-34-052104 (dissolved) exceeded the ICSA value of 500 ppm.

The following sample results were qualified as estimated (J/UJ) because the calcium result was greater than the ICSA value and the absolute value of the associated element was greater than the MDL in the ICSA analysis:

 Silver, vanadium, and cadmium in samples MW-34-052104 (total) and MW-34-052104 (dissolved)

Silver and vanadium were reported in the ICSA at -6.2 ug/L and -8.5 ug/L, respectively, which exceeds the positive MDLs of 0.7 ug/L and 2.6 ug/L. Non-detected results are qualified as estimated for negative ICSA values. Cadmium was reported at 2.04 ug/L, which exceeds the MDL of 0.028 ug/L. Detected results less than five times the ICSA value are qualified as estimated.

No action was required for additional analytes reported above the MDL in the ICSA, as the sample results were greater than five times the ICSA value.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on samples MW-33-052104, MW-34-052104, and on a sample from another SDG.

The following detected sample results were qualified as estimated (J) because the associated spike recoveries at 133% and 135% recoveries were greater than 125%:

• Total aluminum in samples MW-33-052104, MW-34-052104, and MW-36-052104.

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that recoveries for total beryllium and thallium were outside the laboratory percent recovery QC limits. No action was taken on these results because the recoveries were within 75-125%.

The post-digestion spike recovery for antimony was within QC limits. Post digestion recoveries do not effect sample qualifications.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on samples MW-33-052104, MW-34-052104, and on a sample from another SDG.

The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

Total arsenic in samples MW-33-052104 and MW-36-052104.

The serial dilution result for arsenic was not flagged by the laboratory. All other %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

DUE 260121-	(m.17m0)
-------------	----------

BATCH: DY EZLO IL

List all analytes which do not	meet holding	time criteri	ia	IC 2	والمنطول والماري	•			
Sample ID えぶし	Matrix s	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	GH-Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action .
		(A, 0, 0)	5/27/04	614	نوانها مر	<u>ن/ر</u>	(e \ \ 4	0-1	1100
mw-33-052104	KC3	Recuis	2/2/104	619	رو انجاز انظر	611	6113	(VOVE
m-34					<u> </u>				
me-36 d	1 \	_1_1	₩	J	\$	1	f		
1-35,52404	1 /		5/22/21						
Mc 36 W	V		ل						
30 1	 		- 4				•		
(3)	 								
(Dissyur1)	1								
WM-32-025104	ひしつ	A	5/21	614	نه/ <u>ر</u> ډ	دوا۱	6/25		
m2-34-052104	1 1		\		1 1	†	¥		
جرب ی در دو د عرب			5/24				,		
W M-36-06300	 		1.		1,	1	-		
11/2-76-011-04	 -		*	W.	- 80	d ·	V		
	 								
					-				
	I T				}				
T5017 3 6	6 (3)	1	~~~	مرا ت	As V	۳ -			
Traine Bac	R (C) (1x + 17	15.22 1 A	i t			
Ter AI,	CA, TE	, Mg	رادر _ ز	29					
									<u> </u>
FCPWS	Ich, Al	be	5	احراب					
	7	•	1						
	 								
	 -				ļ			ļ	
					ļ				
	<u> </u>	_			1				
COMMENTS									
	020,7	4200		→ (۲۰۰				
23.55				. ,	• • •				
	 ,				۱ ، سبح				
L						Velis			
Actions: 1. If holding times are exceeded.	all cample	the sam cotic	ated (I)///III		1	~~ 34.	- 0521 04	コムア	1
If holding times are exceeded. If holding times are grossly ex				s are	<u></u>	·		, -a- %	<i>)</i>
estimated (J), and non-detected to									
					Validated by:	₹ · •	\mathcal{C}		Date:
.		_				Bul	~		
Preservatives: A. Preserved w/HNO3 and cools	od to 6°C -/				Boulous Dr	1500 L. 725	•		Data
B. Cooled to 4°C	50 10 7 C V				Review By:	6.72	ز		Date:
C. No Preservative						- / - / - >	11/1/		
J101 1050170570						J			
ANALYTE	HOLDING TIM	E	PRESERVAT	IVE					
			AQUEOUS			SOIL			
Metals	180 days		pH < 2 w/HNC	03, 4 Deg. C		4 Deg. C			
Mercury	28 days		pH < 2 w/HNC			4 Deg. C	· ·		
Cyanide	14 days		pH > 12 w/Na	OH, 4 Deg. C	,	4 Deg. C	I		

Cyanide 14 days
Holding Time = Analysis Date - Collection Date

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

BATCH:	DYEZCO121	
--------	-----------	--

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (ICV).

Analyte	ICV CCV	TRUE	Found	% R	Action	Samples Affected
Be	CC Y Z	50	55.45	110.9	1019	(, 1 = 55/3)
1	CV7	1	55.44			7
	8	1	57.25			j. WI Disa
77	CCVK	1	563	112-1	d	
						BetTL-NO
						BetTL-NO in essorides sample
					·	
				,		
						· · · · · · · · · · · · · · · · · · ·
						
			ļ			
<u> </u>						
 		<u> </u>				——————————————————————————————————————
		··				*:
						57.23/60 = 114.44
			<u> </u>			
			<u> </u>	<u> </u>	<u></u>	
	l, every 10 sample				(es) No.	
	ck sample (CRI) ar	nalyzed at the	beginning and a	t the end of ear		
MENTS				·		(C<->-
		<u> </u>				
		·		·		
ons:						

IC\'/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Dejected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH:	NUF	260121
DAILUE:	10 14	~~~ ,

ICV CCV		Found	%R :	Action	ICV and/or CCV standard. Samples Affected
	*				1-11- 80-120°1.
	1 1				
	,				
				7	
				20	
<u> </u>					
				<u> </u>	
				· · · · · · · · · · · · · · · · · · ·	
					
1. Were the c	orrect number	of standards an	d blanks used t	o calibrate the ir	nstrument? (Yes) No
		rrelation coeffici			VO 0. 99993
		es and samples:			
				ning of each sar	mple run? (CLP only) (Yes) No
		ten samples ar			Yes No
COMMENTS					
Actions:		· · · · ·			
		P:	ERCENT RECO	OVERY"	

1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

80-120%

٧

R

2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

65-79%

J

UJ

<65%

R

Detected results

Non-detected Results

MATRIX:	654	 	BATCH:	DAESFOLSY

Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * 3l. Conc.	Action	Samples Affected
29	CCB4	0.04-	0.118	0,59		700. Q R
	RL=	1.0			j	
			10 10 10 10		-	
		· · · · · · · · · · · · · · · · · · ·				
	· ·		100			
				·		
				1	·	
	·					
				·		
			<u> </u>			
			<u> </u>			, , , 5)
	ļ	·				7.3.
····			<u> </u>		154	
	ļ		<u> </u>		10	
·	<u> </u>					
		<u>. </u>				
	<u> </u>					
	<u> </u>		ļ			
			ļ			
				 		
<u> </u>			ļ			
	 	<u> </u>	ļ			
<u> </u>	-		<u> </u>			
	-	ļ ·	 	[
			<u> </u>			
OTT. Marie Abat th			40.000000000000000000000000000000000000	I DD ::	MD:- 4 ODD! 5	
OTE: Verify that the	e aosoiute valu	ie or any analy	vie concentration	on in the PB of	INID IS CHUL	
ne prep blank per n	natriy				· · · - · · · · · · · ·	
ne prep blank per b						
B analyzed immed		,		 		
CB analyzed after e						
eld/equipment/rins:		vzed? If so ir	clude above if	applicable to p	roject	·
OMMENTS	2.0 0.00 0.101	, 11 30, 11		applicable to p	. 5,500	
						·······

Actions:

- *. If [Blank] < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

					٠.		BATCH:	PUE	2601	21
NOTE:	The sample results can l									
equal to	the concentration found	in the ICSA	\ solutio	n.						

Examine the sample re-	sults in ug/L and lis	st any Al. Ca, Fe or Mg	results that are grea	ter than the ICSA values.
Sample ID	Analyte	Sample Result	ICS Value	Comments
				CAT Get on
				ced
				fef-rez
				·
·				

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte % R Action Samples Affected

SU-123'1.

CLP Protocol Only
Were Interference Check Samples run at the beginning and end of each sample analysis run, or a minimum of twice per 8-hour shift (whichever is more frequent)? Yes No

COMMENTS

Actions:

50-79%

J

UJ

80-120%

>120%

٧

PERCENT RECOVERY
<50%
5

R

R

Detected results
Non-detected results

IVB. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

42T 42D BATCH: DUE 260121

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample Result
Bi			1					
د.۷			No					
(<i>ර</i>			<i>,</i> vv ₃	· .				
(<i>-</i> /	(2)		~ (×				.	
ph.	ر		elle.					
, MiA			9			•		
Ag	-62	ムコ	حند	W.CU				
<i>J</i>	(6.7)							
V	7-8-6	US	ND	,v , EN				
	(26)						·	
رك	2.04	-17	7.5	5.9				
As	حسص							
				· ·	· .			
							·	·
		C784	0.024				·	
				<u> </u>		 		
								
						L		
								
						·	·	
		ļ		<u> </u>				
					<u> </u>			
					_·			
			ļ		-	<u> </u>		
				<u> </u>		·		
			1					

Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA

If the ICSA value < -IDL:

- 1. Estimate (J) detected results < = 5* |ICSA].
- 2. Estimate (UJ) non-detected results.

V. INORGANIC ANALYSIS WORKSHEET - PRE-DIGESTION MATRIX SPIKE

			MATRIX:	47. 3		_	BATCH: DYCE 260121
Na, Al and F	e for soil samp	ies, and Ca, N	/lg, K and Na	for water sample	es.		recovery criteria are not evaluated for Ca, Mg, K,
f the sample	e result exceed	s the spike ad	ded by a facto	or of 4 or more,	no action is ta	ken.	
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
017	AI	3240	580	20-0	133	. 3	JA /A / ALL
		~ 2×0	4		135		
SOB Dueger	Be				41	\Box	
258					81	Enané	
	TL				62		who 75-125
	 	ļ			£3		,
	<u> </u>						
OID	Trevs	-010					·
<u>a</u>	IS-	(A)		250~			
	<u> </u>	70127	40*				<u> </u>
ا عمامه		H4 0	-01				
تهدة عاملا	300	7.3					
							
				 			
							44.47 Rue slee?
				1			223 200 = 14 2107
				1 .			
							7-34.4(m) = 14 e 12
			pared at the re	quired frequenc	y of once eve	ery 20 samples	s, or every SDG (whichever is
more freque			-h-ma-d-f	CD plant	veent Cities :		
	ost-digestion m atrix spike reco		atyzed for all I Yes	CP elements, e No N	xcept Silver, t A	nat did not me	set the pre-
	atrix spike pre				Yes	No ·	
COMMENT		No co		70			
						. `	
 If any an Actions: 	alyte does not	meet the % R	criteria, qualit	ly all associated	samples usir	ng the followin	g critena:

Note

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

< 30%

R

PERCENT RECOVERY

> 125%

30-74%

J

IJ

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX: 420	BATCH:	DYE Z	e0(21
is: all narameters that do not meet RPD or CRIN criteria	1.1.1	was property of the	44, 2 44, 44

ample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	; :Samples Affected
						1	12CC 1907 <50
						7 9	
						7	use mistano
	·			-		- 5	0.10 413 (4.1.1
			 	<u> </u>	\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· · · · · · · · · · · · · · · · · · ·
			<u> </u>				·
			 				
		 .					
			<u> </u>	· ·			· · · · · · · · · · · · · · · · · · ·
				<u></u>			
							
		·····					
			 				
			 				
			 				
			 				
						·	
						·	
			<u> </u>				
MMENTS							

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If toth sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original Is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Nc te</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET - LABORATORY CONTROL SAMPLES

:	٠	MATRIX:	420			BATCH: 10 C	15267121	
List all parameter	rs that do not r	neet the percent	recovery criteria.	general de				
LCS ID	Analyte	True Value	Found Value	. %R	Action	. \$	Samples Affected	1
	*****					م در ر	el- 80-1	S 2
					. /.			
					/ 0	<u>/</u>		
			· · · · · ·		1.		·	
				,		<u> </u>		
			· .		10/			
			<u> </u>		· · · · · · · · · · · · · · · · · · ·			
	<u>.</u>							<u></u>
		<u> </u>						
		<u> </u>	<u> </u>			· .		
		<u> </u>	ļ					·····
		ļ						
		ļ	ļ			ļ 	 	
			ļ			ļ.		
	·		ļ		· · · · · · · · · · · · · · · · · · ·			···
			}			51715-0	=107-	
		<u> </u>						
		<u> </u>					 	
					······································			
		<u> </u>				<u> </u>		
Note:								
	ne matrix as s	amples must be	prepared for each	SDG.				
COMMENTS				·				
							•	
								
Actions:								
	nony and silve	r have no control	limits. An aqueo	ous LCS is not i	required for CN	and mercury.		
							•	
1. AQUEOUS		•	<50%	50-79%	RECOVERY 80-120%	>120%		
Detected results			R	J	V	J		
Non-detected res	sults		,R	UJ	V	V		
2. SOLID LCS								
Recoveries stipu	lated by EMSI	L				. :		
	-, -		BELOW		WITHIN	•	ABOVE	
	•		CONTROL LIMITS		CONTROL LIMITS		CONTROL LIMITS	
Detected results			J	•	V		Ĵ	•
Non-detected re-	suits		UJ		V		V	

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

-	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
Ba	<i>७.</i> २५	18.4	29	SOU	100		· not reporting < RL
							10×5=50 -0504
7.0	23	(0.0	250	*			
AS	0.044	4.7	5.3	6.5	23-1.	-5	tertal Assemi
on one							01,03
							3) 1
							Noction # 2 -
			· 	<u> </u>			
				'			· · · · · · · · · · · · · · · · · · ·
				<u> </u>			
				ļ			
							· · · · · · · · · · · · · · · · · · ·
				 			
							
				<u> </u>			
				 			
				ļ			
	<u> </u>			+			
			<u> </u>	 			
		ASMA SERIAL	L	1	<u> </u>		

Actions:

Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: DIEZGUIZL

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4E040112

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4E040112 from Severn Trent Laboratories, Inc. This report consists of the validation of one total and one dissolved water sample collected on May 3, 2004 and analyzed on May 14, 15, and 17, 2004 for ICP metals; May 17 and 18, 2004 for ICPMS; and on May 10 and 13, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number 148: 44:	Laboratory Sample Number
MW-33-050304 (total) +	D4E040112-001
MW-33-050304 (dissolved) +	D4E040112-001

[†] denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Full validation was conducted on these analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Validated By: Suite-

Reviewed By

Lisa Tyson

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

No shipping or receiving problems were noted. The sample was hand delivered to the laboratory immediately after sampling was therefore not received cooled. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery criteria with the exception of a recovery for beryllium (110.7%) in a CCV standard bracketing the dissolved sample analysis. No action was required as beryllium was non-detected in the associated sample analysis.

<u>Blanks</u>

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample MW-33-050304 and on a sample from another SDG.

The following non-detected sample result was qualified as estimated (UJ) because the associated spike recoveries at 33% and 34% recoveries were less than 75%, but greater than 30%:

Total antimony in sample MW-33-050304

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that a recovery for cadmium was outside the laboratory percent recoveries QC limits. No action was taken on this result because the recovery was within 75-125%.

The post-digestion spike recovery for antimony was within QC limits. Post digestion recoveries do not effect sample qualifications.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on sample MW-33-050304 and on a sample from another SDG.

All %Ds were less than 10% or the initial sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

BATCH: D4 E040112

Sample ID W-73-040304 (T.A:())	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis	TCN Analysis Date	Analysis	No. of Days Past Holding	Action
my-33-040304	11-2	(A, B, C)	Concolou	l Data/s					
(Thel)	12-2				Date		Date/s	Time	
(てみくし)	17 L	2004	5/3/24	5/14.15	Sholon	Sky		- 0-	none
I									
MU-73-050564	450	15	513100	5/15.12	Slizby	5107			
(D35)									
· · · · · · · · · · · · · · · · · · ·									
			 				 		
								<u> </u>	
5/11-17 (R-~ =1)	-19t	> →>	Rg.Cr.	ری د س	Bb (V V: "7	<u>e, Ay, Y</u>	, ¿ ~	
		<u> </u>			ļ '	ļ			
5/2-15 R-#L	a	A)	CA, 62	1-12	15,20	ļA			
		211				,		ļ	
S(+ 2-~ P)	(0)	617	A Fe	1 - 5 - 4 - 1	K, N	 		<u> </u>	
اسم دسخ	TO.	SI, P	(CE,	Be.	EL.				
P-2	7								
					<u> </u>				
			ļ	<u> · </u>					
			<u> </u>	ļ					
			<u> </u>	<u> </u>	<u> </u>				L
COMMENTS - Q a-	- (2. 6. mg	22.1	<u>ه د</u>	722	"much	- chefu efter	Sevol	, my -	
6012 6020 749	<u> २० ७</u>								
							·		 -
Actions:									
If holding times are exceeded, a If holding times are grossly exc	all sample re eeded (>=2"	sults are estim	nated (J)/(UJ). detected result	s are		•			
estimated (J), and non-detected re	sults are reje	ected (R).			Malidated by				Data:
					Validated by:	Buch			Date:
Preservatives: A. Preserved w/HNO3 and cooled	to 4°C				Review By:	L. T	_		Date:
3. Cooled to 4°C						L. T	4)50~	/	
C. No Preservative						{	J .		
ANALYTE	HOLDING T	IME	PRESERVAT	IVE					
			AQUEOUS			SOIL			
Metals Mercury	180 days 28 days		pH < 2 w/HN(pH < 2 w/HN(4 Deg. C 4 Deg. C			

*VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

BATCH:) 4EOUOU2

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	% R	Action	. Samples A	ffected
Be	CVS	క్రు	55.36	110.7	(ine)	Diss	(ICPM!
						S=-/r. is	. دىم
					·		
						·	
·							
		·····					·
						·	
····		,	ļ			· · · · · · · · · · · · · · · · · · ·	:
		·				· · · · · · · · · · · · · · · · · · ·	
						· ···	
	1.						
			<u> </u>				
							·
					,		
			ļ				
		·	<u> </u>	<u> </u>			
	every 10 sample				es No		·
					ch sample run (CL	P only)? Yes	No
MENTS R	onter Ic	<u>2C.</u>	r, ccrio	ϵ_{1}	((8		· · · · · · · · · · · · · · · · · · ·
	A A		v (c	4 8	<u> </u>	& ∑	
	P43	754 I	دم دده ج ر	,		ريخ	-(7)
ns:	243	DI	دځ ۱۲۷۷ د	٦.			•

Actions:	Jepus HI D	ICO C S. 6
ICV/CCV Actions:	TC3m2 H277	tcv cu i
	せつろかく センバス	

PERCENT RECOVERY

<75% 75-89% 90-110% 111-125% >125%

Detected results R J V J R

Non-detected Results R UJ V V V

^{1.} If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

IIC. INORGANIC ANALYSIS WORKSHEET -- Hg CALIBRATIONS

BATCH.	BATCH:	DUEDUOUS
--------	--------	----------

ICV CCV	TRUE	Found	% R	Action	Samples Affected
	·				both rows
					TCV; CUS &0-120
					·
				1/ , 9	
				1.70	
		<u>.</u>			
	•				
				· —	
		·			
				ļ	
· · · · · · · · · · · · · · · · · · ·					
		<u> </u>		ļ	
		·		<u> </u>	
			· · · ·	<u> </u>	
		 		 	
		· · · - · · · · · · · · · · · · · · · ·		<u> </u>	· ·
1 1810 155 -		ef atandards :	d blocks	to collibrate the :	nstrument? Yes No
		or standards an		to calibrate the in	nstrument? (Yes No
		es and samples		NE3	No Run +1 0-94493 Run +2 0.59984
				ning of each sa	mple run? (CLP only) (Yes) No
		ten samples ar			Yes No
COMMENTS	13. 0.01. 6VGIY	ton compres at	in at one of set	4001100.	100
Actions:					

PERCENT RECOVERY
<65% 65-79% 80-120% 121-1

 <65%</th>
 65-79%
 80-120%
 121-135%
 >135%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

MATRIX:	BATCH: DYEOUCUZ
---------	-----------------

Analyte	ICB CCB PB/MB	IDL	.Blank Conc.	.5 * Bl. Conc.	Action	Samples Affected
						1763- 4/ -500 BUE
						D ()
					7. X 7	
				7:	101	AIL JCBICCE NO
				1		C & C .
					./	
						les reporting to ac
		-				
· · · · · · · · · · · · · · · · · · ·						
		·				
			-			
	, ,				·	
		······································				
					· · · · · · · · · · · · · · · · · · ·	
	<u> </u>					
	1					
	 					
	<u> </u>		<u> </u>			
	<u> </u>					
						<u> </u>
					·	
	 					
						
	ne absolute value	or any analy	te concentration	on in the PB or	MB is < CRDL	
<u>fy</u>	····					
prep blank per r						· · · · · · · · · · · · · · · · · · ·
prep blank per t		· · · · · · · · · · · · · · · · · · ·				
analyzed immed						
3 analyzed after			-1d1-a 16	!ibl- 4		
	ate blanks analy:	zea : IT so, Ir	icidae apove it	applicable to p	гојест.	
MMENTS						

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

BATCH: DYEOUSUZ

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

NOTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample res	sults in ug/L and lis	st any Al, Ca, Fe or Mg r	esults that are grea	eter than the ICSA values.
Sample ID	Analyte	Sample Result	ICS Value	Comments .
				200
				1 Test
				11000
				(0
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

PERCENT RECOVERY

	<50%	50-79%	80-120%	>120%
Detected results	R	J	V	J ·
Non-detected results	R	UJ	V	ν.

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX: A23	BATCH: DIEGROUS

List all parameters that do not meet the percent recovery criteria. Note: The pre-digestion spike recovery criteria are not evaluated for Ca, Mg, K, Na, Al and Fe for soil samples, and Ca, Mg, K and Na for water samples.

		Spiked	Sample	or of 4 or more.			
Sample iD	Analyte	Sample Result	Results	Spike Added	% R	Action	Samples Affected
01	55671	(3, 2	. /	نبري	33	认了	ノッチによ
		レグサ		i	34		
بحسيكش	分と						
SOX			who	75-4	521		
٥١	#(8~)						
		·					
							AL FE TYX
							12:0-0K
							13.2/40 410 = 33
						'	
_							Sufference who Forms
							30 40 = 108
							1e 113/10= 108
							(e's in 100
		rix spike prep	ared at the red	quired frequenc	y of once ev	ery 20 sample	s, or every SDG (whichever is
nore frequer		No	<u> </u>		<u></u>		
	st-digestion ma trix spike recov		lyzed for all IC Yes	CP elements, e No N	xcept Silver, A	that did not mo	eet the pre-
3. Was a ma	atrix spike prep	ared for each	different sam	ple matrix?	Yes	No	
COMMENTS	WY	c	2 11	3.1.	terte	(e) (r.	+ 41- 75-125
·		<u> </u>		21 17			
	105	+ 52-14	سك	3b - 66	- ' t"(- 10 9	vel change.
						····	

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

PERCENT RECOVERY

	< 30%	30-74%	75-125%	> 125%
Detected results	J	J	V	J
Non-detected Results	R	UJ	V	V

Note

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX: 420 BATCH: DUE GUOVIZ

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
							Dil milmin
							(201-)
							هد استار
							(201-)
				·			
					<u> </u>	····	
			<u> </u>				
				· 	ļl		
				·			
	· · ·				 		
					<u> </u>		
					ļ		
		-	<u> </u>				
						······································	
			-				
					1		
					 		
					 	•	
		<u>.</u>	 		1		· · · · · · · · · · · · · · · · · · ·
					 	 	
			-	 -	 		
			 				
			 				
			 		 		
			 				
MMENTS			CA	.,, 5	1 1 1	7 (
WINE IN 19			<u> </u>	-121	-14 =	1- 7	
				-,	- s		

Actions:

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	420			BATCH: O	1 EO401/2	
List all paramete	ers that do not n	neet the percent	recovery criteria.			1 27 - 1	13.00	4.
LCS ID	Analyte	True Value	Found Value	. %R	- Action		Samples Affected .	
ري	A \				پرد-	1201.		
70	(1) =							
								
		<u> </u>					· · · · · · · · · · · · · · · · · · ·	
					1			<u>.</u>
								-
		· .		·				
								
· .								
		ļ						
		 						
		ļ						
		ļ						
<u> </u>	<u> </u>						· · · · · · · · · · · · · · · · · · ·	
		1						
			[[L	l		
Note:						uerlas		
	me matrix as sa	imples must be p	repared for each	SDG.		~(()(:	° 47	
COMMENTS					·			
<u> </u>						 		
					····			
		···-··································						
Actions:							· · · · · · · · · · · · · · · · · · ·	
Exception: Anti-	mony and silver	have no control	limits. An aqueo	ous LCS is not	required for CN	and mercury.		
				PERCEN	T RECOVERY			
1. AQUEOUS			<50%	50-79%	80-120%	>120%		
Detected results Non-detected re			R R	ΩJ	V V	J	•	
N 311-detected Te	SuitS		IX.	03	v	v		
2. SOLID LCS							·	
Recoveries stipu	liated by EMSL		BELOW		WITHIN		ABOVE	
			CONTROL		CONTROL		CONTROL	_
			LIMITS		LIMITS		LIMITS	
Detected results Non-detected re			N1 J		V V		A A	

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

nalyte	. IDL	, 50*IDL	Sample	It is at least 50* I Serial Dilution	% D	Action	Samples Affected
lalyte		, 30 101	Results	Result		7,0,1011	. Jumples / medica
							· · · · · · · · · · · · · · · · · · ·
		ļ ·					
			<u>-</u>	ļ			
				ļ		0-	
	· .			 		1	
	ļ				-41		
						XX	
		ļ)~_	·
				 			
	ļ			ļ			
	<u> </u>	<u> </u>					
		ļl					
	ļ			ļ <u> </u>			
	<u> </u>	<u> </u>	 				
						<u> </u>	
			<u></u>				<u> </u>
	<u> </u>					· .	
CTIVELY	COUPLED PL	ASMA SERIAL	DILUTION AN	IALYSIS:			
dilutions	were performe	ed for each matr	x and results	of the diluted sam	ple analysis	agreed within	
dilutions	were not perfo	ormed for the following	owing.	No			
MENTS						 	
MEITIG_					•		
							
							

Actions

Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

	BATCH: DHE OWNZ
Describe any raw data anomalies (i.e., baseline shifts, negative absorban	ces, transcription or calculation errors, legibility, etc.
	~ L-
	NOC
2. List results that fall outside the linear range of the ICP instrument or the covere not reanalyzed.	alibrated range of the AA or Cyanide instrument, and
	Y
3. Were ICP linear ranges obtained within 3 months of, and preceding, the s	ample analyses? (Yes) No NA
4. Were ICP interelement corrections obtained within 12 months of, and pre-	ceding, the sample analyses? (res) No NA
5. Were instrument detection limits present, found to be less than or equal to	
preceding, the sample analyses? Yes No	NA
6. Were all sample results reported down to the IDL if running CLP protocol?	? Yes No NA
- RL	100 2 2 - 5 - 100 M
7. Were all sample results reported down to MDL if running SW-846 method	
8. Were sample weights, volumes, percent solids, and dilutions used correct	tly when reporting the results? Yes No
COMMENTS Form 10 ul unous	process unlike RL in
81 - his Doc ut 5	al mile cul
(e) wing PL US	
· 국	
e B, 0.227 pp 2220	طحم
pl. 0.026 e26	
FC 27.232 >> 26,000	, –
2 (E D: 68.4 -	

this page left intentionally blank

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Bill Fear - TechLaw, Inc.

Report Date:

September 8, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.:

D4G280388

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4G280388 from Severn Trent Laboratories, Inc. This report consists of the validation of four total and five dissolved water samples collected on July 28, 2004 and analyzed on August 4, 6 and 7, 2004 for ICP metals; August 9 and 12, 2004 for ICPMS; and on August 12 and 13, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number 1	Laboratory Sample Number
MW-33-072804 (total)	D4G280388-001
MW-33-072804 (dissolved)	D4G280388-001
MW-31-072804 (total)	D4G280388-002
MW-34-072804 (total)	D4G280388-003
MW-34-072804 (dissolved)	D4G280388-003
MW-32-072804 (total) [†]	D4G280388-004
MW-32-072804 (dissolved) +	D4G280388-004
MW-36-072804 (dissolved)	D4G280388-005
MW-35-072804 (dissolved)	D4G280388-006

denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Validated By:

Bill Fear

D4G280388m

Reviewed By:

Liea Tyeon

Samples MW-32-072804 (total) and MW-32-072804 (dissolved) were randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
- * Interference Check Samples
- * Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery with the exception of a recovery for beryllium (110.8%) in a CCV standard bracketing two total samples. No action was required as beryllium was non-detected in the associated sample analyses.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks with the exception of cobalt in one CCB at 0.0.67 ug/L and for manganese in one CCB at 1.0 ug/L. No action was required as the sample results were non-detected or greater than five times the blank values. All non-detected results were reported to the reporting limits. Detected results

were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on samples MW-33-072804 (total) and MW-31-072804 (total) and on samples from another SDG.

All MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the un-spiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory was evaluating the spike recoveries against the laboratory QC limits. As a result, the laboratory indicated that a recovery for mercury at 81% was outside the laboratory percent recovery QC limits. No action was taken because the recovery was within 75-125%.

Several calculation discrepancies were noted for the matrix spike recoveries. It appears that the laboratory software was using the found value for the un-spiked sample amount even though the result was reported as non-detected.

<u>Duplicate Sample Analysis</u>

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs) and all RPDS were less than 20%.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on samples MW-33-072804 (total) and MW-31-072804 (total) and on samples from another SDG.

All %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported. No calculation or transcription errors were found.

All results were reported within the linear calibration range.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

BATCH: DYGZSUJEY

L	ist all analytes which do not	meet holdi	ng time criter	ria		·	Trace	ICP	. 21, 1	
F	Sample ID	Matrix	List Pre- servative	Date Collected	*Metals Analysis	*Hg CVAA Analysis	* CN Analys is Date	Analysis	No. of Days Past Holding	Action
L			(A, B, C)		Date/s	Date		Date/s	Time	
L	MW-37-072604	נר#	A	7/28/07	5-604	8-13-04	8-4-04	8-9-04	-0-	none
	MW-31-87224				+ -	√.	-1	<u> </u>		
	m. 20 - 37-07250-1				,		1	1		
	14m-32 -017841	1	[]	1	4	V		4		
E	THE SE TO BE						2-4-1			
Γ	,								210	
Γ									5	
Γ								117	Fo	~ 1 i~
Γ	0,31,1002									
Γ	MW-33			Thalon	m) 412	8-42-04	8/6/24	8-12-24		
Γ	mw-34				*		+	å		
Γ	17W-32				-		· ļ	1.		
Γ	mw36	ĺ			4	V		1 -		
Γ	mu-35				11	سنيد	T. J.	d		· · · · · · · · · · · · · · · · · · ·
Г				— — —	~~~~			¥		
Г	 					Hen	Est	Mv-	770	
Γ						1	7			
Γ		i	1							
Γ										
Γ										
Γ										
Γ										
r		l								
r							*****			
				†						-
c	COMMENTS 3.20	L	<u> </u>	<u> </u>			L	<u> </u>	<u></u>	·
F				Fil	DV	U~	Mu-37	7 7	7	
r				15.		0 - 1				
٢					······································			··		
Δ	ctions:								····- ·	
1 2	 It holding times are exceeded, It holding times are grossly exc 	all sample re ceeded (>=2°	sults are estim	nated (J)/(UJ). detected results	s are	•	•			
	stirnated (J), and non-detected r						_ ~	^	•	
						Validated by:	B.11	<u> </u>		Date:
D	reservatives:						45.11.	-		
_	. Preserved w/HNO3 and coole	d to 4°C				Review By:	1			Date:
_	. Cooled to 4°C					•	1 Tu	500 J		i
E										

ANALYTE	HOLDING TIME	PRESERVATIVE			
		AQUEOUS	SOIL		
Metals	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C		
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C		
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C		

Holding Time = Analysis Date - Collection Date

BATCH: DY G220388

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

13	e	CCV	52	1.22	110.8	13. re	\$ 4 m & m & z I < r < r < r < r < r < r < r < r < r <
							(7-172) (16 Ic? Icr cer3-5 ~ Tome 8(1)? Icr 5-6 ~ S(6/8/17 Icr Icr 5-6 ~ \$(4 Icp~> Jer 2-4 ~
							(7-4.72) (16 Ic? Icr cer3-5 ~ Tome 8(2? Icr 5-6 ~ S(6/8/2) Icr Icr 5-6 ~ \$(4 Ic?~> Jer 2-4 ~
							(7-4.72) (16 Ic? Icr cer3-5 ~ Tome 8(2? Icr 5-6 ~ S(6/8/2) Icr Icr 5-6 ~ \$(4 Ic?~> Jer 2-4 ~
							Tome 8/2? Jer 5-6 - Slie/8/7 Jer Jer 5-4 - 6/4 Jer 2 Jer 2-4 -
							Tome 8/2? Jer 5-6 - Slie/8/7 Jer Jer 5-4 - 6/4 Jer 2 Jer 2-4 -
							SIG(81) Jer Ser 2-4 -
							SIGIBITIES TEN S-4-
							6(4 ICP-> Jev 2-4-
							\$(4 \(\text{TCP->}\) \(\text{Jev 2-4}\) \[\begin{array}{c c c c c c c c c c c c c c c c c c c
						12,57	chi Icims Jev 2-40
						الأدرا	
						13.77	
						المرد الم	
					/	7.357	/
					1/1	U.S.	
) 		7		
					1/ 1	X	
		<u> </u>				٠	
					<u> </u>		
		 	<u> </u>		<u> </u>		
			<u> </u>				
		 	ļ	<u> </u>			
			 	 	<u> </u>		
			 				<u> </u>
			<u> </u>		1	.73:	
		every 10 sampl				Yes No	
Was a C		sample (CRI) a	analyzed at the	peginning and	at the end of	each sample run	(CLP only)? (Fes No
COMME	11/10	3112		- 620		المرازي والمراز	35-43-2
							· · · · · · · · · · · · · · · · · · ·

ICV/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

^{1.} If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

IIC. INORGANIC ANALYSIS WORKSHEET - Hg CALIBRATIONS

BATCH:	DAB 590,328

ICV CCV	TRUE .	Found	% R	Action	Samples Affected		
					-80-120	Cota ans	
 -	1-						
· · ·							
						· · · · · · · · · · · · · · · · · · ·	
				1/2	·		
				1/5	/		
				17,50	/		
		•	·				
				·			
				<u> </u>			
						·	
	<u> </u>				·	·	
		·			·		····
			·				
]			
ere the c	orrect number	of standards an	d blanks used	to calibrate the in		No	
the initia	I calibration co	relation coeffici	ent > 0.995?	,Yes) N	0 0.5553	10 55937	
If no, list a	affected analyte	es and samples:					
as a CRI	DL check samp	le (CRA) analyz	ed at the begi	nning of each san	pple run? (CLP only)	res No car	
	fter CRA, every	ten samples ar	d at end of se	quence?	Yes No		
MENTS							
							·

PERCENT RECOVERY

 <65%</th>
 65-79%
 80-120%
 121-135%
 >135%

 Cietected results
 R
 J
 V
 J
 R

 Nion-detected Results
 R
 UJ
 V
 V
 V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

TECHLAW

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

	MATRIX:	#23	,			BATCH: DY 62	wast.
List the highest posit		ive blank result	.>= DL below.	. Use one work	sheet for soil n	natrix and another for wa	
Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action	Samp	oles Affected
ĆŌ	034	Slue-2	60.0	333		NO 05 > 5	(37,32 7)
Mn	cciss	ix	1.3	5-3	_		
	 	 	 	 	1 -/ n-	+}	-
	 	 		 	1/ ~~	//	
	 	 	ļ	 	 /~2>/	4	
	 	 	<u> </u>	 		 	
	 	 	 		110	·	
	 	 	 	 			
	 	 	 	 	 		
	 	 	 			 	
·	 	 	 	 	 		
		 	 	 	 	 	
		 	 -	 -	 	 	
	 	 	 	 			· · · · · · · · · · · · · · · · · · ·
			 				
	 	 	ļ	 	 	 	
	 	 	 	ļ <u></u> -	 		
		 	 	 -	 		
	 	+	 	 	 	 	
	 	 	 	<u> </u>			
	+	 	 	 	 		
		 	 	 	 	 	
	 	 	 	<u> </u>	 		
	 	}	 	 	 		
1107F- 11-26 B-14			<u> </u>		1 10 in a CDDI	<u> </u>	
NOTE: Verify that the	ne absolute val	ue of any analy	ne concentration	on in the PB of	MB IS CKUL	. "	
Verify							
One prep blank per							
One prep blank per						<u></u>	
ICB analyzed immed		<u>√</u>					
CCB analyzed after					· 	<u> </u>	
Field/equipment/rins	ate blanks ana	alyzed? If so, in	iclude above if	f applicable to p	project.		- ,
COMMENTS							

Actions:

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5" |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

NOTE: The sample results can be accepted without qualification; if the sample concentrations of AI, Ca, Fe and Mg are less than or a characteristic concentration found in the ICSA solution. equal to the concentration found in the ICSA solution.

Sample ID	Analyte	Sample Result	ICS Value	Comments	
				サイ マン	-
				NUNC > ICIA	<u> </u>
]
]
					7
					7
					٦.
					7
-		<u> </u>			1
		·			7
		 			1
		<u> </u>		<u> </u>	
		nat did not meet the crite	ria of 80-120% R.		
Analyte	% R	Action		Samples Affected	
			1200	ーヤジー	
				100 UN +	
	<u> </u>				
			•		
				·	
			·· - ·		
Protocol Only	_		_		
e Interference Che ore frequent)?	ck Samples run at Yes	the beginning and end on No	of each sample ana	llysis run, or a minimum of twice per 8-hour shift (which
MENTS		110		· · · · · · · · · · · · · · · · · · ·	
-::-::::::		······································		· · · · · · · · · · · · · · · · · · ·	
					
ons:					· · · · ·
ona.	-			•	
•		PERCENT RECOV	/ERY		
		<50%	50-79%	80-120% >120%	
ected results	•	R	J	V 19 J. 19 19 19 19 19 19 19 19 19 19 19 19 19	

Non-detected results

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

			MATRIX:	450	· · · · · · · · · · · · · · · · · · ·	· <i>·</i> · · ·	BATCH: 046280348
Na, Al and Fe	for soil sampl	es, and Ca, I	percent recove Mg, K and Na	ry criteria. Not for water samp	e: The pre-dig les.		ecovery criteria are not evaluated for Ca, Mg, K,
If the sample	result exceeds	the spike at	ided by a factor	or of 4 or more,	no action is ta	iken.	
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
#27	#CO~>					<u></u>	75-17
インオ	ILG						21-11:
	>~ H(()	1 /					
Anterd	200						
CSICO	FC0/	Techs					- 15-175 or 748 .
		نلد		4	11862	Q 811	(su-111)
						ي،ررسو	111-76 -1 w
						10	
							1
				-			
-							
more frequer	nt)? Yes)	No					, or every SDG (whichever is
2. Was a po	st-digestion ma trix spike recov	atrix spike an verv criteria?	alyzed for all I Yes	CP elements, e	except Silver, t	hat did not me	et the pre-
			different sam		Yes	No	
COMMENTS						1	
			~~	7.7	120	/	
		7	10				
		(
							

Actions:

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

PERCENT RECOVERY

> 125%

30-74%

UJ

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria:

< 30%

j

R

TECHLAW

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX: 473 BATCH:_	D (159052L
---------------------	------------

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Sar	nples Affected
							MSIM	11)
							2005	al 2201.
								
<u>-</u>					-			
						<u> </u>		
				····		19°C		
			 	··· · · · · · · · · · · · · · · · · ·		\\ \\ \\		
						100,	/	
								
								
							 	·
				· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·	 					
		······································	 		/	-		
		·	ļ		/	-		
					<u> </u>			
			ļ	/_				
				/				
				_/		ļ	· · · · · · · · · · · · · · · ·	
		 	ļ	/				
				<u>.</u>				
			/					
<u>,</u>			<u> </u>					
MMENTS							···	

Actions:

1. AQUEOUS

If toth sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	H23		and the contract	BATCH:	Jold Sposek	
List all paramete	rs that do not n		recovery criteria					
LCS ID	Analyte	True Value	Found Value	· %R	Action		Samples Affected	
	•			· ·		12チェブ・	60-120 V	
		·		· · · · · · · · · · · · · · · · · · ·		10.63	<i>V.</i>	
					.~			
				,	1000			
					1			
		T						
					· [
·								
·		<u> </u>					· · · · · · · · · · · · · · · · · · ·	
		<u> </u>						
		<u> </u>			_			
·	<u> </u>	ļ		<u> </u>		ļ		
		 						
		 			<u>·</u>			
		 						
		 						
ļ			<u> </u>				<u>. </u>	
	:	 	 	 		<u> </u>		
Note:		<u> </u>		<u> </u>		<u>.l.</u>		
		omplos must be		h CDC		·		
LCS with the sar	me mainx as s	ampies must be	prepared for eac	11 300.			······································	
COMMENTS							· · · · · · · · · · · · · · · · · · ·	
<u> </u>							·····	
					· · · · · · · · · · · · · · · · · · ·			
					·			
Actions:								
Exception: Anti-	mony and silve	r have no control	limits. An aque	ous LCS is no	ot required for Ch	N and mercury.	,	
		•		PERCE	NT RECOVERY	-/	•	
1. AQUEOUS			<50%	50-79%	80-120%	>120%	•	
Detected results Non-detected re			R R	J UJ	v ' v	, A		
			• •			-		
2. SOLID LCS Recoveries stipe	tisted by EMSI							
vemacues subf	TIELEO DA EINIOF	-	BELOW		WITHIN		ABOVE	
		-	CONTROL		CONTROL		CONTROL	
Detected results			LIMITS J		LIMITS V		LIMITS J	
Non-detected re			UJ.		V		. V	

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

	MÁTRIX:	4/50				BAT	CH: D	1626324
Se ial dilution o	riteria only ap <u>pl</u>	ies if the origin	al sample resi	ult is at least 50° I	DL and %D >			
Analyte.	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action		Samples Affected
134			· · · · · · · · · · · · · · · · · · ·				んりつ	e ec ~
Mn							22	really to be
				·				
								
· ·							····	
						DV -		
					- PJ			· · · · · · · · · · · · · · · · · · ·
		·				0		
					•			
								
								
			*					
		·		ļ		<u> </u>		***
	 			 				
					-		·	- C. C.
<u> </u>								
				 				
					<u> </u>	-	_ - *	
				ļ	<u> </u>			
	001101 == 5			1		<u> </u>		
Serial dilutions	were performed	ASMA SERIAL	DILUTION AT	NALYSIS: of the diluted sam	ple analysis	agreed within	······	<u> </u>
teri percent of t	he original undi	luted analysis.	,Yes	No		-5.200	· · · · · · · · · · · · · · · · · · ·	
	were not perfor	med for the fo	llowing!				· · · · · · · · · · · · · · · · · · ·	
COMMENTS					-		<u> </u>	
								
<u> </u>		<u>.</u>						
	····				·	· · · · · · · · · · · · · · · · · · ·		
								

Actions: Estimate

Estimate (J) detected results if %D is > 10%.

<u>NOTES</u>

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: DUG 230338

	היטינים וויסובים זה חתונתוי	rrors legibility etc	
Describe any raw data anomalies (i.e., baseline shifts, negative absorbances, transc		nors, regionity, etc.	
And the second s		· · · · · · · · · · · · · · · · · · ·	
and the second s			
1000 m (NONC.			
V			· · · · · · · · · · · · · · · · · · ·
			·
List results that fall outside the linear range of the ICP instrument or the calibrated rater not reanalyzed.	inge of the AA or Cyar	nide instrument, and	_
DU WIN PAME			
			
. Were ICP linear ranges obtained within 3 months of, and preceding, the sample ana	lyses? (es)	No	NA
·			
. Were ICP interelement corrections obtained within 12 months of, and preceding, the	sample analyses?	(es) No	NA
,			
5. Were instrument detection limits present, found to be less than or equal to the CRDI		- II	1
receding, the sample analyses? Yes No	NA (12 66	_1
. Were all sample results reported down to the IDL if running CLP protocol?	`		7
	Voc	No) NA
	Yes	No .	. NA
	Yes Yes	No .	. NA
. Were all sample results reported down to MDL if running SW-646 methods?	Yes	No	NA
. Were all sample results reported down to MDL if running SW-846 methods?	Yes	No	
Were all sample results reported down to MDL if running SW-846 methods?	Yes	No	NA
Were all sample results reported down to MDL if running SW-846 methods? Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes	No	NA
Were all sample results reported down to MDL if running SW-846 methods? Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No	NA
Were all sample results reported down to MDL if running SW-846 methods? Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes	No Yes,	NA
Were all sample results reported down to MDL if running SW-846 methods? Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA
. Were all sample results reported down to MDL if running SW-846 methods? . Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA
Were all sample results reported down to MDL if running SW-846 methods? Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA
Were all sample results reported down to MDL if running SW-846 methods? Were sample weights, volumes, percent solids, and dilutions used correctly when re OMMENTS	Yes porting the results?	No Yes,	NA
Were all sample results reported down to MDL if running SW-846 methods? Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA
. Were all sample results reported down to MDL if running SW-846 methods? . Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA
. Were all sample results reported down to MDL if running SW-846 methods? . Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA
. Were all sample results reported down to MDL if running SW-846 methods? . Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA
. Were all sample results reported down to MDL if running SW-846 methods? . Were sample weights, volumes, percent solids, and dilutions used correctly when re	Yes porting the results?	No Yes,	NA

ROUND 3: WATER VALIDATION REPORTS

SDG: D4K190487 SDG: D5C280224 SDG: D5E020222 this page left intentionally blank

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Lisa Tyson - TechLaw, Inc.

Report Date:

June 22, 2004

Project/Site: Laboratory No.: VB/I-70 OU3 D4K190487

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D4K190487 from Severn Trent Laboratories, Inc. This report consists of the validation of seven total and dissolved water samples collected on November 19, 2004 and analyzed on November 22 and 23, 2004 and December 1 and 2, 2004 for ICP and ICPMS metals, and on November 30, 2004 and December 2, 2004 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
KP-GW-16-111904 (total and dissolved)	D4K190487-001
KP-GW-15-111904 (total and dissolved)	D4K190487-002
KP-GW-17-111904 (total and dissolved)	D4K190487-003
MW-31-111904 (total and dissolved)	D4K190487-004
KP-GW-46-111904 (total and dissolved)	D4K190487-005
KP-GW-46-111904A (total and dissolved)	D4K190487-006
MW-30-111904 (total and dissolved)	D4K190487-007

denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Validated By: Lisa Tyson

Reviewed By:

1

Sample KP-GW-17-111904 (total and dissolved) was randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
- * Interference Check Samples Matrix Spike/Matrix Spike Duplicates Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- *. All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery with the exception noted below.

Due to elevated recoveries for beryllium at 110.6% and 114.6% in CCV standards bracketing the total samples, the following detected result was qualified as estimated (J):

• Beryllium in sample MW-30-111904 (Total)

Beryllium was not detected in any other associated samples.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The aluminum, calcium, iron, and magnesium concentrations in the full validation sample were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample KP-GW-16-111904 for total and dissolved metals and on a sample from another SDG for total metals.

The following detected sample results were qualified as estimated (J) because the spike recoveries at 410% and 424% exceeded 125% in the MS/MSD analyses performed on a sample from another SDG:

• Total aluminum in samples KP-GW-16-111904 and KP-GW-17-111904

The following sample results were qualified as estimated (J/UJ) because the spike recovery at 39% was below 75%, but greater than 30% in the MS analysis performed on a sample from another SDG:

• Total zinc in all samples

All other MS/MSD percent recoveries were within the technical validation QC limits of 75-125% or the unspiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

The laboratory evaluated the spike recoveries against laboratory QC limits. As a result, the laboratory indicated that the recoveries for antimony, beryllium, and arsenic were outside QC limits. No action was taken because the recoveries were within validation QC limits of 75-125%.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs). Duplicate criteria were met (i.e., for results greater than 5x the reporting limit, RPDs were less than 20% and for results less than 5x the reporting limit, the difference between the duplicate and the original was less than the reporting limit), with the exception identified below.

The following sample results were qualified as estimated (J/UJ) because the duplicate RPD of 41% exceeded 20% in the MS/MSD analyses from a sample in another SDG:

Total zinc in all samples

No calculation errors or transcription errors were found.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

All %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation sample. The results and reporting limits were correctly reported, and all results were reported within the linear calibration range. No calculation or transcription errors were found.

Samples KP-GW-46-111904 and KP-GW-46-111904A for both total and dissolved metals were identified as field duplicates. RPDs were less than 20% or the difference between the duplicate and the original was less than the reporting limit.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

					.*	BATCH:	04119	10487	
ist a'l analytes which do not i	meet holdir	ng time criteri	ia	Tot-	Total Total	10. Salved			
		List Pre-		*Metals	THO CVAA	(10.22/102/	Brazon -	No. of Days	
Sample ID	Matrix	servative	Date	Analysis	Analysis	÷ CN Analysis	Analysis	Past Holding	Action
Sample ID	WIZUIX	(A, B, C)	Collected	Date/s	Date	Date	Date/s	Time	Action
		(A, B, C)		1	Date		Date/s	Time	
KF-GW-16-11184	دري	1	11/19/02	11/02/20	11/30	11/25,251 12/1	12/2/01	رفيه ا	م شدر
	<u> </u>	 '=- -	 ''/'////	12/1/2	11/30	11/25 35/	12/2/34	- 4	
-1s- -17-					1)		<u> </u>	
1, 2-6								1	
	-	 	 		 			 	
NOW - 31-111901	1	1		<u> </u>	i /	!!	l	1/	/
2 6 41 462	1		T					1	Γ
10-6-W-46-11190g	 	 	 	 	- 	 	 	 	
V -11704A		1 1	1 1	! !	1 1			1 1	//
	1	1	/		·V	i,			1
10, -30-111901	1/		<u> </u>	- 	<u> .y</u>	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>			
į		Į	1	į		ł .	ļ		ļ
			 	 					
		 	 	<u> </u>	 	<u> </u>	 	L	
			1		1	1	ł		
	·	 	 	 	 	 	 	 	
			<u> </u>	1	<u> </u>				
							1		1
		 		 	 		 	-	
		1		<u> </u>	1		L		L
		 	 	 	 	ļ		 	
j				}	1	į l	ļ		
					1	T	[1	
		 	 		<u> </u>		ļ	<u> </u>	
1				ļ	1		ł	1	l
	_		1	 	 			 	
				ļ	1			ļ	
								T	
		 	 	 	 			 	
				L	<u> </u>				<u></u>
					1	1			
		 	 	ļ	+	 	ļ	 	
			1	1	+*		J	1	
			1	1	1		T	1	
		 	 	<u> </u>	 	<u> </u>	ļ	<u> </u>	
Í		}	Į	}	1	}	}	1	1
		 	 	 	 	 		1	
		<u> </u>	<u> </u>	<u> L</u> _	1	<u> </u>	<u> </u>	1	<u></u>
OMMENTS 5,3°C									
									
111901 8 11190	114	2016 C							
111901 & 11190 X F.11 V)	100.	6-1-5	7 - 115	1				
X///_\/	<u> اب</u>	م سرات	1-1-1	1-1119	051	·····			
ction:									
	-0 '						···		
-ff holding times are exceeded, it holding times are grossly exc	eeded (>='''	suits are estim	ialed (J)/(UJ). Detected testilis	s are					
timated (J), and non-detected re				- 414					
concess (o), and non-detected for		(i t).			\/_B_1-1-1-1-				Date
					Validated by:				Date:
					/ -	Time . 1			
resenratives:					<u></u>	Tysol		<u> </u>	
Protorved w/HNO3 and cooled	to 4°C				Review By:	~			Date:
Cooled to 4°C					•	s ₹.°	11/		
No Preservative						~	~ 4		
I ICSCIABILAC									
NALYFE	HOLDING T	IME	PRESERVATI	VE		•			
NALYTE	HOLDING T	IME 	PRESERVATI AQUEOUS	VE		SOIL			
	HOLDING T	IME				SOIL 4 Deg. C]		
etals	180 days	IME	AQUEOUS pH < 2 w/HNC)3. 4 Deg. C		4 Deg. C			
		IME	AQUEOUS	03 4 Deg C					

[&]quot;VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

IIA. INORGANIC ANALYSIS WORKSHEET - ICP CALIBRATIONS

BATCH: 041190487

Analyte	CCA	TRUE	Found	% R	Action	Samples Affected
total:						
	1- Me	A-100	Follow.	s ence	nt~	
(H) Be	cc (4)	50,00	55,70	110.6	1	Dateits == =11 (6020
(MI) Be	C.C. V(5)	5(720	57.29	114,6		
,						
						our detect is
						mw-30-11190467+2
-						
Dissolved	:					
	ra Me	+				
		7				
- · · · · · · · · · · · · · · · · ·						
· / · · ·						
CV run after CRI,	every 10 sample	s and at end o	f sequences? (C	CLP only) (Ye	s No	
vas a CRDL check	sample (CRI) ai	nalyzed at the	beginning and a	t the end of eacl	sample run (Cl	Ponly)? (Yes No
OMMENTS	C & T		•			
·						
			· ····	· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·			······································

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

90-110%

>125%

PERCENT RECOVERY

75-89%

J

UJ

<75%

R

R

Detected results

Non-detected Results

BATCH: 071619078-7

CCV CCV	TRUE	Found	% R	Action	Samples Affected
Total	-				
_	· Le ·	mex			
(), 55	chied-				
	where	ment			
					·
					·
				 	
			 _	 	
					
	<u> </u>				
			·	 	
				 	
					
				 -	
			 	 	
				 	
		 		 	
		 		 	· · · · · · · · · · · · · · · · · · ·
					
ere the co	orrect number	of standards and	bianks used to	calibrate the instr	ument? (Yes) No
the initial	calibration cor	relation coefficier	11 > 0.995?	Yes No	0.99981 10,99999
		es and samples:			
as a CRL	L check samp	ile (CRA) analyze	d at the pegini	ning of each samp	e run? (CLP only) (Yes) No
CV run aff	er CRA, every	ten samples and	at end of seq	uence? Y	es No
MENTS					
				·········	

PERCENT RECOVERY

	<65%	65-79%	80-120%	121-135%	>135%
Detected results	R	J	V	J	R
Non-detected Results	R	ບJ	V	V	٧

1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET - BLANKS

List the highest positive AND negative blank result >= DL below. Use one worksheet for soil matrix and another for water matrix. CB	
Analyte CCB IDL Blank Conc. 5 * Bl. Conc. Action Samples Affected Total ** Obs & Colos NO help RU D. 350/100 PBM3 CCBS NO 1201 PR Total ** Obs & Colos NO 1201 PR	
D. SSOlven) - PBS of CUBS ND /2-1 pm RLV	·
NOTE: Verify that the absolute value of any analyte concentration in the PB or MB is < CRDL	
Verify	
One prep blank per matrix One prep blank per balch	
ICB analyzed immediately after ICV	
CCB analyzed after each CCV. Field/equipment/rinsate blanks analyzed? If so, include above if applicable to project.	
COMMENTS	
Actions:	

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

BATCH: 0:14190187

NC/TE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca, Fe or Mg results that are greater than the ICSA values.

Sample ID Analyte		e ID Analyte Sample Result ICS Value		Comments	
Total	-				
			·		
1).55 alua/					
.,					
				<u>:</u>	
		·			
	· · · · · · · · · · · · · · · · · · ·				

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	% R	Action	Samples Affected
Total.			
Cont	736	+	
,		•	
Brasalva)		1	·
C. h.	~ Met		
GL - Protocol Only			
Were Interference Che	ok Samples run at th	e beginning and end	d of each sample analysis run, or a minimum of twice per 8-hour shift (whichever
is rhore frequent)?	Yes N	o 	
CCMMILITY			
	<u> </u>		
		. 	
Acliens:			

PFR	CENT	RECO\	/FRY

	<50%	50-79%	80-120%	>120%
Delected results	R	J	V	J
Non-detected results	R	UJ	٧	٧

BATCH: 1944 1909

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

Na, Al and Fe	for soil sampl	es, and Ca, N	ig, K and Na fo	or water sample	es.	-	covery criteria are not evaluated for Ca, Mg, K,
If the sample	result exceeds	the spike add	ded by a factor	of 4 or more, i	no action is tak	en.	<u> </u>
Sample ID	Analyle	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
Total	- U.D.	C-W-16-	111904	- Uze)	75-12-5	-lab	sel sural
	115/	ns/)				<u> </u>	3
	Cr	term.	net	İ			121
	- 2 - 6	د ماه ده	1) 12	msp	#432	4595_	10 '00
0	75 Al	V13800	5600	2000	4007410	15	detects P
07	50	14100	5600	2000	424		
					·		
	25 Z2	552	370	<i>පටට</i> .	39	5/00	all # 4327595 b-2h;
							1
	- W.F	-an-	16-1119	044			
	Sla	44.6	20	40	1/1/110	\ /	
	Be	48	~~	40	120/12	5/6	15. wdicated of by
	n				/110	1	Ly ved looks - who Over
1).550	1., 1-	LD.OL	-16-111	704) m	5/ms D	7 - 62	
12.33	I V Tal	00000	-104//	<u> </u>	7		
	1-	200	21-				
			/				
							<u> </u>
				 	1	<u> </u>	
				 	 	 	
		·	1	<u> </u>	<u> </u>		
				ļ—		<u> </u>	
				 		 	
1. Was a pro	-digestion ma	r ix spike pre p	ared at the rec	pired frequent) Jy of once ever) y 20 samples,	or every SDG (whichever is
more frequer				,	•	•	
	st-digestion ma		lyzed for all IC				
	trix spike recov	-	(Yes)	No NA	A-5p.	he box oc	02000
3. Was a ma	itrix spike prep	ared for each	different samp	de matrix?	/Yes	No	0
COMMENTS							
							
4 16 cm		enat the 9/ P	neitaria	المامة محجو الم		the fellowin =	aritario:
1. If any ana	llyte does not n	neet the 76 K	untena, quality	all associated	samples using	ule lollowing	CIRCIA.

75-125%

> 125%

Note

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

UJ

< 30%

R

VI. INORGANIC ANALYSIS WORKSHEET - LABORATORY DUPLICATES

BATCH:_

MATRIX: 60

st al' paramet		Sample	1		1		
Sample ID	Analyte	Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
T, 1	$\sim 1 - \kappa$	0-11-	16-1115	104 Y	hs/msm	7/2	PD
	- La	ib ms/ms	0		/		
	ح. 2	J82	850	41		5/0-	#11 19327595
						///	
<u> </u>	296=20				-		
							,
1/255	1/20 J -	ms/	2577	,.			
		alter-	Man				
				l 			
		<u> </u>					
							
				<u></u>			
		ļ		· · · · · · · · · · · · · · · · · · ·			
·		<u> </u>					
	<u> </u>						
	<u> </u>				ļ		,
		<u> </u>					
DMMENTS	<u> </u>	<u> </u>	İ				<u> </u>
		····					
							
							-

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > GRDL, estimate (J)/(UJ) all sample results of the same

2 SOLID

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result|
hclud = outliers for field duplicates (if applicable)

ote

A_duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET - LABORATORY CONTROL SAMPLES

		MATRIX:	-		_	ВАТСН: <u>. ЮЧИ</u>	190187	٠.
List all parameter			T		· · · · · · · · · · · · · · · · · · ·			
LCS ID	Analyte	True Value	Found Value	% R	Action	Sa	amples Affected	
Tota	ر در در	80-120	. bb	US: 100	000			
			7					
	Criles	met		· · · · · · · · · · · · · · · · · · ·				
							·	
Dissolv								
	Calan	- Mer	/		·			
					·			
								-
						·		
		<u> </u>		·				
Note:								
	ne matrix as sar	nples must be p	repared for each	SDG.				
COMMENTS	· · · · · · · · · · · · · · · · · · ·							
		·				- <u></u>		
				•				
Actions:						···		
Exception: Antin	nony and silver	have no control	limits. An aqueou	us LCS is not r	equired for CN ar	nd mercury.		
				PERCEN	TRECOVERY			
1. AQUEOUS			<50%	50-79%	80-120%	>120%		
Detected results			R . R	J	$\left(\begin{array}{c} v \\ \end{array}\right)$	J		
Non-detected res	SuitS		ĸ	บง		V		
2. SOLID LCS								
Recoveries stipu	lated by EMSL		DEL OVE		. 18 1144 1174		10015	
			BELOW CONTROL		WITHIN CONTROL		ABOVE CONTROL	
			LIMITS		LIMITS		LIMITS	
Detected results			J		٧		J	(
Non-detected re-	sults		UJ		V		V .	

IX. INORGANIC ANALYSIS WORKSHEET - ICP SERIAL DILUTION ANALYSIS

	MATRIX:	<u>_</u>		_		BAT	CH: 041190187
erial dilution o	criteria only appl	ies if the origin	al sample result	: is at least 50* ID	L and %D > 1	10%.	
Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
Tota	1- C	Leria	mert				
	<u> </u>						
1)2.5	solved	or Con	Jer- 1	non			
							•
					·		
					=		
]			·			
							,
							·
					/		
ADUS (TVELY	COUPLED PLA	SIMA SERIAL	DILUTION ANA	(LYSIS: [the diluted camp	lo analysis a	Tood within	
en percent of	the original undi	luted analysis.	/Yes/	No	olo unulyolo u	grood william	
orial-dilutions	were not perfor	med for the fol	lowing.				
OMINENTS	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
							
		-					······································
ctions:							

Estimate (J) detected results if %D is > 10%.

NOTES

fresults from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

				BATCH:	194419018	7
Describe any	raw data anomalies (i.e.,	haseline shifts negati	ve absorbances trans	scription or calcula	ation errors legibility e	tc
Describe Brig	Taw data diformance (i.e.,	baseline sinta, negati	ve absorbances, trans	scription of calcula	ation cirolo, legionity, c	
	سرن ک			,		
						
·····						
			- 14		·	
. List results that ere not reanaly:	at fall outside the linear to	ange of the ICP instrum	nent or the calibrated	range of the AA o	r Cyanide instrument,	and
		JH 17 Day	Sw-17-11190		 	
	7		par-17-11110	<u> </u>	}	
(Ran weeky	765	7 - 11 /		/	
		11 /02+ 27	- Funda I	0	· · · · · · · · · ·	
			- · · · · · · · · · · · · · · · · · · ·			
Were ICP line	ear ranges obtained with	n s months of and pre	ceding, the sample ar	nalyses?	es No	NA
Were ICP inte	erelement corrections ob	lained within 12 months	s of, and preceding, th	ne sample analyse	es? (Yes	NO NA
Were instrum	ent detection limits prese	ent found to be less th	an or equal to the CRI	Di-and obtained	within 3 months of an	1
	ample analyses?	Yes	No No	(NA)	within o months of, and	•
						
. Were all sam	ple results reported dowr	t to the IDE if running C	JEP protocol?	Yes	No	NA)
						01
vvere ali sam	ple results reported down	TO MOUNT IN THINKING SAN	-846 methods?	Yes	NO) - /	C NA
	: weights, volumes, perce	and solids, and dilutions	used correctly when	renodino the reso	1157	- No.
- Were samule	moignite, relained, perso	ant condo, and dilations	acca confectly when			
Were sample						··
Were sample						
						· · · · · · · · · · · · · · · · · · ·
OMMENTS						
OMMENTS	, UP-C-W-17.	111904 4	771=-3r=x	4504	c t 6 firfes	
OMMENTS			2		ct 6/13/2s	
OMMENTS Full on	Tota	ار	77: = 35		CT 6 forfes D.s.s	olv J
OMMENTS FULL ON	Tota 46-111901 8	1-1119041	2	4504	07 6/13/25 D.53	
JOHNENTS FULL ON LOIGHW-	Tota 46-111904 8 200,000	1-111904A 190,00	D-25 5	49.04 Ca	07 6 fir fos D.s.s	190 pelo
Full on	Tota 46-111901 8 200,000 30,00	1 1-111504A 190,000 29,000	D-p5 5 p5 3	44.04 Ca Ma	190,000 251,000	1570,000 25,000
CO.GW-	Tota 46-111904 8 200,000 30,000 6,700	1 1-111904A 19020 29,000 6,700	D2,05 5,05 3	11504 Ca Ma	190,000 29,000 6,400	150,000 29,000 6,300
OMMENTS	Tota 46-111901 8 200,000 30,00	1 1-111504A 190,000 29,000	D-p5 5 p5 3	44.04 Ca Ma	190,000 251,000	1570,000 25,000

170

RL=10 So of LAL OK my INORG98.XLS

24 ~0

m~

DATA VALIDATION REPORT

To:

Jennifer Walter – Syracuse Research Corporation

From:

Lisa Tyson – TechLaw, Inc.

Report Date:

June 22, 2004

Project/Site:

VB/I-70 OU3

Laboratory No.: D5C280224

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D5C280224 from Severn Trent Laboratories, Inc. This report consists of the validation of two total and dissolved water samples collected on March 28, 2005 and analyzed on March 30 and 31, 2005 for ICP and ICPMS metals, and on March 29, 2005 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
KP-SW-1-032805 (total and dissolved)	D5C280224-001
KP-SW-2-032805 (total and dissolved)	D5C280224-002

⁺ denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Sample KP-SW-2-032805 (total and dissolved) was randomly selected for full validation. Cursory validation was conducted on the other sample analysis. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples
- * Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)

* All criteria were met for this parameter

Validated By:

Dean / Linea

Reviewed By:

Bill Fear

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory at ambient temperatures outside the recommended temperature range of 4 ± 2 °C. However, the samples were delivered to the laboratory immediately after sampling. No qualification was necessary. No other shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110%.

<u>Blanks</u>

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%.

The aluminum, calcium, iron, and magnesium concentrations in the full validation sample were less than the ICSA values and no action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample KP-SW-1-032805 for total and dissolved metals. The percent recoveries were within the technical validation QC limits of 75-125% or the unspiked sample amount was greater than 4 times the spike value and the recoveries were not applicable.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs). Duplicate criteria were met (i.e., for results greater than 5x the reporting limit, RPDs were less than 20% and for results less than 5x the reporting limit, the difference between the duplicate and the original was less than the reporting limit). No calculation errors or transcription errors were found.

<u>Laboratory Control Samples</u>

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

All %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation sample. The results and reporting limits were correctly reported, and all results were reported within the linear calibration range. No calculation or transcription errors were found.

3

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

I. INORGANIC ANALYSIS WORKSHEET - HOLDING TIMES

BATCH:

Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	*CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
16 0-52-1-03+800 UD-52-2-05-802	w	12203	3/28/03	3/3/105	3/29/05			Φ.	ے ہے۔
10-52-2-05+503	4	L-	11/	1/1/2	1 9			1	2
		<u> </u>							
					<u> </u>			<u> </u>	
			<u> </u>				··	·	
		<u> </u>							
						<u> </u>			
		<u> </u>							
		L							
,						1		<u> </u>	
				<u> </u>					
	<u></u>		1 .						
COMPENTS Same	las de	1.12.50	immed.	2 hel. 1	Fter :	- 1 g	<u> </u>	- Jr = 4 -	Comme
				_		10			
W FILL DY	asw.	- 2-03	2505	<u> </u>					
Actions:									

1.	gnitle d 1t	times	are	exceeded,	all sam	iple results	are es	timated (J)	/(UJ).
ソ	it notation	times	are	prossiv ex	ceeaed	(>=2*noigi	no time	e) detected	results

It notating times are grossity exceeded (>=2*holding timestimated (J), and non-detected results are rejected (R).

	Validated by:	. Date:
Preservatives:	L, 7-1500	
A. Preserved w/HNO3 and cooled to 4°C B. Cooled to 4°C	Review By:	Date:
C. No Freservative		

NALY E	HOLDING TIME	PRESERVATIVE	
		AOUFOUS	SOII
letals	180 days	pH < 2 w/HNO3 4 Dea C	4 Deg. C
lecury	28 days	pH < 2 w/HNG3, 4 Deg. C	4 Deg. C
vanide	14 days	pH > 12 w/NaOH, 4 Deg, C	4 Dea C
olding Time = Analys	s Date - Collection Date		

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

BATCH:	051	1812	1
DAICH	ω	10 +1 1	

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCA	TRUE	Found	% R	Action	Samples Affected
C. tecu	mert					
	,					
	 					
		····			1	
				 	-	
					ļ	
	<u> </u>					
	 					
· · · · · · · · · · · · · · · · · · ·	1					
					2	
run after CRI,	every 10 sample	s and at end of	sequences? (Cl	Ponly) (Y	es No	
MMENTS	. sample (CRI) al	naiyzeu ai ine t	eymang and at	are end or eac	h sample run (CL	P only)? (Yes No
	-T-cih		·			
						
					·	· <u></u>

ICV/CCV Actions:

PERCENT RECC	VERY

	<75%	75-89%	90-110%	111-125%	>125%
Detected results	R	J	V	J	R
Non-detected Results	R	UJ	V	V	V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH: 11 SC よをロチょり

List all mercury results that did not meet the percent recovery criteria for the ICV and/or CCV standard.

CCA	TRUE	Found	% R	Action	Samples Affected
7: 1		- //	· · · · · · · · · · · · · · · · · · ·		
<u></u>	e	7e/			
					,
			<u> </u>		
					
• .					
					<u> </u>
				ļ	
				 	
		of standards and		calibrate the in	strument? (Yes) No
		relation coefficier	nt > 0.995?	Yes N	0 6,99999
		s and samples:	d at the begin	ning of each car	npie run? (CLP only) Yeş No
		ten samples and			Yes) No
MENTS					
	· · · · · · · · · · · · · · · · ·				

PFR	CENT	RECO	VFRY

	<65%	65-79%	80-120%	121-135%	>135%
Detected results	R	J	V	j	R
Nor-detected Results	R	บม	٧ .	V	V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

	MATRIX:	in!			•	ВАТСН:	156280227
List the highest positi		ive blank result	>= DL below.	Use one works	heet for soil m	natrix and anoth	er for water matrix.
Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action		Samples Affected
2.7	ļ						<u> </u>
Phs	CASS	WD.	12-12-	RL			
· · · · · · · · · · · · · · · · · · ·	ļ. <u></u>						
							·····
		<u> </u>					
		<u> </u>					
							<u> </u>
						1	
			1				
		1					
		<u> </u>					
			<u> </u>				
		1.					
NOTE: Verify that th	e absolute val	ue of any analy	tè concentration	of in the PB or N	BIS CROL		
Verify							
One prep blank per i					-		
One prep blank per l							
tCB analyzed immed		/	<u> </u>				
CCB analyzed after				 			
Field/equipment/rins	ale blanks and	ilyzed? If so, ir	iclude above if	applicable to pr	oject		
COMMENTS							
							

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

BATCH:	1150-2-807-27	
DATOR.	المعتبيسيو حالاتيمية ريات (ع	

NOTE: The sample results can be accepted without qualification, if the sample concentrations of Al, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca, Fe or Mg results that are greater than the ICSA values.

Sample ID	Analyte	Sample Result	ICS Value	Comments
	· · · · · · · · · · · · · · · · · · ·			
- pull				
				

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	% R	Action	Samples Affected
		.1	
	~ Me	17	
000			
	·		·
CL'2 Protocol Only		<u> </u>	
		he beginning and end No	of each sample analysis run, or a minimum of twice per 8-hour shift (whichever
COMMENTS			
Actions:			

Ρ	ER	CEN	IT R	ECO	VERY

	<50%	50-79%	80-120%	>120%
Detected results	R	J	V	J
Non-detected results	R	UJ	V	V

BATCH: 05 C280221

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX:

			ercent recoverying, K and Na fo			jestion spike red	covery criteria are not evaluated for Ca, Mg, K,
if the sample	result exceeds	s the spike add	ded by a factor	of 4 or more,	no action is ta	iken.	
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
ين رع قر ()	75.12	بسرا – 5	אה הצג פ	1,000	J5		
<u></u>			<u> </u>		ļ		
(-/~	tem	mint				-	
KP-	م ـ ار بيرنځ	32805					
							i
			1	<u> </u>			
				<u> </u>			
,— <u> </u>	<u> </u>	ļ <u>.</u>	ļ				
							<u> </u>
		<u> </u>				 	
1. Was a pr	 e-digestion ma	hix spike prep	ared at the red	uired frequent	y of once eve	ay 20 samples.	or every SDS (whichever is
more freque	nt)? Yes	No					
z. vvas a po digestion ma	st-digestion ma trix spike recov	atrix spike ana very criteria?	llyzed for all IC Yes	P elements, e No NA		fat did not meet	the pre-
_			different samp	1 /	Yes)	No No	an po
COMMENTS					$\overline{}$		
			· · · · · · · · · · · · · · · · · · ·	·-· ·			
 If any ana Actions: 	llyte does not n	neet the % R o	criteria, qualify	all associated	samples using	g the following o	criteria:
					0.455.4		

Note

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

UJ

< 30%

J

R

١. ٠٠	MODOANIO	SELECT MODIFICATION OF THE PROPERTY OF THE PRO	LADODATODY DUDILOATED
VI.	INORGANIC	ANALYSIS WORKSHEET	LABORATORY DUPLICATES

		MA	TRIX:	<u>)</u>		ВАТС	CH: <u>05C)80</u>
List a'l parame	ters that do not	meet RPD or	CRDL criteria.				
Sample ID	Analyte	Sample	Dup. Results	RPD.	Difference ³	Action	Samples Affected

Sample ID	Analyte	Sample Result	Dup. Results	RPD.	Difference ³	Action	Samples Affected
USE. J M	Sprsp	- RP	2s oh				
				:		· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · · · · · · · · · · · · ·
OMMENTS		<u> </u>	<u> </u>	<u> </u>			
						······································	·

1. AQUEOUS

If both sample values > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SCLID

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2°CRDL, estimate (J)/(UJ) all sample results of the

Oifference = |Sample result - Duplicate sample result|
Include outliers for field duplicates (if applicable)
Lote

A.dur licate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET - LABORATORY CONTROL SAMPLES

			.)	•				
		MATRIX:		····	-	BATCH:	5 (280) 24	
List all paramete	rs that do not me Analyte	True Value	Found Value	% R	Action	1	Samples Affected	
		ļ	ļ	 				
ارب دار	80-120	1 - / -	<u> لرد- يا ط</u>	110000	J			·
105/	1030 -	Vita		ļ				
						-	· · · · · · · · · · · · · · · · · · ·	
	-}	<u> </u>						
Cr.	ter- 1	Me-y-	<u> </u>			ļ		
				 		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
			ļ	<u> </u>				
		ļ					·	
		<u> </u>						
			<u> </u>					
						<u> </u>		
					·			
Note:					•			
LCS with the sa	me matrix as sai	mples must be p	repared for each	SDG.				
COMMENTS	 	· · · · · · · · · · · · · · · · · · ·						
	-	,						
				· ·· · · · · · · · · · · · · · · · · ·				
								
						·	 .	
Exception: Anti-	mony and silver	have no control	limits. An aqueo	ous I CS is not re	equired for CN a	and mercury		
Excopion.	mony and onto							
4 400,500,00			~E00/		T RÉCOVERÝ	12000		
AQUEOUS Detected results			<50% R	50-79% J /	/ 80-120% V /	>120% J		
Non-detected re			R	ů (_ w	V	,	
2. SOLID LCS								
Recoveries stip	ulated by EMSL							
		•	BELOW		WITHIN	•	ABOVE	
			CONTROL LIMITS	•	CONTROL		CONTROL	
Detected results	.		LIMITS		LIMITS V		LIMITS J	
Non-detected re			กา		v		v	

IX. INORGANIC ANALYSIS WORKSHEET - ICP SERIAL DILUTION ANALYSIS

malyte	IDL	50*IDL	Sample	Ilt is at least 50* ID	% D	Action	Samples Affected
illaryte .		30 IDL	Results	Result	70 0	Action	——————————————————————————————————————
			1				
10 /	tene	0000	-			 	7
	me	1 F 1 1 1 1		 	·	 	
						 	
				 		 	
			<u> </u>				
			.			T	-
-					· · · · · · · ·		
				 			
					·		
				 		 	
				-		 	
				 		 	
			<u> </u>		<u>. </u>	ļ	
							
						<u> </u>	
			ļ		<u></u>		
							,
							•
			<u> </u>			 	· · · · · · · · · · · · · · · · · · ·
				+			
				-		-	·
				1		 	
ICTIVELY C	OUPLED PAZ	SMA SERIAL	DICTUTON AN	ALYSIS:			
l-dilutions w	ore-performed	l for each matr	ix and results (of the diluted camp	le analysis a	greed within	
e-cent of the	original undi	luted analysis.	Yes	of the diluted camp No			
il dilutions w	ere not perfor	med for the fol	lowing				
NENTS		<u> </u>					
							
		<u> </u>	·			··· <u>·</u> ···	
					··········		·

Estimate (J) detected results if %D is > 10%.

results from diluted samples are higher than concentrated sample, matrix interference should be suspected nd sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH:	105C25	127

		•	
1. Describe any raw data anomalies (i.e., baseline shifts, negative absorbances,	transcription or calc	ulation errors, legibility, e	tc.
, /			
			
<u> </u>			-
· · · · · · · · · · · · · · · · · · ·			
			
			
		· · · · · · · · · · · · · · · · · · ·	
	····		
2. List results that fall outside the linear range of the ICP instrument or the calibr were not reanalyzed.	ated range of the AA		and
			
<i></i>	·		
			•
			
			
3. Were ICP linear ranges obtained within a months of, and preceding, the samp	oie analyses? /	Yes/ 1, No	NA NA
3,			
		_	
4. Were ICP interelement corrections obtained within 12 months of, and preceding	ng, the sample analy	/ses? /Yes	NO NA
5. Were instrument detection limits present, found to be less than or equal to the	CRDL and ontaine	d within 3 months of and	1
preceding, the sample analyses? Yes No	/NA	a main o monaio oi, an	•
preceding, the sample analyses?	(1/2)		
			
6. Were all sample results reported down to the IDL If running CLP protocol?	Yes	196	(NA)
6. Were all sample results reported down to the IDL If running CLP protocol?	Yes	No	(NA)
		No	(NA)
	Yes	No No	(NA)
		No No	(NA)
7. Were all sample results reported down to MDL If running SW-848 methods?	Yes	(NO)	NA)
7. Were all sample results reported down to MDL If running SW-848 methods?	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods?	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods?	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods?	Yes	(NO)	NA NO
7. Were all sample results reported down to MOL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly was a second correctly was a	Yes	(NO)	NA NO
7. Were all sample results reported down to MOL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly was a second correctly was a	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MOL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly was a second correctly was a	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NO NA
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NO NA
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
6. Were all sample results reported down to the IDL If running CLP protocol? 7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights. COMMENTS Fig. 10. 3. MA-52-0.3 2.80 3. O.M. Fig. 11. 3. 3. MA-52-0.3 2.80 3. O.M. Fig. 12. 3. MA-52-0.3 2.80 3. O.M. Fig. 13. 3. MA-52-0.3 2.80 3. O.M. Fig. 13. 3. MA-52-0.3 2.80 3. O.M. Fig. 14. 3. MA-52-0.3 2.80 3. O.M. Fig. 15. 3. MA-52-0.3 2.80 3. O.M. Fig. 15. 3. MA-52-0.3 2.80 3. O.M. Fig. 16. 3. MA-52-0.3 2.80 3. O.M. Fig. 16. 3. MA-52-0.3 2.80 3. O.M. Fig. 17. 3. MA-52-0.3 2.80 3. O.M. Fig. 18. 4. MA-52-0.3 2.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig. 18. 4. MA-52-0.80 3. O.M. Fig	Yes	(NO)	NO NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NO NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	No No
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NO NA
7. Were all sample results reported down to MDL If running SW-848 methods? 8. Were sample weights, volumes, percent solids, and dilutions used correctly weights.	Yes	(NO)	NA NO

DATA VALIDATION REPORT

To:

Jennifer Walter - Syracuse Research Corporation

From:

Lisa Tyson – TechLaw, Inc.

Report Date: Project/Site:

June 22, 2004 VB/I-70 OU3

Laboratory No.:

D5E020222

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metal results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D5E020222 from Severn Trent Laboratories, Inc. This report consists of the validation of eight total and dissolved water samples collected on May 2, 2005 and analyzed on May 6-10, 2005 for ICP and ICPMS metals, and on May 9, 2005 for mercury. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
PS-7-050205 (total and dissolved) ⁺	D5E020222-001
PS-6-050205 (total and dissolved)	D5E020222-002
PS-5-050205 (total and dissolved)	D5E020222-003
MW-31-050205 (total and dissolved)	D5E020222-004
MW-30-050205 (total and dissolved)	D5E020222-005
PS-3-050205 (total and dissolved)	D5E020222-006
PS-4-050205 (total and dissolved)	D5E020222-007
PS-1-050205 (total and dissolved)	D5E020222-008

⁺ denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

/alidated By: Lisa Tyson

Reviewed By:

Bill Fear

Sample PS-7-050205 (total and dissolved) was randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses. The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Calibrations
- * Blanks
- * Interference Check Samples Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples) Serial Dilution for ICP Analysis
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory at ambient temperatures outside the recommended temperature range of 4 ± 2 °C. However, the samples were delivered to the laboratory immediately after sampling. No qualification was necessary. No other shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110%.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%. No ICP interference was noted.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample PS-1-050205 for total and dissolved metals. The percent recoveries were within the technical validation QC limits of 75-125% or the unspiked sample amount was greater than 4 times the spike value and the recoveries were not applicable, with the exceptions noted below.

The following detected sample results were qualified as estimated (J) and the nondetected sample results were qualified as rejected (R) because the spike recoveries at 22% and 20% were below 30%:

Total antimony in all samples

The following sample results were qualified as estimated (J/UJ) because the spike recoveries at 73% land 74% were below 75%, but greater than 30%:

• Total beryllium in all samples

The laboratory evaluated the spike recoveries against laboratory QC limits. As a result, the laboratory indicated that the recoveries for arsenic were outside QC limits. No action was taken because the recoveries were within validation QC limits of 75-125%.

Duplicate Sample Analysis

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs). Duplicate criteria were met (i.e., for results greater than 5x the reporting limit, RPDs were less than 20% and for results less than 5x the reporting limit, the difference between the duplicate and the original was less than the reporting limit). No calculation errors or transcription errors were found.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

Serial Dilution Analysis

The laboratory performed the serial dilution analysis on samples PS-1-050205. The following detected sample results were qualified as estimated (J) because the serial dilution %D exceeded 10% for analyte concentrations greater than 50 times the MDLs:

Total arsenic and beryllium in all samples

All other %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation sample. The results and reporting limits were correctly reported, and all results were reported within the linear calibration range. No calculation or transcription errors were found.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

6

I. INORGANIC ANALYSIS WORKSHEET - HOLDING TIMES

							BATCH:	OLCO	<u> </u>	-
_ ∟ıst	all analytes which do not	meet holdin	g time criteri	a	Total		Desilvel	i ———		
	Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	°€N Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
-	P5-7-25023	w	14203	5/0/03	5/6+0/03	stilos	5/6-0/03		<i>A</i>	
\ 	1 -6			1 7 7 7 5	1 012/3/2	77	70 17			
_	1,-5		1			i	i			1000
-					 					
1-2	1-30-			 	 				 	
					1				 	
15	25-3-					1			 	
	1-4 V-1-V			ļ <u>, , , , , , , , , , , , , , , , , , ,</u>					<u> </u>	
_	<u> </u>	V	X	$-\nu$	<i>V</i>	- !/			J J	
						· · · · · ·	<u> </u>			
-				 						
-				 		-				
-				 	<u> </u>			<u> </u>		
-					<u> </u>	 				
-										-
-				1		 				
-	<i></i>	21 60	360 700	1-04 0		 				
<u> </u>)	
		ece~	16	Com	DIVIT	Tem	0: (mmer	7	
_				<u> </u>		Ü				
	7-12	md-	Doller	el to	126	60 6	liest	mod	entella	
L_	a f	1-	Samo	1/2-1	100	LV			1	
				0						
CO	MINIENTS Full 20	05.0	-05070	2 5	<u> </u>	<i>7Ω</i> ί /	Ca Fa or	7 K -	1 7.1	
		<u> </u>	11			$\frac{1}{\mathcal{Q}_{c}}$	Co, Fe, M	25/ X	3.4 4.5	1 1 6
-			-11			- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	~ /~/	757
 	<i>U</i>					56	1 4	اسد د م	>6020	
	ione						15 / 12 = / 1	, 	1607-0	
	finding times are exceeded, in no ding times are grossly exc				s are		,			
estir	mated (J), and non-detected re	esults are reje	ected (R).							
						Validated by:				Date:
Pres	sen atives:					1. 7.	لمسدین بخر بس			<u> </u>
	Preserved w/HNO3 and cooled	to 4°C				Review By:	$\sqrt{-}$			Date:
	Coo ed to 4°C						17	itic.		
C. 1	No Freservative			•			·			
ANA	ALYTE	HOLDING TI	ME	PRESERVAT	VE					
				AOUEOUS	· · -		SOIL			
Met	als	180 days		pH < 2 W/HNC	3 4 Deg C		4 Deg. C			
	cun'	28 days		pH < 2 w/HN0			4 Deg. C		•	
	nide:	14 days		12 w/Na	OH. 4 Dea. C		4 Deg. C			
- 1/2	ding Time = Analysis Date - Co	illection Date		1				l		

^{*}VERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

ватсн: <u>05 Едар</u>да да

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	ICV	TRUE	Found	% R	Action	Samples Affected
<i></i>						
Coriter	In Mei	7			 	
	· · · · · ·	1 , 17			 	
Ctota	1 td.s.	10/10) 1		 		<u> </u>
 				ļ		
	<u> </u>					
	<u> </u>					
			,			
					<u> </u>	
					1	
,						
· · · · · · · · · · · · · · · · · · ·				1	<u> </u>	
				 	 	
		 		 	 	
	1			 	 	
				· · · · · · · · · · · · · · · · · · ·	 	
		 	 	 	1	
run after CRI	every 10 sample	es and at end of	sequences? ((I PORIVI X	es/ No	
				(_	h sample run (Cl	P only)? Yes/ No
	-12 I.	oh.		 		
	<u> </u>				···	
						

ICV/CCV Actions:

	PERCENT. RECOVERY						
	<75%	75-89%	90-110%	111-125%	>125%		
Detected results	R	J	V	J	R		
Non-detected Results	R	UJ	V	V	V		

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH: 05602022

List all mercury results that did not meet the percent	recovery criteria for the ICV and/or CCV standard.
--	--

CCV	TRUE	Found	% R	Action	Samples Affected
60	Tr. ix	12/25			
				l .	
·					
	·	 	·		
	 - ' 	 	 		
		· · · · · · · · · · · · · · · · · · ·	 		
		 			
	 	 	 	 	
	 	 		-	
	 	 	 		
		-			
		<u> </u>	ļ	 	
			ļ	 	
	<u> </u>	ļ		<u> </u>	
				<u> </u>	
•					
				calibrate the instru	
		rrelation coeffici		Yes/ No	6.99997
		es and samples:			
				ning of each sample	run? (CLP only) Yes No
CV run at	ter CRA, ever	y ten samples ar	nd at end of seq	uence? (Ye	NO
MENTS	······································				

PERCENT RECOVERY

	<65%	65-79%	80-120%	. 121-135%	>135%
Detected results	R	J	V	J	R
Non-detected Results	R	UJ	Á	V	. V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

TECHLAW

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

MATRIX: BATCH:	105507022
----------------	-----------

List the highest positive AND negative blank result >=|DL| below. Use one worksheet for soil matrix and another for water matrix.

Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action	Samples Affected
PB -	-> NOS	imenant	All ha	In RL	- (o) :) ~	(+ Family plant drew)x
			1			/ '
CCB: =	20	/	A11 b	102 21	- (v) -1 - L	- and blumpian) x
(1	·	7777 778	, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>	The state of the s
					·	
					·	
	- 	<u>. </u>	<u> </u>			
				<u> </u>		
			ļ			
	l					
			l			
						·
	1	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
			!			
··········	+					
						
			1			<u> </u>
			<u> </u>			
			ļ			
			<u> </u>		<u> </u>	
						
		·····	1			
				-		
			 	 		
			 	 		· · · · · · · · · · · · · · · · · · ·
			 			
	 			· · · · · · · · · · · · · · · · · · ·		
TE: Verify that the	e abeatule value	of sovensky	e concentration	In the PR or to	BICECROI	<u> </u>
_						<u> </u>
ify						
e prep blank per						
e prep blank per						
analyzed immed			· 			
B analyzed after						
ld/eq uipment/rins	ate blanks analy	zed? If so, in	clude above if a	applicable to pr	oject	
MMENTS						

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5⁺ |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

NOTE: The sample results can be accepted without qualification, if the sample concentrations of Al, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any AI, Ca, Fe or Mg results that are greater than the ICSA values.

Sample ID	Analyte	Sample Result	iCS Value	Comments
P5-7-050,2010	Con	640,000	500,000	
·	CAL	630,000	S00 000	
PS-3-050205T	Fe(5x	810,220	500,000 -	- ohe Sx
			<u> </u>	

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	7 % R	Action	Samples Affected
Allalyte	// //	Action	Camples Allested
}	<u> </u>	1.	
		/	
Criter	- Mes	1	
		,	
	:		
		<u> </u>	
Ct.P Protocol Only			
	eck Samples run at t	he beginning and end	of each sample analysis run, or a minimum of twice per 8-hour shift (whichever
is more frequent)?	∕Yes ;	No ,	1
COMMENTS		ن كست ويد	De grande of the second
Autions:			
TRADIG:			

PERCE	NT R	ECOV	'ERY
-------	------	------	------

	<50%	50-79%	80-120%	>120%
Datected results	R	J	٧	J
Non-detected results	R	. UJ	V	٧

IVB. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

BATCH:	05602022	

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

21-	Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result —	Sample/ Result p	Sample/ Result	Sample/ Result
100	Na	-1542,8	J.461		(Q)	610,000	1560,000		
-50	u	-179	1	1		25,000	5,500	100	902/
1,9	Lv	-14.2	Ŋ		<i>J</i>	4,800	CAGA		5~ /
(,,									
-									
-									
1									
-		<u> </u>	<u> </u>					<u></u>	
ŀ									
ľ									
ļ									
	· · · · · · · · · · · · · · · · · · ·							`	
- 1									<u>.</u>
}				<u> </u>					
}			<u> </u>	<u> </u>		<u> </u>			
}									
ł									
			,						
							<u> </u>		
								·	
					j				

Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1. Estimate (J) detected results < = 5* |ICSA|.
- 2. Estimate (UJ) non-detected results.

BATCH: p 5 E-02022

V. INORGANIC ANALYSIS WORKSHEET - PRE-DIGESTION MATRIX SPIKE

MATRIX:___

	eters that do n e for soil sampl					estion spike rea	covery criteria are not evaluated for Ca, Mg, K,
	result exceeds		-			en.	
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
Total	metal	s : /'n	Slms1	þ			
ナッシー	Her		/				
125-1-	150000	- Cr.	ter /	net 1	(Men e)	15-125	- land used D. F. lants)
		Sour	6010		No De	- 12	·o.+1.20
1.34	1						
	5h	918	レ	40	22	(5/1/	(total)
003	A.>	60.1	28	40	80 -	Isida 1	ab hit who val - oh
	Be	33,0	4,4	40	73	(J/UT	total 3
				<u> </u>			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5b	8,3	U.	40	20	(384	above)
	Az	60.4	25	40	81-	02/13/c/2	laber of world to -UL
	Be	339	4,4	40	74	50€	e-box
<u> </u>			11			·	
102201	. J N/v.	115 : 1	13/1252)				
<u> </u>	vent Hay	 					
99.3-1-1	50 305						
<u>}</u> -	-Cr. te	~~ /Y	er		<u> </u>		
ļ							
<u> </u>							
<u></u>							
<u> </u>							
1: \Vas a pro	e-digestion ma		l ared at the req	bired frequenc	। ਤ੍ਰ ਨੂੰ ਰਜਨਵ ਦੁਪ ਵਾ	y 20 samples,	or every SDG (whichever is
more freque		No					
	st-digestion ma trix spike recov		Yes		coept Silver, th	at did not meel	a 1 1072 1 - 1
1 -	atrix spike prep				Yes	1005-F	Part Dia 130 - 70:4
COMMENTS							
						3	<u> </u>
							
					·····		
L							
-	ilyte does not n	neet the % R o	criteria, qualify	all associated	samples using	the following	criteria:
Actions:			0'				

,Note

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

30-74%

IJ

< 30%

R

VI. INORGANIC ANALYSIS WORKSHEET - LABORATORY DUPLICATES

MATRIX: /ヘノ

ample ID	Analyte	Sample Result	Dup. Results	RPD _.	Difference ³	Action	Samples Affected
كررمرى	ms/ms.	0 - R	PD Co	Len.	net		
	<u> </u>						
					· .		
				_ 			
				 I			

MMENTS		<u> </u>					
		- ··· - · · · - - - · · · · ·			<u> </u>	•	
			·				
tions:	- .						

1. AQUEOUS

If both sample values > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLIE

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

Note

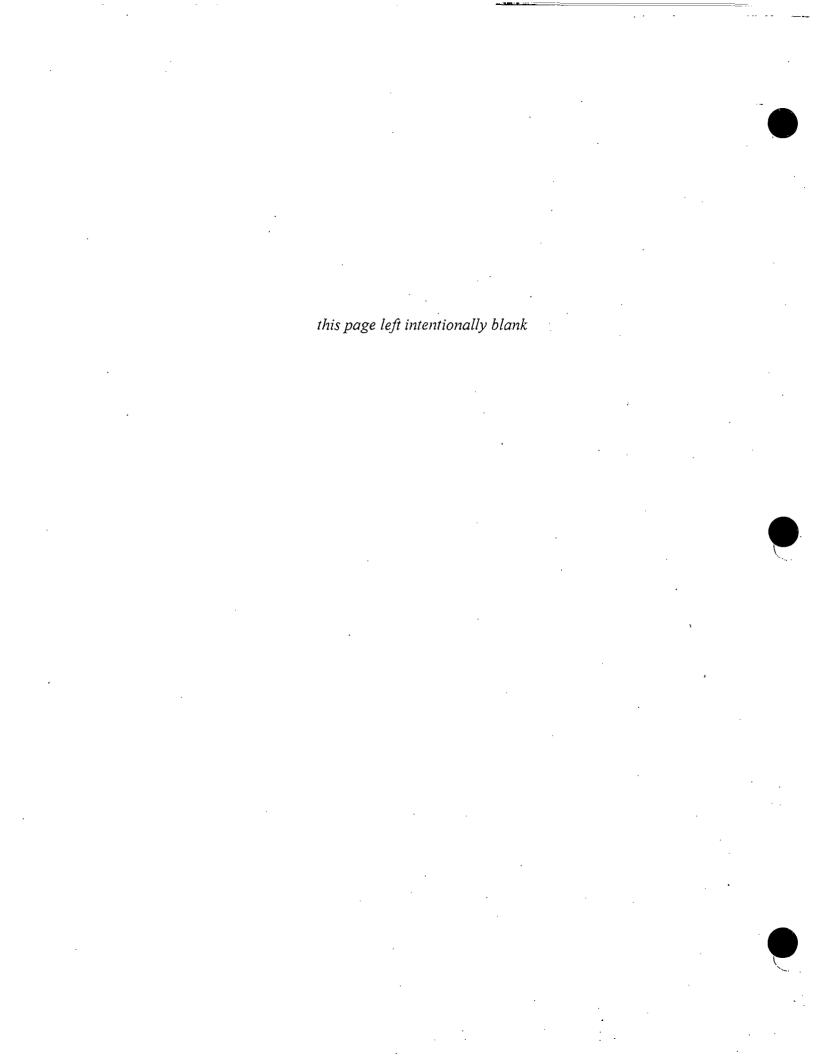
A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET - LABORATORY CONTROL SAMPLES

<u></u>
<u> </u>
. _

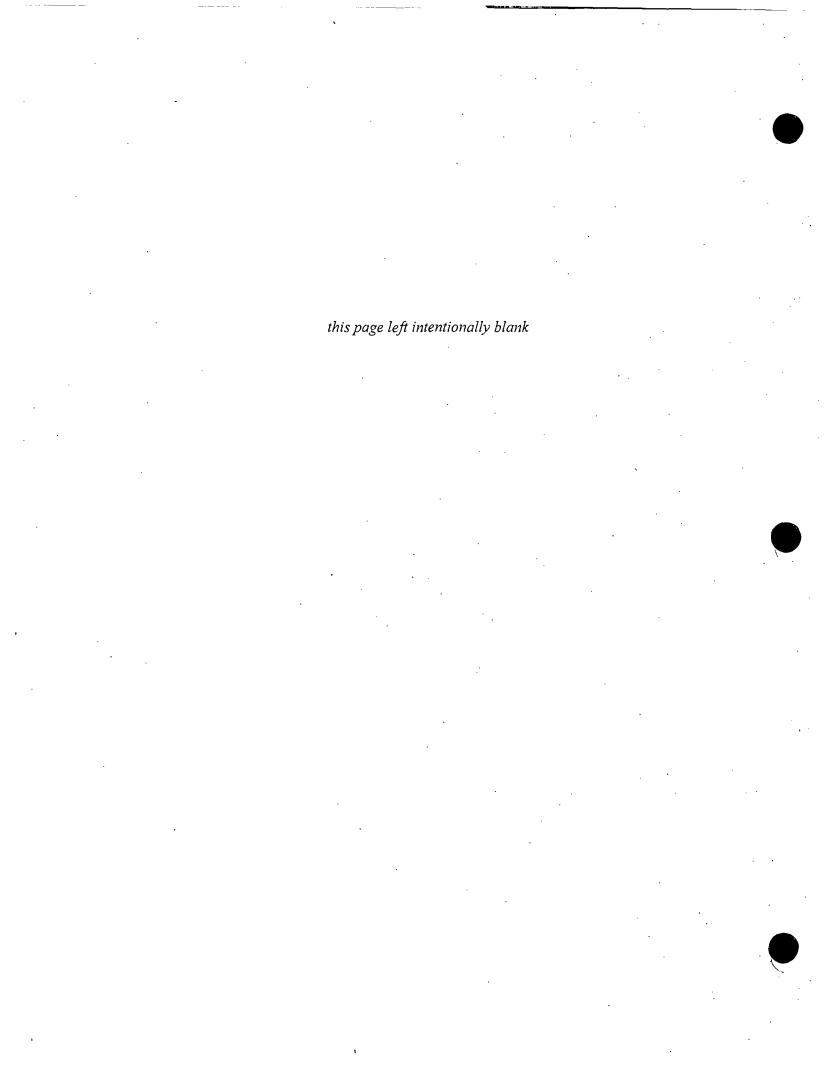
IX. INORGANIC ANALYSIS WORKSHEET - ICP SERIAL DILUTION ANALYSIS

Analyte	MIDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	Samples Affected
AS	0.097	4.7	28,15	32.02	13.7		
Be	01061	3.05	4,39	5,58	27./		JOTUS
	050203					and the second s	
					Bull	512	1544)
					,0,0		
							·
	ļ	ļ	ļ			<u></u>	
							·
	ļ	 					
			 				
		 	-	· · · · · · · · · · · · · · · · · · ·		<u>·</u>	
		 	 				<u> </u>
		ļ <u> </u>					
	<u> </u>	 	<u> </u>	 			
		-	-	 			
 _							
			-	·			
		 			<u> </u>		
<u> </u>	<u> </u>						
	-		-				·
	 -	+					
	<u> </u>	ļ					
			E DILUTION AN			<u> </u>	<u> </u>
	were performe the original und			o f the diluted sam No	ple analysis o g	grood within	
	were not perfe						
COMMENTS	·						
	 -						
							
				<u> </u>			


Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.


X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

·	BA (CH: <i>).)</i>	3507077	
Describe any raw data anomalies (i.e., baseline shifts, negative absorbances, tra	enscription or calculation	errors legibility etc	
Describe any few data anomalies (i.e., Daseline simila, negative associations, in	mediphon of deletion	errors, regionity, etc.	
- ve	· · · · · · · · · · · · · · · · · · ·		
			
	· · · · · · · · · · · · · · · · · · ·	·····	
			·
List results that fall outside the linear range of the ICP instrument or the calibrate	ed range of the AA or Cva	nide instrument, and	
ere not reanalyzed.			
		·	
		····	
Wiere ICP linear ranges obtained within 3 months of, and preceding, the sample	analyses? (fes	IVO	NÁ
Wisre ICP interelement corrections obtained within 12 months of and preceding	the sample analyses?	Yes) No	NA .
Training to the control of the contr	The sumple undivides:	100	
Wiere instrument detection limits present, found to be less than or equal to the C		3 months of, and	
eceding, the sample analyses? Yes No	(NA)		·
Were all sample results reported down to the IDL If running CLP protocol?	Yes .	146	(NA)
			
Wisre all sample results reported down to MDL if running SW-846 methods?	Yes	OPRE	- NA
Were sample weights, volumes, percent solids, and dilutions used correctly whe	n reporting the results?	Yes No	
	· •		
DMINENTS			
F-11 02 PS-7-050705 all	<u> </u>		
		······································	
1 Is oney			
			<u>.</u>

ROUND 4: WATER VALIDATION REPORTS

SDG: D5119220

DATA VALIDATION REPORT

To:

Jennifer Walter – Syracuse Research Corporation

From:

Lisa Tyson - TechLaw, Inc.

Report Date:

October 26, 2005

Project/Site:

VB/I-70 OU3

Laboratory No.:

D5I190220

This memo presents the metals data validation report for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical validation of the metals results by Methods 6010B, 6020, and 7470A for Laboratory Lot No. D5I190220 from Severn Trent Laboratories, Inc. This report consists of the validation of 12 total and 9 dissolved water samples collected on September 19 and 20, 2005. The field sample numbers and corresponding laboratory numbers are presented below:

Field Sample Number	Laboratory Sample Number
KP-PS-19-091905 (total and dissolved)	D5I190220-001
KP-PS-18-091905 (total and dissolved) ⁺	D5I190220-002
KP-PS-17-091905 (total and dissolved)	D5I190220-003
MW-31-091905 (total)	D5I190220-004
KP-PS-16-091905 (total and dissolved)	D5I190220-005
KP-PS-15-091905 (total and dissolved)	D5I190220-006
KP-PS-14-092005 (total and dissolved) [†]	D5I190220-007
KP-PS-13-092005 (total and dissolved)	D5I190220-008
MW-30-092005 (total)	D5I190220-009
KP-PS-12-092005 (total and dissolved)	D5I190220-010
KP-PS-11-092005 (total and dissolved)	D5I190220-011
KP-PS-11-092005A (total)	D5I190220-012

denotes full validation

Data validation was conducted in accordance with the documents "Test Methods for Evaluating Solid Wastes, SW-846, 3rd Edition," (Third update 1996), and the USEPA CLP National Functional Guidelines for Evaluating Inorganic Analyses, February 1994.

Samples KP-PS-18-091905 (total and dissolved) and KP-PS-14-092005 (total and dissolved) were randomly selected for full validation. Cursory validation was conducted on all remaining sample analyses.

The data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation Calibrations
- * Blanks
- * Interference Check Samples
 Matrix Spike/Matrix Spike Duplicates
- * Duplicate Samples
- * Blank Spikes (Laboratory Control Samples)
- * Serial Dilution for ICP Analysis
- * Field Duplicates
- * Analyte Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

All data necessary to complete data validation were provided.

Holding Times and Preservation

Analytical holding times were assessed to determine whether the holding time requirements were met by the laboratory. Mercury was analyzed within the required 28 days of sample collection and all other metals were analyzed within 180 days of collection.

The samples were received at the laboratory within the recommended temperature range of 4 ± 2 °C at 5.7°C. No shipping or receiving problems were noted. Chain-of-custody and summary forms were evaluated.

Calibrations

The instruments were calibrated at the required frequency. Continuing calibrations were analyzed every ten samples. The correlation coefficients for mercury were greater than 0.995. No calculation errors were found.

Initial Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110% recovery.

Continuing Calibration Verification

The percent recoveries of mercury were within the 80-120% criteria. All other analytes were within the required 90-110%, with the exceptions noted below.

The recoveries for beryllium in CCV7 and CCV9 (114% and 111.8%) and thallium in CCV8 and CCV9 (111% and 111.4%) were greater than 110%. However, no qualification was necessary because detected results for these analytes were not reported in the associated dissolved samples.

Blanks

The method blanks and calibration blanks were analyzed at the required frequency. Contamination was not reported in the method or calibration blanks. All non-detected results were reported to the reporting limits. Detected results were not reported below the reporting limits.

Interference Check Samples

All interference check sample percent recoveries were within 80-120%. No ICP interference was noted.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample KP-PS-18-091905 for total and dissolved metals and mercury. MS/MSD analyses from a sample in another SDG were also provided for mercury. The percent recoveries were within the technical validation QC limits of 75-125% or the unspiked sample amount was greater than 4 times the spike value and the recoveries were not applicable, with the exceptions noted below.

The following nondetected sample results were qualified as rejected (R) because the MSD spike recovery (QC batch 5265522) at 28% was below 30% (the MS spike recovery was also low at 32% and detected results for mercury were not reported in the associated samples):

Mercury (total) in samples KP-PS-14-092005, KP-PS-13-092005, KP-PS-12-092005, KP-PS-11-092005, KP-PS-11-092005A, and MW-30-092005

The following sample results were qualified as estimated (J/UJ) because the MS/MSD spike recoveries (QC batch 5265193) of 52% and 44% were below 75%, but greater than 30%:

Antimony (total) in all samples

The laboratory evaluated the spike recoveries against laboratory QC limits. As a result, the laboratory indicated that the recovery for beryllium at 83% as outside QC limits. No action was taken because the recovery was within validation QC limits of 75-125%.

<u>Duplicate Sample Analysis</u>

Duplicate precision criteria were evaluated using the MS/MSD relative percent differences (RPDs). Duplicate criteria were met (i.e., for results greater than 5x the reporting limit, RPDs were less than 20% and for results less than 5x the reporting limit, the difference between the duplicate and the original was less than the reporting limit). No calculation errors or transcription errors were found.

The laboratory evaluated the RPDs against laboratory QC limits. As a result, the laboratory indicated that the RPD for mercury at 11% as outside QC limits. No action was taken because the RPD was within validation QC limits of less than 20%.

Laboratory Control Samples

The laboratory performed laboratory control sample analyses at the correct frequency. All recoveries were within 80-120%. No calculation errors or transcription errors were found.

The laboratory evaluated the recoveries against laboratory QC limits. As a result, the laboratory indicated that the recovery for copper at 113% as outside QC limits. No action was taken because the recovery was within validation QC limits of 80-120%.

Serial Dilution Analysis

The serial dilution %Ds were less than 10% or the sample result was less than 50 times the MDL. No calculation errors or transcription errors were found.

Field Duplicates

Samples KP-PS-11-092005 (total) and KP-PS-11-092005A (total) were identified as field duplicates. The RPDs were less than 25% for analytes detected above the reporting limits (RPDs ranged from 0% to 19%).

Analyte Quantitation and Reporting Limits (Full Validation Only)

Analyte quantitation and reporting limits were evaluated for the full validation samples. The results and reporting limits were correctly reported, and all results were reported within the linear calibration range. No calculation or transcription errors were found.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the
 associated value. The associated value is either the sample quantitation
 limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

1. INORGANIC ANALYSIS WORKSHEET -- HOLDING TIMES

OSI 190220 BATCH:

List all analytes which do not	meet holdi	ng time criter	ia	Total		Dissolui			
Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
16-25-19-091905	نہا	A	9/14	7/14-34	9/23,26	9/12/27			
-18 1				, .		1		1	
1 -17 1	1				1	<i>b</i>			
MW-31-091903						NA		100	
4.P-P5-16-09FOS	1	-				2/2027			
15 <u>L</u>			<u> </u>			<u>'l</u>			
14-392005			1/20						
V 13 V			1			0			
n 12-30-09-003						NA			
UP-P5-12-05/2005						7/26/27			
- 11						レ			
- 11-09254	بلا.	./	Ŋ	ン	ال	NA			
	·								<u> </u>
								<u> </u>	
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>					
					·			 	
	 -			 				 	
								 	 ··
								 	
				<u> </u>				 	
									
		-			-	· · · · · · · · · · · · · · · · · · ·		 	
				 	 			 	
				 				 	· ·
CCIMMENTS 5,7	30	L	<u> </u>	<u> </u>		L		<u>L</u>	
OCMINICITY O, ,									
									

f holding times are exceeded, all sample results are estimated (J)/(UJ).
 t notding times are grossly exceeded (>=2*holding time), detected results are estimated (J), and non-detected results are rejected (R).

		Valida

Preservatives:
A. Preserved w/HNO3 and cooled to 4°C

B. Cooled to 4°C

C. No Preservative

Validated by:	L, Tysow	Date:
Review By:	Bire	Date:

ANALYTE	HOLDING TIME	PRESERVATIVE					
		AQUEOUS	SOIL				
Me:als	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C				
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C				
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C				
Ho ding Time = Analy	sis Date - Collection Date						

*VIERIFY ANALYSIS DATES ON REPORT MATCH RAW DATA.

	•	
BATCH:	190220	

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	,% R	Action	Samples Affected
Bc	CCV7			114		19,18
	cura			111.8	Λ	17, 12, 13, 14, 13, 12, 11
71	CC U8			(1)	.\.	1
	Civi			1117		7 171 16,18,117,13,107 11
						· · · · · · · · · · · · · · · · · · ·
<u> </u>	<u> </u>		 -			
						arssalus sungles
				 		arssalur sungles
						1
	 			 		
	1			 		
	 			1		
·						
<u>-</u>						
				 	· · · · · · · · · · · · · · · · · · ·	<u> </u>
				<u> </u>	·	
				 	<u> </u>	
nin -4 001			l	(0) 51 ()	<u> </u>	
	, every 10 sample: k sample (CRI) an				es No	
MENTS	K Sample (ONI) an				a sample full (C	SEI Grigg: 165 140
						
						

Actions:

ICV/CCV Actions:

Detected results

Non-detected Results

PERCENT RECOVERY

R

R UJ

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

						BATCH:	190770	
						•		
	results that d	id not meet the	percent recover	y criteria for the	ICV and/or CCV	/ standard.		
CCA	TRUE	Found	% R	Action		Sample	s Affected	
	. 1						·	
								·
				<u> </u>				
					<u> </u>			
		<u> </u>			 			
					 		·—	
					 			·····
		<u> </u>		<u> </u>				
					<u> </u>			
		<u></u>			<u> </u>			
·								
·	<u> </u>	<u> </u>			 			
					ļ			
· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
- 				<u> </u>		·	- 	
· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·	
								•
					·			
					·			
								·:
								
1. Were the o	orrect number	of standards an	d blanks used t	o calibrate the in	nstrument?	Yes No		
		rrelation coeffici		7 1 /	No .	<u> </u>		
If no, list a	ffected analyt	es and samples						
				ning of each sa	mple run(? (CLP	only) Yes	No	
		y ten samples ar			Yes	No		
COMMENTS								
								
				·				
Actions:	·							
			TOOTAIT OF OC	WEDV		•.		
		<65%	ERCENT RECC 65-79%	80-120%	121-135%	>135%		
Detected resul	ts	R	05-1976 J	V	J	. R	•	•
Non-detected		R	. nn	٧	v	v		

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET - BLANKS

·	MATRIX:	(^	<u> </u>			BATCH:	196220
List the highest positiv		ve blank result	>= DL below.	Use one work	sheet for soil :	matrix and anoth	er for water matrix.
Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action		Samples Affected
PBS	1 mpi						
CCBS	CRL						
			1				
	/	1070			-		
							
· · · · · · · · · · · · · · · · · · ·		 				T	
			· ·				
		<u> </u>					
							
						1	
· · · · · · · · · · · · · · · · · · ·							
	,						
						1	
	<u> </u>						
			<u> </u>	<u> </u>		1	
						1.	
						· · · · · · · · · · · · · · · · · · ·	
		·					
NOTE: Verify that the	absolute valu	ue of any analy	te concentration	on in the PB or	MB is < CRDL	.*	
Verify					 **		
One prep blank per m	atrix		- <u></u>				
One prep blank per ba							
ICB analyzed immedi		1			· · · · · · · · · · · · · · · · · · ·	 	
CCB analyzed after e							
Field/equipment/rinsa		vzed? If so ir	Iclude above if	applicable to r	project.		
COMMENTS		, ,,, ,,			,		
			· · · · · · · · · · · · · · · · · · ·				
Actions:							

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U). 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * if blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

NOTE: The sample res equal to the concentration		ted without qualification, SA solution.	if the sample conce	entrations of AI, C	a, Fe and Mg are less th	nan or
Examine the sample res	sults in ug/L and li	st any Al, Ca, Fe or Mg r	esults that are grea	ter than the ICSA	values.	
Sample ID	Analyte	Sample Result	ICS Value		Comments	
,~ ·					···············	
				<u> </u>	·	<u> </u>
		 		<u> </u>		
· .	<u>-</u>					
				 		
		 				
		+				
		+				
		_ 		 ,		
ist any analytes in the	ICS AR solution t	hat did not meet the crite	ria of 80-120% R			
Analyte	% R	Action	120700 12070 1	Sampl	es Affected	
						·
)				•	
3	<u></u>				·····	
رم			····			
		 	 			
· · · · · · · · · · · · · · · · · · ·	į į				<u> </u>	
						
	·		·	<u> </u>		
						
		+				•
		 				
CLP Protocol Only Were Interference Checks more frequent)?	ck Samples run at	the beginning and end o	of each sample anal	ysis run, or a min	imum of twice per 8-hou	r shift (whichev
COMMENTS						
			<u> </u>			
Actions:						
		PERCENT RECOV	/ERY	•		
		<50%	50-79%	80-120%	>120% .	
Detected results		R	J	V	J	
Non-detected results		R	UJ	V	V.	

BATCH:___

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX:____

Na, Al and Fo	e for soil sampl	les, and Cá, N	/lg, K and Na f	gr water samp	les.		ecovery criteria are not evaluated for Ca, Mg, K
If the sample	result exceeds	the spike an	ded by a facto	r of 4 or more,	no action is ta	ken.	
Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
18(7	ct=1)		- m5/n	750			
	A1	74×	7	1 (QC	3-tol S	265237)
	1-2	74x	HARO!				
	m	74x					
				·			(Total)
1-14	(another	06 For	Batch	52655	<i>)</i>		1-1 113:30 112 11,114
J							> 3
	lita	1,58	20	3	32	(5/10))~'
	<u> </u>				£8 D	7	-121
				1			430 3/2
180	Total)						
	C Butch	52651	93		1		
	(55)	5-1, >	~0	40	52/4	4(5/0)	7711 Total)
	Be	- : 100 -	Led of	b- 146	0 73	186-115)	Tutale val las
				0			
18	Dissol,	(J) Q	C 5255	192			
	MA	フィメ					
Was a promore freque	e-digestion ma nt)? Yes	trix spike pre; No	pared at the re-	quired frequen	cy of once eve	ry 20 samples	, or every SDG (whichever is
2. Was a po	st-digestion matrix spike reco	atrix spike and	alyzed for all IC		except Silver, to	hát did not me	et the pre-
	atrix spike prep		different sam	ple matrix?	Yes	No	
COMMENTS					$\overline{}$		
		Pest	ih E	5h	-		
							
1. If any and	alyte does not	meet the % R	criteria, qualif	y all associate	d samples usir	ng the following	g criteria:

PERCENT RECOVERY

	I ENGLIN NEGOVERN			
	< 30%	30-74%	75-125%	> 125%
Detected results	J	J	V	J
Non-detected Results	R	UJ	V	٧

Note :

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

Т	F	C	Н	1	Α	V	V
	_	•		_	. ~	v	

VI. INORGANIC ANALYSIS WORKSHEET - LABORATORY DUPLICATES

BATCH:

List all parameters that do not meet RPD or CRDL criteria.							
Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
							,
Hy (QC But	Lh 52655	2.7				, but -ith
	Lab 12	decisite)	RPOG	170.1	1./610	(12h)	but - ith
	S/c-1-d.	1-1-1-	~50 00	1.			7
			1.				
ms/	m510.	RPD	5 02	4			
				·		·	
					_		
COMMENTS							
Autiones							

1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLID

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > 2*CRDL, estimate (J)/(UJ) all sample results of the

D fference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	رسر)		_	BATCH:	190710	
List all paramete	ers that do not m	eet the percent	recovery criteria			p	<u> </u>	
LCS ID	Analyte	True Value	Found Value	% R .	Action	S	Samples Affected	•
	<u> </u>							
1 1/2	us/Lus	0	_					
	,				186-110)			
6-65.	- Cu	Flagge	Jako	11370	1-16	LL 5265	45 L	
L	1	16-57	5 C1+B	11270	10 17:00	28 20 00	1101	
	 - b , ,	- +ty		1,~. 1.	Lon	1 7		1
<u> </u>	 				100	h me of	6-50 G	
		ļ						
	<u> </u>	<u> </u>						
<u>.</u>			<u> </u>					
	T		1					
					·			
	 							
								·····
	 	 		 				
ļ	 			}				
<u> </u>	ļ		 -	 				
								
	ļ		<u></u>	 				
								·
						Ĺ <u></u>		
	1							
Note:								
LCS with the sa	me matrix as sa	males must be a	prepared for eac	h SDG				
COMMENTS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- cpares ter see	05 3.	***************************************			
COMMERTS								
						····		·
ļ								
ļ					·			
Actions: Exception: Ant	imony and silver	have no control	limits. An aque	ous LCS is not	required for CN :	and mercury.		
					-		•	
1. AQUEOUS			<50%	PERCEN 50-79%	RECOVERY	>120%		
Detected result	s .		\50% R	J-79%	80-120% V	J	•	
Non-detected re			R	นา	v	v ·		
2. SOLID LCS							•	
recoveries stip	ulated by EMSL		DEL OVÁL		\A1171 11\		A D.O.) /C	
			BELOW CONTROL		WITHIN CONTROL		ABOVE CONTROL	
			LIMITS	•	LIMITS		LIMITS	
Detected result			J		V		j	
Non-detected re	esul ts		. M		V		V	

IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

1	MATRIX:	<u></u>	·		•	BATC	.п	140780	
ial dilution cri	teria only app	lies if the origin		ult is at least 50°	IDL and %D :	> 10%		·	
Analyte	IDL .	50*1DL	Sample Results	Serial Dilution Result	· % D	Action		Samples Affects	ed
									·····
	·		1						
/		m	-						
(· Per -		<u> </u>	1		 			
									
		1		 		 			
	· · ·				· ·	 			
									··
			 	 		 			
				 		 			
									
									
				 			 		
				 					
		 				 	 -		
		·							·
									
									
	· · · · · · · · · · · · · · · · · · ·	 		 					·
			<u> </u>			1.		···	
								•	
		 	 		<u> </u>			-	
							···.		
		 	 	 					:
· -		 		$\overline{}$	 		·		
JCTIVELY (COUPLED PL	ASMA SERIAL	יב מאדעונות	VALYSIS:	<u> </u>				
al dilutions w	vere performe	d for each mat	rix and results	of the diluted san	nple analysis	agreed within			
percent of the	e original und	luted analysis.	Yes	/· No					
	vere not perror	med for the fo	nowing:	<u> </u>			-		
MENTS		·	$\overline{}$					 	
				 					
									
									

Actions:

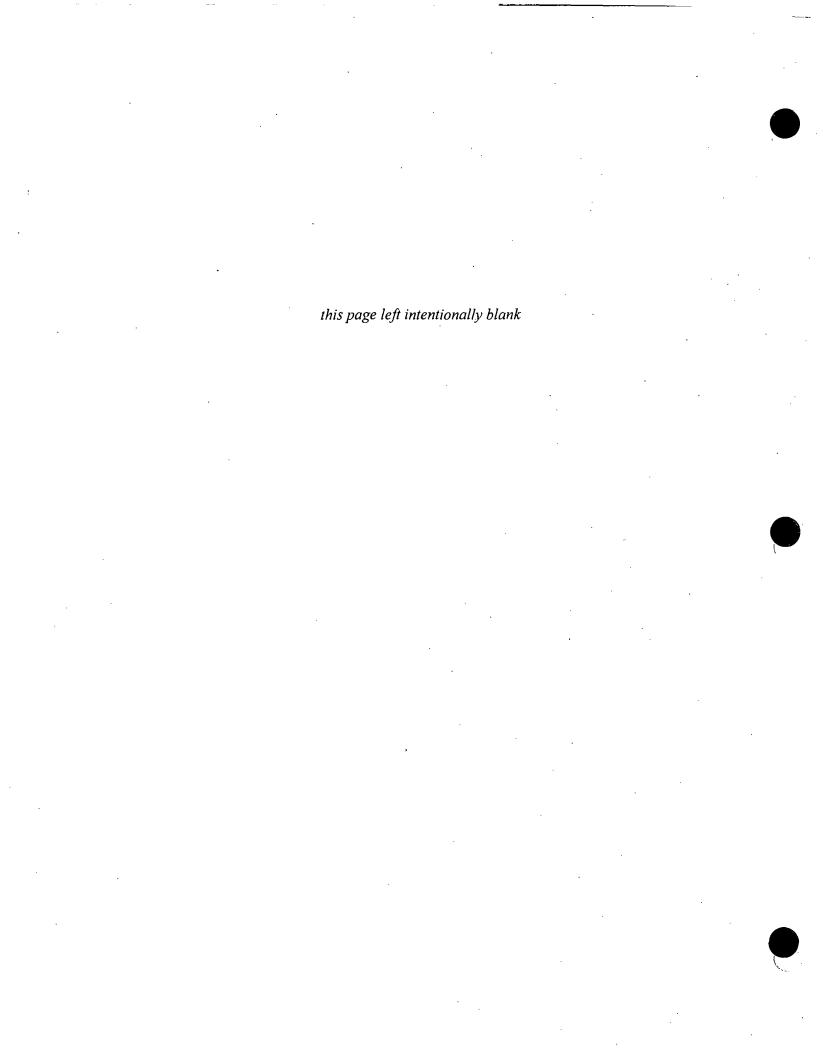
Estimate (J) detected results if %D is > 10%.

NOTES

 \mathbf{k}^* results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: 1962217


	escribe any raw data an	iomalies (l.e., baseline shi	ifts, negative a	absorbances, transc	ription or ca	alculation error	s, legibility, etc.	
	and any too out on	The state of the s	,			32.2	-, 3.2	
	11							
	1200							
			***					· · · ·
								
		· · · · · · · · · · · · · · · · · · ·	·····					
•							·	
							١	
								
							· · · · · · · · · · · · · · · · · · ·	
	ist results that fall outsid not reanalyzed.	le the linear range of the l			nge of the	AA or Cyanide	instrument, and	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
		<del></del>					·	
							· · · · · · · · · · · · · · · · · · ·	
3. W	Vere ICP linear ranges of	bleined within 3 months o	of and precedi	ing, the sample anal	yses?	(Yes'.)	No	NA
			<del></del>					·-·
4. W	vere ICP interelement co	orrections obtained within-	12 months of	and preceding, the	sample and	alyses? (	Yes No	NA
1				No	NA	<del> </del>		
6. W	Vere all sample results re	eported down to the IDL if	running CLP		Yes		No	NA
				protocol?		· · · · · · · · · · · · · · · · · · ·	No No	NA NA
		eported down to the IDL if		protocol?	Yes			
7. W	Vere all sample results re		nning SW-840	protocol? 6 methods?	Yes	results?	No	
7. W	Vere all sample results re	eported down to MDL if ru	nning SW-840	protocol? 6 methods?	Yes	results?	No	NA NA
7. W	Vere all sample results re	eported down to MDL if ru	nning SW-840	protocol? 6 methods?	Yes	results?	No	NA NA
7. W	Vere all sample results re Vere sample weights, vo	eported down to MDL if ru	nning SW-840	protocol? 6 methods?	Yes	results?	No	NA NA
7. W	Vere all sample results re Vere sample weights, vo	eported down to MDL if ru	nning SW-840	protocol? 6 methods?	Yes	results?	No	NA NA
7. W	Vere all sample results re Vere sample weights, vo	eported down to MDL if ru	unning SW-846	protocol? 6 methods? ed correctly when re	Yes	11	No Yes	NA NA
7. W 8. W	Vere all sample results re Vere sample weights, vo   MMENTS F: المال العام الم	eported down to MDL if ru	CPD—  GG	protocol? 6 methods? ed correctly when re	Yes Yes	// // // Soci	No Yes	NA NA
7. W 8. W	Vere all sample results reverse sample weights, vo	eported down to MDL if rushings, percent solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids, and grant solids,	CPD—  GG	protocol? 6 methods? ed correctly when re	Yes  Yes  Porting the	11 500: 170,000	No Yes	NA NA
7. W 8. W COM	Vere all sample results re Vere sample weights, vo  MMENTS F: とし か  i 1  5200 160,000 12,000	eported down to MDL if rushings, percent solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and s	CPD—  GG	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  A 1  Ca  F-c-	11 500 170,000 850	No Yes	NA NA
7. W 8. W COM	Vere all sample results re Vere sample weights, vo  MMENTS F: とし だ  11  5200 160,000 12,000 35,000	eported down to MDL if rundlumes, percent solids, and Signature 13, acc.	conning SW-846  d dilutions use  S-FD  49  1 9	protocol? 6 methods? ed correctly when re	Yes  (Yes)  porting the	11 500 170,000 850 34,000	No Yes	NA NA
7. W 8. W COM	Vere all sample results re Vere sample weights, vo  MMENTS F; とし だ  11  8,200 160,000 12,000 35,000	eported down to MDL if rushings, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, and Signatures, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solid	SPD 49 19 6 8 3	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  Porting the	11 500 170,000 550 37,000 21,000	No Yes	NA NA
7. W 8. W COM G G G G	Vere all sample results re Vere sample weights, vo  AMENTS F; とし が  11  \$200  160,000  12,000  25,000  240,000	eported down to MDL if rushings, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, p	SPD 49 19 6 8 3	protocol? 6 methods? ed correctly when re	Yes  (Yes)  porting the	11 500: 176,000 850 37,000 21,000 50,000	No Yes	NA NA
7. W 8. W COM	Vere all sample results re Vere sample weights, vo   IMMENTS F: =1 J /2  I S 200  160,000  13000  35,000  270,000  240,000  230,000  230,000	eported down to MDL if rushings, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, perc	SPD 49 19 6 8 3	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco	11 500: 170,000 550 37,000 21,000 -50,000 130	No Yes	NA NA
7. W 8. W COM 41 4. So	Vere all sample results re Vere sample weights, vo   MMENTS F: とし だ  11  5,200  160,000  17,000  35,000  270,000  270,000  230,000  230	eported down to MDL if ru  Slumes, percent solids, and  9,900  150.000  13,000  23,000  24,000  250  13	Inning SW-846  d dilutions use  I PD  49  19  6  8  3  4	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the orig	11 500: 170,000 850 37,000 21,000 -50,000 130	No Yes	NA NA
7. W 8. W COM GI GE GE GE GE GE GE GE GE GE GE GE GE GE	Vere all sample results re Vere sample weights, vo  MMENTS F; Ll / //  11  \$200 160,000 /2,000 35,000 25,000 25,000 25,000 25,000 27,000 27,000 27,000 27,000	eported down to MDL if rundles, percent solids, and Signature 150,000 13,000 240,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 2	SPO	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the orig	11 500: 170,000 850 37,600 21,000 -50,000 130 12 360	No Yes	NA NA
7. W 8. W COM G C C C C C C C C C C C C C C C C C C	Vere all sample results re Vere sample weights, vo  MMENTS F, wid A  11  \$200 160,000 12,000 23,000 270,000 23,00 13 16	eported down to MDL if rundles, percent solids, and Signature 150,000 13,000 240,000 250 13 13 18	Inning SW-846  d dilutions use  I PD  49  19  6  8  3  4	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the orig	11 500: 170,000 850 37,000 21,000 -50,000 130	No Yes	NA NA
7. W 8. W COM Ga Fe Ja Ja Cr	Vere all sample results re  Vere sample weights, vo  MMENTS F; Eld A  il  \$200 160,000 12,000 23,000 27,000 23,000 23,000 13 16 16 16	eported down to MDL if rundles, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, and figures, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent solids, percent sol	Sylvaning SW-846  G dilutions use  Sylvania  19  8  3  49  0  8  7  10  10  10  10  10  10  10  10  10	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the orig	11 500: 170,000 850 37,600 21,000 -50,000 130 12 360	No Yes	NA NA
7. W 8. W COM GG FE My Ja C. C.	Vere all sample results reverse all sample results reverse sample weights, vo	eported down to MDL if rundles, percent solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and so	Inning SW-846  d dilutions use  ###  19  6  8  3  4  0  9  12  0  7  7	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the orig	11 500: 170,000 850 37,600 21,000 -50,000 130 12 360	No Yes	NA NA
7. W  8. W  COM  G  G  G  G  G  C  C  C  P  D  V	Vere all sample results re Vere sample weights, vo  MMENTS F: eld A  11  \$200 160,000 12,000 23,000 22,000 23,000 23,000 24,000 27,000 23,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000	eported down to MDL if rundles, percent solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and so	Inning SW-846  d dilutions use  140  8  3  40  8  7  19  6  8  7  19  19  19  19  19  19  19  19  19	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the orig	11 500: 170,000 850 37,600 21,000 -50,000 130 12 360	No Yes	NA NA
7. W 8. W CON G G G C C C C C C C C C C C C C C C C	Vere all sample results re Vere sample weights, vo  MMENTS F: eld A  11  \$200 160,000 12,000 23,000 22,000 23,000 23,000 24,000 27,000 23,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000 24,000	eported down to MDL if rundles, percent solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and solids, and so	Inning SW-846  d dilutions use  ###  19  6  8  3  4  0  9  12  0  7  7	protocol? 6 methods? ed correctly when re	Yes  Yes  Yes  One of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the original of the orig	11 500: 170,000 850 37,600 21,000 -50,000 130 12 360	No Yes	NA NA

# APPENDIX E EVALUATION OF PHASE I QUALITY CONTROL SAMPLES

this page left intentionally blank

### TABLE OF CONTENTS

E0.	OVER	VIEW	<u>E-1</u>
E1.	FIELD E1.1 E1.2 E1.3 E1.4	QC SAMPLES Field Splits Field Blanks (Water) Equipment Blank (Rinsate) PE Standards	E-1 E-2 E-2
E2.	LABO E2.1 E2.2 E2.3 E2.4	RATORY QC SAMPLES  Matrix Spike  Laboratory Control Sample (LCS)  Laboratory Duplicate  Method Blank	E-5 E-6 E-7
E3.	DATA	QUALITY SUMMARY	<u>E-8</u>
		LIST OF TABLES	
Table I Table I Table I Table I Table I Table I	E-2 E-3 E-4 E-5 E-6 E-7	Summary of Phase I Quality Control Sample Results Evaluation of Field Split Sample Results Evaluation of Equipment Blank (Rinsate) Samples Evaluation of Performance Evaluation (PE) Standard Results Evaluation of Matrix Spike (MS) Sample Results Evaluation of Laboratory Control Sample (LCS) Results Evaluation of Laboratory Duplicate Samples Evaluation of Method Blank (MB) Results	



### E0. OVERVIEW

The quality of environmental data collected during the Phase I field investigation were assessed through the use of quality control (QC) samples analyzed on a regular basis. The objectives and results for field and laboratory QC samples are described below.

### E1. FIELD QC SAMPLES

Four different types of field QC samples were collected for soil and groundwater during the Phase I investigation, including field splits, field blanks, equipment blank (rinsate), and performance evaluation (PE) standards. The required frequency, acceptance criteria and evaluation of the results for each field QC sample are briefly described below and are summarized in Table E-1.

### E1.1 Field Splits

Field split samples are two aliquots of the same sample that are prepared after the original sample has been homogenized. The samples are submitted to the laboratory blindly at a frequency of approximately 5% of all field samples to evaluate the precision of laboratory analyses. As specified in by the project plan (USEPA 2003), the acceptance criterion for field split samples is a Relative Percent Difference (RPD) for the sample pair (parent sample vs split sample) of 25% or less, or alternatively, an absolute difference (parent sample vs split sample) that does not exceed the method detection limit (MDL), whichever criteria is the least stringent. For the Phase I data collected at the site, the RPD acceptance criteria is the least stringent criteria and was used to evaluate all field split samples collected during the investigation. The RPD is calculated using the following equation:

$$RPD(\%) = \frac{|Parent Sample - Field Split|}{(Parent Sample + Field Split)/2} \times 100$$

Detailed RPD calculations for each pair of field split samples collected for soil are presented in

Table E-2, and the data quality findings are summarized in Table E-1. As shown in Table E-1, field split samples were collected from site soils at the required frequency (5%) and meet the required criteria (RPD  $\leq$ 25%) for each chemical analyzed. Thus, the precision of metals analysis in soil is adequate.

Field split samples were not collected for groundwater during Round 1 due to the total number of groundwater samples collected (2 field samples) or during Round 2 due to low sample volumes of groundwater encountered at each sampling station (USEPA 2004a and 2004b). Thus, the precision of metal analyses in groundwater from these sampling rounds could not be evaluated using the field split approach. Field splits were collected during Round 3 and Round 4 water sampling at the required frequency (6% and 11%, respectively) and meet the required criteria (RPD  $\leq$ 25%) for each chemical analyzed. Thus, the precision of metals analysis in Round 3 and Round 4 water samples is adequate.

### E1.2 Field Blanks (Water)

Field blanks for water are samples that are collected in the field by adding a sample of distilled or de-ionized water to the sample bottle rather than a sample of site water. The samples are submitted blind to the laboratory to test for any contamination introduced during the collection, transport and storage of a sample. For the Phase I investigation, field blanks were to be collected for groundwater at a frequency of 5% of all groundwater samples collected (1 field blank for every 20 samples collected). However, based on the total number of groundwater samples collected (2 samples during Round 1; 15 samples in Round 2; 17 samples in Round 3; and 9 samples in Round 4), field blanks were not collected for groundwater during any sampling round. Thus, no conclusions can be drawn about the potential for contamination using this approach.

### E1.3 Equipment Blank (Rinsate)

Equipment blanks are samples of water produced from rinsing equipment that has been decontaminated after sampling. These samples (rinsates) are submitted to the laboratory to determine if field decontamination procedures are effective in preventing cross-contamination between samples. The acceptance criteria for a rinsate sample is that all analytes should be

below method detection limits.

As shown in Table E-1, equipment blanks were collected from soil sampling equipment at a frequency of 14% (one equipment blank per day. For Rounds 2-4, equipment blanks were collected from groundwater sampling equipment at a frequencies of 11-13%. Consistent with the project plan (USEPA 2003), equipment blanks were not collected during the first round of groundwater sampling because all sampling equipment was disposable.

Table E-3 presents the detailed evaluation of the concentration of metals in rinsate samples. The initial acceptance criteria (all values less than the method detection limit) was changed to all samples less than the reporting limit, because non-detects observed during the Phase I investigation were reported as less than the method reporting limit rather than the method detection limit.

For rinsates from soil sampling equipment (Table E-3, Part A), many analytes were below the reporting limit in all samples. However, several analytes (aluminum, calcium, iron, and manganese) were above reporting limits in one or more samples. These results suggest that some cross-contamination between soil samples may have occurred during field collection activities. However, because the detected concentrations in rinsates were low (typically within 1-2 times the reporting limit), and because all of the analytes detected occur at relatively high levels in soil, the amount of cross-contamination is not likely to significantly effect the measured values in the soil samples. Thus, these rinsate results do not suggest the soil sample results are unreliable.

For rinsates from groundwater sampling equipment (Table E-3, Part B), most analytes were below the method reporting limit in all samples, except for calcium in one sample. These results indicate that cross-contamination between groundwater samples is likely to be minimal and that the groundwater results are reliable.

#### E1.4 PE Standards

PE standards are sample media (soil, water) with a known concentration of target analytes that are used to help evaluate the accuracy of the analytical results. They are submitted blind to the

### APPENDIX E

laboratory at a frequency of 5% or one per preparation batch.

PE standards of soil and water used in the Phase I investigation were provided by EPA's Quality Assurance Technical Support (QATS) laboratory. PE standards prepared by QATS are sent to a number of laboratories for analysis. From the results the average concentration and confidence intervals around the mean are calculated and used to establish acceptance criteria. The accuracy requirement used to evaluate the PE standards analyzed during the Phase I investigation are the 95% and 99% confidence intervals around the mean. Measured concentrations that are within the 95% confidence interval are considered to be within acceptable accuracy limits. Concentrations that exceed the 95% confidence interval but are within the 99% confidence interval are still acceptable, but are approaching unacceptable limits. Acceptance criteria for the QATS samples used in this study are presented in Table E-4.

Table E-4 (Part A) compares the results for five replicate analyses of the soil PE sample with the performance criteria recommended by QATS. As shown, concentration values for arsenic, lead and zinc tended to be biased slightly high (generally in the range of 10%-25%), but 16 out of 20 results are within the 95% CI, and all results are within the 99% CI.

Table E-4 (Part B) compares the results for the analyses of 5 water PE samples with the QATS acceptance criteria. As seen, the results for one sample (MW-30-050205) are below both the 95th and 99% CI for all analyses. The measured concentrations in this sample are approximately 4 times less than the nominal standard concentration for all analytes, suggesting either a dillution or analytical error may have occurred. Another possible explanation for the low analytical results for this sample is degradation of the PE standard. Prior to analysis, the PE standard (sample MW-30-050205) was stored frozen for a period of 17 months. Freezing of aqueous standards may result in some degradation of analytes, especially antimony, iron, and vanadium (USEPA 2005). Thus, the stability of at least some metals in this PE standard could be questionable and therefore not a good indicator of the analytical accuracy of the field samples analyzed with this QC sample. Thus, the results for PE standard sample MW-30-050205 were not used to draw conclusions on the analytical accuracy of metals analysis in water samples.

For the remaining water PE samples, Table E-4 (Part B) shows that in most cases (3 of the 4 samples) the results showed little tendency for bias, and 15 out of 16 results are within both the

95% and 99% CI. However, the result for one analysis of zinc falls above the 99% CI, indicating that the analytical results for zinc could be biased high (about 40%) for field samples analyzed in the same sample batch. Based on this, the overall accuracy of quantifying metals in water samples is adequate.

### E2. LABORATORY QC SAMPLES

Five types of laboratory QC samples for soil and groundwater were analyzed during the Phase I investigation, including matrix spikes, laboratory control samples, laboratory duplicates, instrument blanks, and method blanks. The required frequency, acceptance criteria and evaluation of the results¹ for each laboratory QC sample are briefly described below and are summarized in Table E-1.

### E2.1 Matrix Spike

A matrix spike (MS) is a field sample to which a known concentration of one or more analytes has been added. This QC sample measures the extent that the sample matrix influences the accuracy of the measurement of target analytes. The frequency that matrix spikes are introduced into the sampling train is either 5% (one matrix spike for every 20 field samples) or one matrix spike for every batch of samples prepared for analysis (whichever is more frequent). The results from the matrix spike are evaluated by determining the percent recovery of the analytes added to the field sample. Percent recoveries that are within the documented historical laboratory matrix spike recoveries meet QC acceptance criteria.

As shown in Table E-1, matrix spike samples were prepared and analyzed at a frequency of one matrix spike per sample batch. Table E-5 presents the detailed evaluation of the spike concentrations and percent recoveries in matrix spike samples. Table E-5 Part A shows the results for soil, and Part B shows the results for groundwater.

Note that the tables in Appendix E are based on laboratory QC samples analyzed with soil and Rounds 2, 3 and 4 groundwater samples only. Laboratory QC samples analyzed with the Round 1 groundwater samples were not available electronically, and thus are not included in Appendix E tables. However, these sample results were evaluated during the data validation (see Section 3.3.1 and Appendix D) and the findings are included in the text of Appendix E.

In cases where the concentration of the analyte in the field sample used for spiking was more than four times greater than the spiked concentration, no evaluation of recovery was performed. In soil samples, this occurred mainly for aluminum, iron, and manganese, and, to a lesser extent, barium, cadmium, copper, and zinc. In water, this occurred mainly for aluminum.

As seen, most metals in matrix spike samples are within documented historical laboratory recoveries, with an overall exceedence rate of 5% of all analyses for soil samples and 3% for all water samples, and with no consistent pattern of exceedences across media or analytes. This indicates that the overall recovery of spiked metals is within expected limits, and indicates that matrix interferences are not likely to be important. However, in accord with standard procedure, analytes in field samples evaluated in a sample batch where the matrix spike for the analyte exceeded QC evaluation criteria were assigned a qualifier of "J" (estimated).

### E2.2 Laboratory Control Sample (LCS)

A Laboratory Control Sample (LCS) is similar in purpose to a PE sample. That is, it is a sample with certified concentrations of one or more analytes, generally purchased from a commercial laboratory or from NIST. However, LCS samples are inserted by the analytical laboratory, and are not blind. The frequency that LCS samples are analyzed is 5% or one per analysis batch (whichever is more frequent). The results of the LCS samples are evaluated by comparing the measured recovery of each analyte to the acceptance criteria identified by the certifying laboratory.

As shown in Table E-1, LCS were analyzed at a frequency of one per batch during the Phase I investigation. Table E-6 presents the details of the LCS percent recoveries. All LCS met the QC acceptance criteria, with the exception of beryllium in one Round 1 water sample (see data validation report in Appendix D for details). The groundwater field samples analyzed in the same batch as this LCS were assigned a "J" qualifier to indicate that the reported concentration in the samples is estimated due to a LCS recovery outside the QC acceptance criteria. Based on this, the overall accuracy of the method for quantifying metals in soil and groundwater is adequate.

### **E2.3** Laboratory Duplicate

Laboratory duplicates are splits prepared by the laboratory to evaluate the precision of the sample preparation and analysis. Duplicates are analyzed at a frequency of 5% of all field samples analyzed or one per batch of samples (which ever is more frequent). The QC acceptance criteria for laboratory duplicates is an RPD less than or equal to 25%.

Laboratory duplicate samples were prepared and analyzed for Round 1 water samples. Because the analytical results for Round 1 laboratory duplicate samples were not provided by the laboratory electronically, the results are not included in Appendix E tables. However, the precision of these samples was evaluated during data validation and the findings are included in the discussion below. For soil samples and water collected during Round 2, the analytical laboratory did not prepare laboratory duplicates. Therefore, in accord with analytical Method SW-846 6010, Matrix Spike Duplicate (MSD) and matrix spike (MS) results were used as a proxy to evaluate laboratory precision.

Table E-1 shows that duplicates were analyzed at the required frequency. Results for soil duplicate pairs are shown in Table E-7 Part A. As seen, most analyses (158 out of 164 = 96%) in soil are within QC acceptance criteria, with the exception of a few analytes (mercury, lead, aluminum, and iron) in four different duplicate samples. In accordance with the National Functional Guidelines for data validation, a "J" qualifier was assigned to soil analyses that exceeded 35% RPD.

Results for water samples (groundwater and rinsates) are shown in Table E-7, Part B. As above, most results are within the QC acceptance criteria, with the exception of cadmium and lead in one Round 1 groundwater sample. The cadmium and lead results in the field samples analyzed in the same sample batch as the laboratory duplicate that exceeded the duplicate QC criteria were "J" qualified to indicate that the reported concentration is estimated because QC criteria were not met (see Appendix D). Because the frequency of exceedences is low and the magnitude of the exceedences is generally small, and since there is no consistent pattern of exceedences across analytes, the overall precision of the analysis of metals in soil and water is judged to be adequate.

#### E2.4 Method Blank

Method blanks are samples composed of the reagents, solvents, or matrix of investigative samples following sample preparation that are used to determine if any laboratory induced contamination has occurred. They are analyzed at a frequency of 5% of all samples analyzed or one per sample batch. The results are compared to the method detection limits (MDLs). Samples where analytes are less than or equal to method detection limits are within QC acceptance criteria.

As shown in Tables E-1 and E-8, method blanks were analyzed at the required frequency and all results were within QC acceptance criteria, with the exception of one blank sample analyzed with the Round 1 groundwater (see data validation report in Appendix D for details). In this sample, a negative concentration of sodium was reported in one of the blanks analyzed with a batch of field samples. Because the sodium result in a field sample analyzed in the same sample batch was less than five times the absolute value of the blank, the sodium result for the field sample was qualified as "J" (estimated). Based on this, it does not appear that laboratory induced contamination was introduced into the Phase I soil or groundwater samples. Thus, the overall accuracy of the analytical data collected during Phase I is adequate for the analysis of metals in soil and groundwater samples.

### E3. DATA QUALITY SUMMARY

Precision of the analytical data was evaluated by evaluating field split and laboratory duplicate samples. As described above, all field split sample results met QC criteria for precision. Likewise, most laboratory duplicates were within QC acceptance criteria, with a few exceptions. Because the frequency of samples exceeding QC acceptance criteria for precision is low, and because there is no consistent pattern of exceedences across analytes or media, the overall precision of the analysis of metals in soil and water is judged to be adequate.

The accuracy of the analytical data was evaluated by several different types of QC samples, including rinsates, PE standards, matrix spikes, laboratory control samples, laboratory duplicates, and method blanks. Most of these QC sample results were within specified

### APPENDIX E

acceptance criteria, indicating that the data are within acceptable accuracy bounds. Occasional exceedences were observed in a few QC samples, but overall there was no clear pattern suggesting systematic error. For example, results for one water PE sample suggested that results for zinc may be biased high, but zinc analyses in all other QC water samples were all within acceptable limits.

Based on the evaluation of precision and accuracy described above, the quality of the analytical data collected during the Phase I field investigation at the VB170 OU3 site are adequate for use in describing the nature of site contamination and for use in risk assessment.

### APPENDIX E

### E4. REFERENCES

USEPA. 2003. Vasquez Boulevard and Interstate 70 (VBI70) Operable Unit 3 (OU3) Denver, Colorado. Quality Assurance Project Plan and Sampling and Analysis Plan to Support Human and Ecological Risk Assessment and Remedial Investigation. Prepared for USEPA by Knight Piesold and Syracuse Research Corporation. December.

USEPA. 2004a. Field Sampling Report, Round I, Phase I for the Vasquez Boulevard and Interstate 70 (VBI70) Site, Operable Unit 3 (OU3), Denver, Colorado. Prepared for USEPA by Knight Piesold and Co. March.

USEPA. 2004b. Draft Technical Memorandum Phase I, Round II Groundwater Monitoring Vasquez Boulevard and Interstate 70 (VB170), Operable Unit 3 (OU3) Denver Colorado. Prepared by Knight Piésold. September 13.

USEPA. 2005. Vasquez Boulevard PES Evaluation Report. Prepared by USEPA Region 8. June.

Table E-1. Precision, Accuracy, Representativeness and Completeness of Data Collected During the Phase I Investigation

QC Type	Sample Type	Sample Matrix	Proposed Frequency	Actual Frequency	Initial Acceptance Criteria	Evaluation of Acceptance Criteria	Data Quality Assessment Conclusion
		Soil, Groundwater		5% (6 soil duplicates/123 soil samples) for soil. Field split not collected for groundwater during Round 1 due to sample size (2 groundwater field samples collected) or during Round 2 due to low recoveries of monitoring wells. Round 3 frequency of 6% (1 duplicate/17 water samples).	RPD < 25% or, the absolute difference should not exceed 1 x MDL.		Precision adequate for soil and Round 3 water analyses. Precision could not be evaluated for Round 1 or Round 2 water samples.
	Field Blank	Groundwater	5% of all field samples. (1 field blank per 20)	No field blanks collected for groundwater (2 groundwater samples collected during Round 1. 15 groundwater samples collected during Round 2 and 17 water samples collected during Round 3).	Target analytes <1 x MDL; 5-10 x MDL for laboratory-induced contaminants	Could not be evaluated.	Could not be evaluated.
Field QC	Rinsate	Soil, Groundwater	5% of all decontaminations performed on each type of equipment	14% of soil sampling equipment decontaminations (6/36 boreholes). 13% of decontaminations (2/15 decontaminations) during Round 2 sampling and 12% of Round 3 decontaminations. None collected during Round 1 groundwater sampling (all equipment disposable, thus no equipment decontaminations).		criteria for all chemicals, with the exception of aluminum, calcium, iron and to a lesser extent manganese in one or more samples.  For groundwater sampling insates, all results were within acceptance criteria except for calcium in one sample.	Field sampling-induced contamination may have been introduced for aluminum, calcium, iron and manganese in soil and for calcium in Round 2 groundwater. However the estimated contribution from field induced contamination relative to the total measured concentration is relatively small (1-2 times the RL) for the sample groups impacted, the exceedences are for common elements that could be introduced by the water and/or sampling equipment, and thus, are not likely to significantly impact reported concentrations.
-	PE Standard	Soil, Groundwater	frequent)	Soil PE standards submitted at a frequency of one per batch once they became available (after soil sampling began). Groundwater PE standards submitted at a frequency of one per batch during Round 1, a frequency of 5% (1/18 samples) during Round 2, and a frequency of 6% (1/17 samples) during Round 3.	requirements provided by the certifying laboratory: within 95% CI around the mean	For soil PE samples, concentrations may be biased high for arsenic, lead and zinc, but all results are within acceptance criteria. For water PE samples, all results are within acceptance criteria with the exception of zinc in one sample. Results for one water PE sample rejected, due to questionable stability of metals in standard from storage conditions (frozen for 17 months, prior to analysis).	Overall accuracy adequate for quantifying metals in soil and groundwater.
Laboratory QC	Matrix Spike	Soil, Groundwater	5% or 1 per batch (whichever is more frequent)	One matrix spike was analyzed per batch of samples.	75 - 125% of known value or within the documented historical laboratory acceptance limits for each chemical [2]	with the exception of at least one chemical (aluminum, iron and manganese, and to a lesser extent barium, cadmium,	Matrix interferences could be occurring for some chemicals. However, overall recoveries are within expected limits. Thus, matrix interferences are not likely to be important and overall accuracy is adequate for quantifying metals in soil and groundwater.
	Laboratory Control Sample	Soil, Groundwater	5% or 1 per batch (whichever is more frequent)	One laboratory control sample was analyzed per batch of samples.	Must be within manufacturer's established acceptance limits.	Results within acceptance criteria for all chemicals in soil and groundwater with the exception of beryllium in one Round 1 groundwater sample.	Overall accuracy adequate for quantifying metals in soil and groundwater.

Table E-1. Precision, Accuracy, Representativeness and Completeness of Data Collected During the Phase I Investigation

QC Type	Sample Type	Sample Matrix	Proposed Frequency	Actual Frequency	Initial Acceptance Criteria	Evaluation of Acceptance Criteria	Data Quality Assessment Conclusion
		Groundwater		One laboratory control duplicate sample was analyzed per batch of soil and water samples.	RPD < 25% or, the absolute difference should not exceed 1 x MDL.	Soil duplicates were within QC acceptance criteria for most analyses (158 out of 164), with the exception of a few analytes (mercury, lead, atuminum and iron) in 4 duplicate samples. Groundwater duplicate results were within QC acceptance criteria with the exception of cadmium and lead in one sample.	Overall, precision of soil and groundwater analyses is adequate.
Laborat		Groundwater	5% or 1 per batch (whichever is more frequent)	:	< 1 x MDL except for common laboratory contaminants which may be 5-10 x MDL. If any analyte concentration is > PQL, the lowest concentration of that analyte in tho associated samples must be 10x more than the conc. found in the blank.	with the exception of sodium in one Round 1 blank sample.	No indication that laboratory-induced contamination has occurred. The accuracy of metal analysis in soil and groundwater samples is adequate.

MDL - Method Detection Limit RPD - Relative Percent Difference

[1] Acceptance criteria revised from "<1x MDL", 5-10 x MDL" to "<1x RL; 5-10x RL; as Phase 1 data were not reported below the Method reporting limit (RL).
[2] Revised from "75% - 125% of known value" to read "75 - 125% of known value or within the documented historical laboratory acceptance limits for each chemical", based on conversations with STL and is consistent with Method SW 848 6010B.

### A. SOIL FIELD SPLIT SAMPLES

A. SOIL FIELD SPLITS Field Split Sample ID	Parent Sample ID	Anayte	Analyte Type	1	Split Resu (mg/kg)	It	Parer Samp Resu (mg/k	le It	RPD (%)	QC Acceptance Criteria Evaluation
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Aluminum	· Total	32000	mg/kg		28000		3.3%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Antimony	Total	ND	mg/kg	UJ	ND	UJ	0.0%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Arsenic	Total	-1.7	mg/kg		3.9		19.6%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Barium	Total	72	mg/kg		69		1.1%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Beryllium	Total	0.88	mg/kg		0.82		1.8%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Cadmium	Total	24	mg/kg		25		1.0%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Calcium	Total	8800	mg/kg		7500		4.0%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Chromium	Total	16	mg/kg	J	14	J	3.3%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Cobalt	Total	12	mg/kg		9.3	7	6.3%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Copper	Total	29	mg/kg	J	67	J	19.8%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Iron	Total	25000	mg/kg		25000	-	0.0%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Lead	Total	19	mg/kg		18		1.4%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Magnesium	Total	4100	mg/kg		3800		1.9%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Manganese	Total	340	mg/kg		310		2.3%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Mercury	Total	0.033	mg/kg		ND		16.7%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Nickel	Total	58	mg/kg		61		1.3%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Potassium	Total	2500	mg/kg		2200		3.2%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Selenium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Silver	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Sodium	Total	1400	mg/kg		1300		1.9%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Thallium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Vanadium	Total	43	mg/kg		37		3.8%	pass
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Zinc	Total	440	mg/kg		520		4.2%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Aluminum	Total	29000	mg/kg		31000		1.7%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Antimony	Total	ND	mg/kg	UJ	ND	UJ	0.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Arsenic	Total	18	mg/kg	ŀ	22		5.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Barium	Total	1400	mg/kg	J	1500	J	1.7%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Beryllium	Total	ND	mg/kg		ND	UJ	0.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Cadmium .	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Calcium	Total	15000	mg/kg		13000		3.6%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Chromium	Total	7.1	mg/kg		7.6		1.7%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Cobalt	Total	10	mg/kg		· · 12		4.5%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Copper	Total	13	mg/kg	-	15		3.6%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Iron	Total	20000	mg/kg		23000		3.5%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Lead	Total	9.2	mg/kg		10		2.1%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Magnesium	Total	4000	mg/kg		4100		0.6%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Manganese	Total	340	mg/kg		380		2.8%	pass

A. SOIL FIELD SPLIT SAMPLES

A. SOIL FIELD SPLIT S Field Split Sample ID	Parent Sample ID	Anayte	Analyte Type		Split Resu (mg/kg)	lt	Parer Samp Resu (mg/k	le It	RPD (%)	QC Acceptance Criteria Evaluation
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Aluminum	Total	32000	mg/kg		28000		3.3%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Mercury	Total	ND	mg/kg	UJ	ND	υJ	0.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Nickel	Total	6.4	mg/kg	ļ	7.3		3.3%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Potassium	Total	1300	mg/kg		1400		1.9%	pass ·
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Selenium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Silver	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Sodium	Total	2400	mg/kg		2700		2.9%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Thallium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Vanadium	Total	42	mg/kg		45		1.7%	pass
01-VBOU3-SB-0016-C	01-VBOU3-SB-0016-B	Zinc	·Total	46	mg/kg	j	54	J	4.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Aluminum	Total	36000	mg/kg		37000		0.7%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Antimony	Total	ND	mg/kg	υJ	ND -	UJ	0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Arsenic	Total	2.5	mg/kg		. 3 .		4.5%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Barium	Total ·	1300	mg/kg		1200		2.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Beryllium	Total	ND	mg/kg		ND		0.0%	pass .
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Cadmium	Total	0.84	mg/kg		0.69		4.9%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Calcium	Total	15000	mg/kg		15000		0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Chromium	Total	7.3	mg/kg		5.9	-	5.3%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Cobalt	Total	14	mg/kg		13		1.9%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Copper	Total	4.6	mg/kg		5.2		3.1%	pass
.01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Iron	Total	33000	mg/kg		30000		2.4%	pass
01-\/BOU3-SB-0018-D	01-VBOU3-SB-0018-C	Lead	Total	7.5	mg/kg	J	7.8	J	1.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Magnesium	Total	8500	mg/kg		8800		0.9%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Manganese	Total	1000	mg/kg	J	1000	J	0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Mercury	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Nickel	Total	4.8	mg/kg		4.7		0.5%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Potassium	Total	790	mg/kg		790		0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Selenium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Silver	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Sodium	Total	1400	mg/kg	7	1300		1.9%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Thallium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Vanadium	Total	73	mg/kg		59		5.3%	pass
01-VBOU3-SB-0018-D	01-VBOU3-SB-0018-C	Zinc	Total	66	mg/kg		60		2.4%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Aluminum	Total	24000	mg/kg		27000		2.9%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Antimony	Total	ND	mg/kg	UJ	ND	υJ	0.0%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Arsenic	Total	32	mg/kg		53		12:4%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Barium	Total	650	mg/kg		700		1.9%	pass

A. SOIL FIELD SPLIT SAMPLES

Field Split Sample ID	Parent Sample ID	Anayte	Analyte Type		Split Resu (mg/kg)	lt	Parer Samp Resu (mg/k	le It	RPD (%)	QC Acceptance Criteria Evaluation
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Aluminum	Total	32000	mg/kg	, <del></del>	28000		3.3%	pass
01-VBOU3-SB-0024-B	.01-VBOU3-SB-0024-A	Beryllium	Total	0.53	mg/kg	-	ND		17.9%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Cadmium	Total	ND	mg/kg	G	ND	G	1.9%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Calcium	Total	10000	mg/kg		12000		4.5%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Chromium	Total	7.7	mg/kg	J	8.7	J	3.0%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Cobalt	Total	12	mg/kg		. 12		0.0%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Copper	Total	13	mg/kg		18		8.1%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Iron	Total	25000	mg/kg		28000		2.8%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Lead	Total	9.5	mg/kg		10		1.3%	pass .
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Magnesium	Total	4300	mg/kg		4900		3.3%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Manganese	Total	740	mg/kg		700		1.4%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Mercury	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Nickel	Total	5.8	mg/kg		6.5		2.8%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Potassium	Total	1300	mg/kg		1500		3.6%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Selenium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Silver	Total	ND	mg/kg		ND	ĺ	0.0%	. pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Sodium	Total	1900	mg/kg	j	2200	J	3.7%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Thallium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Vanadium	Total	52	mg/kg	J	55	J	1.4%	pass
01-VBOU3-SB-0024-B	01-VBOU3-SB-0024-A	Zinc	Total	65	mg/kg	J	80	J	5.2%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Aluminum	Total	24000	mg/kg		25000		1.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Antimony	Total	ND	mg/kg	IJ	ND	UJ	0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Arsenic	Total	3.6	mg/kg		4.1		3.2%	pass ⁻
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Barium	Total	78	mg/kg		110		8.5%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Beryllium	Total	1	mg/kg		1		0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Cadmium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Calcium	Total	7200	mg/kg		7000		0.7%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Chromium	Total	11	mg/kg		13		4.2%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Cobalt	Total	7.5	mg/kg		· 7.1		1.4%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Copper	Total	17	mg/kg		19		2.8%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Iron	Total	24000	mg/kg		24000		··· 0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Lead	Total	22	mg/kg		50		19.4%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Magnesium	Total	3300	mg/kg		3700		2.9%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Manganese	Total	760	mg/kg	J	520	J	9.4%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Мегсигу	Total	0.046	mg/kg		0.039		. 4.1%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Nickel	Total	9:1	mg/kg		9.1		0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Potassium	Total	1500	mg/kg		2100		8.3%	pass

A. SOIL FIELD SPLIT SAMPLES

Field Split Sample ID	Parent Sample ID	Anayte	Analyte Type	ł	Split Resu (mg/kg)	lt	Samp Resu	Parent Sample Result (mg/kg)		QC Acceptance Criteria Evaluation
01-VBOU3-SB-0006-D	01-VBOU3-SB-0006-C	Aluminum	Total	32000	mg/kg		28000		3.3%	pass ·
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Selenium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Silver	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Sodium	Total	830	mg/kg		790		1.2%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Thallium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Vanadium	Total	36	mg/kg	J	35	J	0.7%	pass
01-VBOU3-SB-0026-C	01-VBOU3-SB-0026-B	Zinc	Total	70	mg/kg		87		5.4%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Aluminum	Total	7200	mg/kg		8000		2.6%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Antimony	Total	ND	mg/kg	UJ	ND	UJ	0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Arsenic	Total	2.3	mg/kg		2.6		3.1%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Barium	Total	67	mg/kg	J	73	J	2.1%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Beryllium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Cadmium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Calcium	Total	3200	mg/kg		3600		2.9%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Chromium	Total	15	mg/kg		16		1.6%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Cobalt	Total	5.5	mg/kg		6		2.2%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Copper	Total	7.5	mg/kg		. 7.3		0.7%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Iron	Total	15000	mg/kg		16000		1.6%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Lead	Total	10	mg/kg	J	12	j	4.5%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Magnesium	Total	. 2200	mg/kg		2400		2.2%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Manganese	Total	220	mg/kg	J	250	J	3.2%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Mercury	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Nickel	Total	7.6	mg/kg		8.2		1.9%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Potassium	Total	1900	mg/kg		2100		2.5%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Selenium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Silver	Total	ND	mg/kg		ND .		0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Sodium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	,Thallium	Total	ND	mg/kg		ND		0.0%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Vanadium	Total	25	mg/kg		27		1.9%	pass
01-VBOU3-SB-0034-D	01-VBOU3-SB-0034-C	Zinc	Total	38	mg/kg		41		1.9%	pass

pass = RPD of measured concentration between parent sample and field split sample is within QC acceptance criteria (<25%). Analytical precision is acceptable.

QC = Quality control

### B. WATER FIELD SPLIT SAMPLES

Field Split Sample ID	Parent Sample ID	Anayte	Analyte Type	Field Sp	lit Result (ug/	Par L) San Result	ple	RPD (%)	QC Acceptance Criteria Evaluation
KP-GW-46-111904A	KP-GW-46-111904	Aluminum	Dissolved	ND		.ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Antimony	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Arsenic	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Barium	Dissolved	` 77		77		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Beryllium	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Cadmium	Dissolved	24		24		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Calcium	Dissolved	190000		19000	0	0.0%	pass .
KP-GW-46-111904A	KP-GW-46-111904	Chromium	Dissolved	, ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Cobalt	Dissolved	ND		ND	1	0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Copper	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Iron	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Lead	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Magnesium	Dissolved	29000		29000	,	0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Manganese	Dissolved	12		ND		20.6%	pass
KP-GW-46-111904A	KP-GW-46-111904	Mercury	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Nickel	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Potassium	Dissolved	6500		6400		0.4%	pass
KP-GW-46-111904A	KP-GW-46-111904	Selenium	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Silver	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Sodium	Dissolved	240000		24000	0	0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Thallium	Dissolved	ND		ND	1	0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Vanadium	Dissolved	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Zinc	Dissolved	180		180		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Aluminum	Total	ND .		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Antimony	Total	ND		ND		0.0%	pașs
KP-GW-46-111904A	KP-GW-46-111904	Arsenic	Total	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Barium	Total	78		80		0:6%	pass
KP-GW-46-111904A	KP-GW-46-111904	Beryllium	Total	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Cadmium	Total	23		24		1.1%	. pass
KP-GW-46-111904A	KP-GW-46-111904	Calcium	Total	190000		20000	0	1.3%	pass .
KP-GW-46-111904A	KP-GW-46-111904	Chromium	Total	ND		ND		0.0%	_ pass
KP-GW-46-111904A	KP-GW-46-111904	Cobalt	Total	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Copper	Total	ND		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Iron	Total	ND		ND		0:0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Lead	Total	ND		ND	1	0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Magnesium	Total	29000		30000		0.8%	pass
KP-GW-46-111904A	KP-GW-46-111904	Manganese	Total	11		11		0.0%	pass

### B. WATER FIELD SPLIT SAMPLES

Field Split Sample ID	Parent Sample ID	Anayte	Analyte Type	Field Sp	lit Result (u	g/L)	Parer Samp Result (u	le	RPD (%)	QC Acceptance Criteria Evaluation
KP-GW-46-111904A	KP-GW-46-111904	Mercury	Total	ND	· 1		ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Nickel	Total	ND			ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Potassium	Total	6700			6700		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Selenium	Total	ND			ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Silver	Total	ND			ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Sodium	Total	250000			250000		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Thallium	Total	ND			ND		0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Vanadium	Total	ND			ND	-	0.0%	pass
KP-GW-46-111904A	KP-GW-46-111904	Zinc	Total	160		J	170	J	1.5%	pass
KP-PS-11-092005A	KP-PS-11-092005	Aluminum	Total	9900			8200		4.7%	pass
KP-PS-11-092005A	KP-PS-11-092005	Antimony	Total -	ND		UJ	ND	บม	0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Arsenic	Total	3.2			2.8		3.3%	pass.
KP-PS-11-092005A	KP-PS-11-092005	Barium	Total	250			230		2.1%	pass
KP-PS-11-092005A	KP-PS-11-092005	Beryllium	Total	ND			ND		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Cadmium	Total	ND			ND		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Calcium	Total	150000			160000		-1.6%	pass
KP-PS-11-092005A	KP-PS-11-092005	Chromium	Total	13			12		2.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Cobalt	Total	13			13		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Copper	Total	18			16		2.9%	pass
KP-PS-11-092005A	KP-PS-11-092005	Iron	Total	13000			12000		2.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Lead	Total	19			19		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Magnesium	Total	34000			35000		0.7%	pass
KP-PS-11-092005A	KP-PS-11-092005	Manganese	Total	460			440		1.1%	pass
KP-PS-11-092005A	KP-PS-11-092005	Mercury	Total	ND		R	ND	R	0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Nickel	Total	ND	·		ND		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Potassium	Total	23000			22000		1.1%	pass
KP-PS-11-092005A	KP-PS-11-092005	Selenium	Total	ND			ND		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Silver	Total	ND			ND		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Sodium	Total	240000			240000		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Thallium	Total	ND			ND		0.0%	pass
KP-PS-11-092005A	KP-PS-11-092005	Vanadium	Total	18			. 16		2.9%	pass
KP-PS-11-092005A	KP-PS-11-092005	Zinc	Total	91			90		0.3%	pass

pass = RPD of measured concentration between parent sample and field split sample is within QC acceptance criteria (<25%). Analytical precision is acceptable.

QC = Quality control

Anayte	Sample ID	Anayte	Reporting Limit (mg/kg)	Measure Concentrat (mg/kg)		QC Acceptance Criteria Evaluation	
	01-VBOU3-RIN-0001	Aluminum	100	· ND		pass	
	01-VBOU3-RIN-0002	Aluminum	100	210		fail	
Aluminum	01-VBOU3-RIN-0003	Aluminum	100	100 ND		pass	
	01-VBOU3-RIN-0004	Aluminum 100 120		120	-	fail	
<u>.                                    </u>	01-VBOU3-RIN-0005	Aluminum	100	· 110	_	fail	
	01-VBOU3-RIN-0001	Antimony	2	ND.	R	NA	
	01-VBOU3-RIN-0002	Antimony	2	ND		pass	
Antimony	01-VBOU3-RIN-0003	Antimony	2	ND		pass	
	01-VBOU3-RIN-0004	Antimony	2	ND		pass	
01-VBOU3-RIN-0005		Antimony	2	ND		pass	
	01-VBOU3-RIN-0001	Arsenic	1	ND		pass	
	01-VBOU3-RIN-0002	Arsenic	1	ND		pass	
Arsenic	01-VBOU3-RIN-0003	Arsenic	1	1 ND		pass	
	01-VBOU3-RIN-0004	Arsenic	1	1 ND		pass	
	01-VBOU3-RIN-0005	Arsenic	1	ND ·		pass	
	01-VBOU3-RIN-0001	Barium	10	ND		pass	
	01-VBOU3-RIN-0002	Barium	10	ND		pass	
Barium	01-VBOU3-RIN-0003	Barium	10	ND	·	pass	
	01-VBOU3-RIN-0004	Barium	10	ND		pass	
	01-VBOU3-RIN-0005	Barium	10	ND		pass	
	01-VBOU3-RIN-0001	Beryllium	1	ND		pass	
	01-VBOU3-RIN-0002	Beryllium	1	ND		pass	
Beryllium	01-VBOU3-RIN-0003	Beryllium	1	ND		pass	
-	01-VBOU3-RIN-0004	Beryllium	1	ND		pass	
	01-VBOU3-RIN-0005	Beryllium	1	ND		pass	

Cadmium         1         ND           01-VBOU3-RIN-0001         Cadmium         1         ND           01-VBOU3-RIN-0002         Cadmium         1         ND           01-VBOU3-RIN-0003         Cadmium         1         ND           01-VBOU3-RIN-0004         Cadmium         1         ND           01-VBOU3-RIN-0005         Cadmium         1         ND           01-VBOU3-RIN-0001         Calcium         200         ND           01-VBOU3-RIN-0002         Calcium         200         240           01-VBOU3-RIN-0003         Calcium         200         270           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           Chromium         10         ND         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND         01-VBOU3-RIN-0004         Chromium         10         ND           01-VBOU3-RIN-0005         Chromium         10         ND         01-VBOU3-RIN-0005         Chromium         10         ND	pass pass pass pass pass pass pass fail
Cadmium         01-VBOU3-RIN-0003         Cadmium         1         ND           01-VBOU3-RIN-0004         Cadmium         1         ND           01-VBOU3-RIN-0005         Cadmium         1         ND           01-VBOU3-RIN-0001         Calcium         200         ND           01-VBOU3-RIN-0002         Calcium         200         240           01-VBOU3-RIN-0003         Calcium         200         520           01-VBOU3-RIN-0004         Calcium         200         270           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           Chromium         01-VBOU3-RIN-0002         Chromium         10         ND           Chromium         01-VBOU3-RIN-0004         Chromium         10         ND	pass pass pass pass
01-VBOU3-RIN-0004         Cadmium         1         ND           01-VBOU3-RIN-0005         Cadmium         1         ND           01-VBOU3-RIN-0001         Calcium         200         ND           01-VBOU3-RIN-0002         Calcium         200         240           01-VBOU3-RIN-0003         Calcium         200         520           01-VBOU3-RIN-0004         Calcium         200         270           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           Chromium         01-VBOU3-RIN-0002         Chromium         10         ND           Chromium         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND	pass pass pass
O1-VBOU3-RIN-0005         Cadmium         1         ND           01-VBOU3-RIN-0001         Calcium         200         ND           01-VBOU3-RIN-0002         Calcium         200         240           01-VBOU3-RIN-0003         Calcium         200         520           01-VBOU3-RIN-0004         Calcium         200         270           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           Chromium         01-VBOU3-RIN-0002         Chromium         10         ND           Chromium         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND	pass
Calcium         200         ND           01-VBOU3-RIN-0002         Calcium         200         240           01-VBOU3-RIN-0002         Calcium         200         520           01-VBOU3-RIN-0003         Calcium         200         270           01-VBOU3-RIN-0004         Calcium         200         280           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           Chromium         10         ND         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND         ND	pass
Calcium         200         240           01-VBOU3-RIN-0003         Calcium         200         520           01-VBOU3-RIN-0004         Calcium         200         270           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           01-VBOU3-RIN-0002         Chromium         10         ND           Chromium         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND	•
Calcium         01-VBOU3-RIN-0003         Calcium         200         520           01-VBOU3-RIN-0004         Calcium         200         270           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           01-VBOU3-RIN-0002         Chromium         10         ND           Chromium         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND	fail
01-VBOU3-RIN-0004         Calcium         200         270           01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           01-VBOU3-RIN-0002         Chromium         10         ND           Chromium         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND	Tall San San
01-VBOU3-RIN-0005         Calcium         200         280           01-VBOU3-RIN-0001         Chromium         10         ND           01-VBOU3-RIN-0002         Chromium         10         ND           Chromium         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND	fail
01-VBOU3-RIN-0001   Chromium   10   ND	fail
Chromium         10         ND           01-VBOU3-RIN-0002         Chromium         10         ND           01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Chromium         10         ND	fail
Chromium         01-VBOU3-RIN-0003         Chromium         10         ND           01-VBOU3-RIN-0004         Çhromium         10         ND	pass
01-VBOU3-RIN-0004 Chromium 10 ND	pass
	pass
01-VBOU3-RIN-0005 Chromium 10 ND	pass
	pass
01-VBOU3-RIN-0001 Cobalt 10 ND	pass
01-VBOU3-RIN-0002 Cobalt 10 ND	pass
Cobalt 01-VBOU3-RIN-0003 Cobalt 10 ND	pass
01-VBOU3-RIN-0004 Cobalt 10 ND	pass
01-VBOU3-RIN-0005 Cobalt 10 ND	pass
01-VBOU3-RIN-0001 Copper 10 ND	
01-VBOU3-RIN-0002 Copper 10 ND	pass
Copper         01-VBOU3-RIN-0003         Copper         10         ND	pass pass
01-VBOU3-RIN-0004 Copper 10 ND	·
01-VBOU3-RIN-0005 Copper 10 ND	pass

Anayte	Sample ID	Anayte	Reporting Limit (mg/kg)	Measure Concentrat (mg/kg)	ion	QC Acceptance Criteria Evaluation	
	01-VBOU3-RIN-0001	Iron	100	220	J	fail	
	01-VBOU3-RIN-0002	Iron	100	420		fail	
Iron	01-VBOU3-RIN-0003	iron	100	170		fail	
•	01-VBOU3-RIN-0004	Iron	100	180		fail	
	01-VBOU3-RIN-0005	Iron	100	220		fail	
	01-VBOU3-RIN-0001	Lead	3	· ND		pass	
	01-VBOU3-RIN-0002	Lead	3	ND		pass	
Lead	01-VBOU3-RIN-0003	Lead	3	ND		pass	
	01-VBOU3-RIN-0004	Lead	3	3		pass	
	01-VBOU3-RIN-0005		3	ND		pass	
<del></del>	01-VBOU3-RIN-0001	Magnesium	200	ND		pass	
	01-VBOU3-RIN-0002	Magnesium	200	ND		pass	
Magnesium	01-VBOU3-RIN-0003	Magnesium	200	200		pass	
	01-VBOU3-RIN-0004	Magnesium	200	ND		pass	
	01-VBOU3-RIN-0005	Magnesium	200	ND		pass	
	01-VBOU3-RIN-0001	Manganese	10	ND		pass	
	01-VBOU3-RIN-0002	Manganese	- 10	ND		pass	
Manganese	01-VBOU3-RIN-0003	Manganese	10	ND:		pass	
	01-VBOU3-RIN-0004	Manganese	10	ND		pass	
•	01-VBOU3-RIN-0005	Manganese	10	12		fail	
	01-VBOU3-RIN-0001	Mercury	0.2	, ND		pass	
	01-VBOU3-RIN-0002	Mercury	0.2	ND		pass	
Mercury	01-VBOU3-RIN-0003	Mercury	0.2	ND	R	NA	
	01-VBOU3-RIN-0004	Mercury	0.2	ND:		pass	
•	01-VBOU3-RIN-0005	Mercury	0.2	ND		pass	

Anayte	Sample ID	Anayte	Reporting Limit (mg/kg)	Measured Concentration (mg/kg)	QC Acceptance Criteria Evaluation
<del></del>	01-VBOU3-RIN-0001	Nickel	40	ND	pass .
	01-VBOU3-RIN-0002	Nickel	40	ND	pass
Nickel	01-VBOU3-RIN-0003	Nickel	40	ND	pass
	01-VBOU3-RIN-0004	Nickel	40	ND	pass
	01-VBOU3-RIN-0005	Nickel	40	ND ·	pass
	01-VBOU3-RIN-0001	Potassium	3000	ND	pass
	01-VBOU3-RIN-0002	Potassium	3000	ND	pass
Potassium	01-VBOU3-RIN-0003	Potassium	3000	ND	pass
	01-VBOU3-RIN-0004	Potassium	3000	ND ,	pass
01-VBOU3-RIN-0005		Potassium	3000	ND	pass
	01-VBOU3-RIN-0001	Selenium	15	ND	pass
	01-VBOU3-RIN-0002	Selenium	5	ND	pass
Selenium	01-VBOU3-RIN-0003	Selenium	. 15	ND	pass
	01-VBOU3-RIN-0004	Selenium	15	ND	pass
	01-VBOU3-RIN-0005	Selenium	15	ND	pass
,	01-VBOU3-RIN-0001	Silver	. 10	ND	pass
	01-VBOU3-RIN-0002	Silver	. 10_	ND	pass
Silver	01-VBOU3-RIN-0003	Silver	10	ND.	pass.
	01-VBOU3-RIN-0004	Silver	· 10	ND	pass
	01-VBOU3-RIN-0005	Silver	10	ND '	pass
<u> </u>	01-VBOU3-RIN-0001	Sodium	5000	ND	pass
	01-VBOU3-RIN-0002	Sodium	5000	ND	pass
Sodium	01-VBOU3-RIN-0003	Sodium	5000	ND	pass
	01-VBOU3-RIN-0004	Sodium	5000	ND	pass .
	01-VBOU3-RIN-0005	Sodium	5000	· ND	pass

Anayte	Sample ID	Anayte	Reporting Limit (mg/kg)	Measured Concentration (mg/kg)	QC Acceptance Criteria Evaluation	
	01-VBOU3-RIN-0001	Thallium	, 1	ND	pass	
	01-VBOU3-RIN-0002	Thallium	1	ND	pass	
Thallium	01-VBOU3-RIN-0003	Thallium	1	ND	pass	
01-VBOU3-RIN-0004		Thallium	1	ND	pass	
01-VBOU3-RIN-0005		Thallium	1	ND .	pass	
	01-VBOU3-RIN-0001	Vanadium	10	ND	pass	
	01-VBOU3-RIN-0002	Vanadium	10	ND	pass	
Vanadium	01-VBOU3-RIN-0003	Vanadium	10	ND	pass	
	01-VBOU3-RIN-0004	Vanadium	10	ND	pass	
	01-VBOU3-RIN-0005	Vanadium	10	ND	pass	
	01-VBOU3-RIN-0001	Zinc	20	ND	pass	
	01-VBOU3-RIN-0002	Zinc	20	ND	pass	
Zinc	01-VBOU3-RIN-0003	Zinc	20	ND	pass	
	01-VBOU3-RIN-0004	Zinc	20	ND	pass	
	01-VBOU3-RIN-0005	Zinc	20	ND	pass	

fail = Concentration in rinsate exceeds the QC acceptance criteria (1 x RL). Field sampling-induced contamination may have occurred.

NA = Acceptance criteria not evaluated. Measured concentration value "R" (reject) qualified, thus data not useable for data quality assessment

ND = Concentration not detected at concentrations above the reporting limit.

pass = Concentration in rinsate is within acceptance criteria (1 X RL). Does not suggest field sampling-induced contamination has occurred.

R = Reject

QC = Quality control

B. GROUNDWATER SAMPLING EQUIPMENT RINSATE

Anayte	Sample ID	Anayte	Reporting Limit (ug/L)	Measured Concentration (ug/L)	QC Acceptance Criteria Evaluation		
Cadmium	MW-31-111904	Cadmium	1	ND	pass		
	MW-31-050205	Cadmium	1	ND	pass		
	MW-31-091905	Cadmium	1	ND	pass		
	MW-31-070104	Calcium	200	290	fail		
	MW-31-072804	Calcium	200	ND	pass		
Calcium	MW-31-111904	Calcium	200	ND	pass		
	MW-31-050205	Calcium	200	ND	pass		
	MW-31-091905	Calcium	200	ND	pass		
	MW-31-070104	Chromium	10	ND	pass		
	MW-31-072804		10	ND .	pass.		
Chromium	MW-31-111904	Chromium	10	ND	pass		
	MW-31-050205	Chromium	10	ND	pass		
·	MW-31-091905		10	ND	pass		
	MW-31-070104		10	ND	pass		
Cobalt	MW-31-072804	Cobalt	10	ND	pass		
	MVV-31-111904	Cobalt	10	ND	pass		
	MW-31-050205	Cobalt	10	ND	pass		
	MW-31-091905	Cobalt	10 ND		pass		
	MW-31-070104	Copper	10	ND.	pass		
	MW-31-072804	Copper	10	ND	pass		
Copper	MW-31-111904	Copper	10	ND	pass		
	MW-31-050205	Copper	10	ND	pass		
	MW-31-091905	Copper	10	ND	pass		
	MW-31-070104	; Iron	100	ND	pass		
	MW-31-072804	Iron	100	ND	pass		
Iron	MW-31-111904	Iron	100	ND	pass		
i	MW-31-050205	Iron	100	ND	pass		
	MW-31-091905	Iron	100	ND	pass		
	MW-31-070104	Lead	3	ND	pass		
	MW-31-072804	Lead	3	ND	pass		
Lead	MW-31-111904	Lead	3	ND	pass		
	MW-31-050205	Lead	3	ND	pass		
	MW-31-091905	Lead	3	ND	pass		

Anayte	Sample ID	Anayte	Reporting Limit (ug/L)	Measured Concentration (ug/L)	QC Acceptance Criteria Evaluation
	MW-31-070104	Magnesium	200	ND	. pass
	MW-31-072804	Magnesium	200	ND	pass
Magnesium	MW-31-111904	Magnesium	200	ND	pass
	MW-31-050205	Magnesium	200	ND	pass
	MW-31-091905	Magnesium	200	ND	pass
	MW-31-070104	Manganese	- 10	ND	pass
	MW-31-072804	Manganese	10	ND	pass
Manganese	MW-31-111904	Manganese	10	ND	pass
	MW-31-050205	Manganese	10	ND	pass
	MW-31-091905	Manganese	10	ND	pass
	MW-31-070104	Mercury	0.2	ND	pass
,	MW-31-072804	Mercury	0.2	ND	pass
Mercury	MW-31-111904	Mercury	0.2	ND	pass
	MW-31-050205	Mercury	0.2	ND	pass
	MW-31-091905	Mercury	0.2	ND	pass
	MW-31-070104	Nickel	40	ND	pass .
	MW-31-072804	Nickel	40	ND	pass
Nickel	MW-31-111904	Nickel	40	ND	pass
	MW-31-050205	Nickel	40	ND	pass
	MW-31-091905	Nickel	40	ND .	pass
	MW-31-070104	Potassium	3000	ND .	pass
·	MW-31-072804	Potassium	3000	ND	pass
Potassium	MW-31-111904	Potassium	3000	ND	pass
•	MW-31-050205	Potassium	3000	ND	pass
	MW-31-091905	Potassium	- 3000	ND	pass
	MW-31-070104	Selenium	15·	ND	pass
	MW-31-072804	Selenium	15	ND	pass
Selenium	MW-31-111904	Selenium	15	ND	pass
	MW-31-050205	Selenium	15	ND	pass
.	MW-31-091905	Selenium	15	ND	pass
	MW-31-070104	Silver	10	ND	pass
i	MVV-31-072804	Silver	10	ND	pass
ŀ		Silver	10	ND	<del> </del>

### **B. GROUNDWATER SAMPLING EQUIPMENT RINSATE**

Anayte	Sample ID	Anayte	Reporting Limit (ug/L)	Measured Concentrati (ug/L)		QC Acceptance Criteria Evaluation
	MW-31-050205	Silver	10	ND		pass
	MW-31-091905	Silver	10	ND		pass
	MW-31-070104	Sodium	5000	ND		pass
	MW-31-072804	Sodium	5000	ND		pass
Sodium	MW-31-111904	Sodium	5000	ND		pass
·	MW-31-050205	Sodium	5000	ND		pass
	MW-31-091905	Sodium	5000	ND	•	pass
	MW-31-070104	Thallium	1	ND		pass
	MW-31-072804		1	ND		pass
Thallium	MVV-31-111904	Thallium	1	ND		pass
	MW-31-050205	Thallium	1	ND		pass ·
	MW-31-091905	Thallium	1	ND		pass
	MW-31-070104	Vanadium-	10	ND		pass
·	MW-31-072804	Vanadium	10	ND		pass
Vanadium	MW-31-111904	Vanadium	10	ND		pass
	MW-31-050205	Vanadium	10	ND		pass
	MW-31-091905	Vanadium	10	ND		pass
	MW-31-070104	Zinc	20	ND		pass
	MW-31-072804	Zinc	20	ND		pass
Zinc	MW-31-111904	Zinc	20	ND	ับม	pass
	MW-31-050205	Zinc	20	ND		pass
	MW-31-091905	Zinc	20	ND		pass

fail = Concentration in rinsate exceeds the QC acceptance criteria (1 x RL). Field sampling-induced contamination may have occurred.

ND = Concentration not detected at concentrations above the reporting limit.

pass = Concentration in rinsate is within acceptance criteria (1 X RL). Does not suggest field sampling-induced contamination has occurred.

QC = Quality control

NA = Result could not be evaluated. Data quality not adequate ("R" qualified, or rejected) for evaluation.

### Table E-4. Data Quality Assessment Evaluation of Performance Evaluation (PE) Standard Results

#### A. SOIL PE STANDARDS

Chemical	PE Sample ID	Nominal Concentration	Measured Concentration		Ratio Measured/	Acceptan Confidenc Around t		QC Acceptance Criteria Evaluation				
Onemical		(mg/kg)	(mg		Nominal	95% CI	99% CI	within 95% CI	within 99% CI	exceed 99%.CI	Pass/ Fail	
	01-VBOU3-SB-0001-A	117	130		1.11	96.3 - 137	89.1 - 144	X	X		pass	
	01-VBOU3-SB-0002-E	117	130		1,11	96.3 - 137	89.1 - 144	Х	Х		pass	
Arsenic	01-VBQU3-SB-0005-D	117	140		1.20	96.3 - 137	89.1 - 144	х	X		pass	
	01-VBOU3-SB-0022-E	117 ·	140		1.20	96.3 - 137	89.1 - 144	Х	X		pass	
	01-VBOU3-SB-0024-C	117	130		1.11	96.3 - 137	89.1 - 144	X	Х		pass	
·	01-VBOU3-SB-0001-A	2	2		1.00	1.3 - 2.7	1.1 - 2.9	X	Х		pass	
	01-VBOU3-SB-0002-E	2	1.8		0.90	1.3 - 2.7	1.1 - 2.9	Х	Х		pass	
Cadmium	01-VBOU3-SB-0005-D	2	1.9	J	0.95	1.3 - 2.7	1.1 - 2.9	Х	Х		pass	
	01-VBOU3-SB-0022-E	2	2.1		1.05	1.3 - 2.7	1.1 - 2.9	Х	Х		pass	
	01-VBOU3-SB-0024-C	2	1.9		0.95	1.3 - 2.7	1.1 - 2.9	X	Х		pass	
	01-VBOU3-SB-0001-A	1070	1300		1.21	797 - 1350	701 - 1440	X	Х		pass	
	· 01-VBOU3-SB-0002-E	1070	1300		1.21	797 - 1350	701 - 1440	X	Х		pass	
Lead	01-VBOU3-SB-0005-D	1070	1300	J	1.21	797 - 1350	701 - 1440	X	X		pass	
	01-VBOU3-SB-0022-E	1070	1400	J	1.31	797 - 1350	701 - 1440	X	Х		pass	
	01-VBOU3-SB-0024-C	1070	1400		1.31	797 - 1350	701 - 1440	X	Х		pass	
	01-VBOU3-SB-0001-A	1630	1800		1.10	1420 - 1850	1310 - 1960	Х	X		pass	
	01-VBOU3-SB-0002-E	1630	1700		1.04	1420 - 1850	1310 - 1960	X	·X		pass	
Zinc	01-VBOU3-SB-0005-D	1630	1900		1.17	1420 - 1850	1310 - 1960		Х		pass	
	01-VBOU3-SB-0022-E	1630	1700	J	1.04	1420 - 1850	1310 - 1960	X	Х		pass	
	01-VBOU3-SB-0024-C	1630	1900	J	1.17	1420 - 1850	1310 - 1960		X		pass	

### B. GROUNDWATER PE STANDARDS

Chemical	PE Sample ID	Nominal Concentration	1		Measured Ratio Concentration Measured/N		Acceptance Limits Confidence Intervals Around the Mean			QC Acceptance Criteria Evaluation				
	·	(ug/L)	(ug	/L)	ominal	95% CI 99% CI		within 95% CI	within 99% CI	exceed 99% Ci	Pass/ Fail			
	01-VBOU3-GW-0005	43	41.4_	J	0.96	37.3 - 48.8	34.4 - 51.7	X	Х		pass			
	MW-30-070104	43	40		0.93	37.3 - 48.8	34.4 - 51.7	Х	X		pass			
Arsenic	MW-30-111904	43	43		1.00	37.3 - 48.8	34.4 - 51.7	X	X		pass			
	MW-30-050205	43	11	J	0.26	37.3 - 48.8	34.4 - 51.6			×	fail			
	MW-30-092005	43	41		0.95	37.3 - 48.8	34.4 - 51.6	X	Х		pass			
	01-VBOU3-GW-0005	25	24.8	J	0.99	21.7 - 28.4	20.1 - 30.1	Х	Х		pass			
	MW-30-070104	25	24		0.96	21.7 - 28.4	20.1 - 30.1	X	] x		pass			
Cadmium	MW-30-111904	25	25		1.00	21.7 - 28.4	20.1 - 30.1	X	Х		pass			
	MW-30-050205	25	6		0.26	20.2 - 26.4	18.7 - 28			х	fail			
	MW-30-092005	25	24		0.96	21.7 - 28.4	20.1 - 30.1	Х	X		pass			
	01-VBOU3-GW-0005	18	19.1	J	1.06	15.6 - 20.4	14 4 - 21.6	Х	Х		pass			
	MW-30-070104	18	18		1.00	15.6 - 20.4	14.4 - 21.6	Х	Х		pass			
Lead	MW-30-111904	18	18		1.00	15.7 - 20.5	14.5 - 21.7	Х	Х		pass			
	MW-30-050205	10	3	U	0.30	N.L 13.1	N.L 12.4			X	fail			
	MW-30-092005	18	17		0.94	15.7 - 20.5	14.5 - 21.7	X	Х		pass			
	01-VBOU3-GW-0005	125	130		1.04	103 - 158	92.5 - 168	Х	X		pass			
	MW-30-070104	125	170		1.36	103 - 158	92.5 - 168			Х	fail			
Zinc	MW-30-111904	131	120	J	0.92	102 - 159	91.9 - 169	Х	Х		pass			
	MW-30-050205	121	30		0.25	104 - 145	96.4 - 137			х	fail			
	MW-30-092005	131	110		0.84	102 - 159	91.9 - 169	X	Х		pass			

tail = Result is outside the acceptance limits (99% Confidence Interval). Analytical accuracy of method may be biased either high or low.

pass = Result is withing the acceptance limits (99% Confidence Interval). Analytical accuracy of method is adequate.

QC = Quality control

N.L. = No lower limit. Result evaluated by comparison to upper limit only (pass = below 95% or 99% CI).

### Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

#### A. SOIL SAMPLES

Sample ID	Anayte	Analyte Type		ample (mg/kg)	Spike Amount (mg/kg)	Matrix S _I	pike Resu	lt (mg/kg)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptance Criteria Evaluation
01-VBOU3-SB-0004-A	Aluminum	Total	7400		202	11100	mg/kg	NC MSB		50	200	NA
01-VBOU3-SB-0004-A	Antimony	Total	ND		50.5	29.2	mg/kg		56	20	200	pass
01-VBOU3-SB-0004-A	Arsenic	Total	18		202	210	mg/kg		95	76	111	pass
01-VBOU3-SB-0004-A	Barium	Total	160		202	370	mg/kg		106	52	159	pass
01-VBOU3-SB-0004-A	Beryllium	Total	ND		5.05	4.9	mg/kg		90	72	105	pass
01-VBOU3-SB-0004-A	Cadmium	Total	3.2		5.05	9.51	mg/kg	1.	125	40	130	pass
01-VBOU3-SB-0004-A	Calcium	Total	5600		5050	11300	mg/kg		114	43	165	pass
01-VBOU3-SB-0004-A	Chromium	Total	7.6		20.2	29.5	mg/kg		108	70	200	pass
01-VBOU3-SB-0004-A	Cobalt	Total	4.6		50.5	51.7	mg/kg		93	72	106	pass
01-VBOU3-SB-0004-A	Copper	Total	200		25.3	537	mg/kg	NC MSB		37	187	NA NA
01-VBOU3-SB-0004-A	iron	Total	10000		101	14000	mg/kg	NC MSB	<u> </u>	70	200	NA
01-VBOU3-SB-0004-A	Lead	Total	190		50.5	352	mg/kg	N	315	70	200	fail
01-VBOU3-SB-0004-A	Magnesium	Total	1600		5050	6910	mg/kg		· 105	64	145	pass
01-VBOU3-SB-0004-A	Manganese	Total	180		50.5	243	mg/kg		129	40	200	pass
01-VBOU3-SB-0004-A	Mercury	Total	0.14		0.833	0.952	mg/kg		98	82	113	pass
01-VBOU3-SB-0004-A	Nickel	Total	7.7		50.5	55.7	mg/kg		95	61	126	pass
01-VBOU3-SB-0004-A	Potassium	Total	1200		5050	6050	mg/kg	<del> </del>	97	56	172	pass
01-VBOU3-SB-0004-A	Selenium	Total	ND		202	196	mg/kg	<del> </del>	97	76	104	pass
01-VBOU3-SB-0004-A	Silver	Total	2.1		5.05	8.73	mg/kg	<del> </del>	131	75	141	pass
01-VBOU3-SB-0004-A	Sodium	Total	ND		5050	5100	mg/kg	···	95	78	111	pass
01-VBOU3-SB-0004-A	Thallium	Total	ND		202	185	mg/kg	<del> </del> -	91	87	101	pass
01-VBOU3-SB-0004-A	Vanadium	Total	23		50.5	72.8	mg/kg	<del> </del>	99	50	169	pass
01-VBOU3-SB-0004-A	Zinc	Total	210	<b></b>	50.5	424	mg/kg	NC MSB		70	200	NA NA
01-VBOU3-SB-0007-D	Aluminum	Total	16000		200	25100	mg/kg	NC MSB		50	200	NA NA
01-VBOU3-SB-0007-D	Antimony	Total	ND		50	20.8	mg/kg	NC MISS	41	20	200	pass
01-VBOU3-SB-0007-D	Arsenic	Total	11		200	211	mg/kg		100	76	111	pass
01-VBOU3-SB-0007-D	Barium	Total	140		200	364		<del>                                     </del>	113	52	159	pass
01-VBOU3-SB-0007-D	Beryllium	Total	ND		5	5.17	mg/kg mg/kg		94	72	105	pass
01-VBOU3-SB-0007-D	Cadmium	Total	510		5	271	mg/kg	NC MSB		40	130	NA NA
01-VBOU3-SB-0007-D	Calcium	Total	18000		5000	11000		N	0	43	165	e fail de
01-VBOU3-SB-0007-D	Chromium	Total	11		20	34.7	mg/kg	<del>  '`</del> -	118	70	200	pass
01-VBOU3-SB-0007-D	Cobalt	Total	5		50	54.6	mg/kg	-	99	72	106	pass
01-VBOU3-SB-0007-D	Copper	Total	83	<del></del>	25	130	mg/kg	N	190	37	187	fail
01-VBOU3-SB-0007-D	Iron	Total	19000		100	21900	mg/kg mg/kg	NC MSB	190	70	200	NA NA
01-VBOU3-SB-0007-D	Lead	Total	32		50	88.4		NC MSB	114	70	200	pass
01-VBOU3-SB-0007-D	-	Total	3100		5000	8780	mg/kg	<del> </del>	114	64	145	<del></del>
01-VBOU3-SB-0007-D	Magnesium	Total	370	ļ	500	407	mg/kg	NC MSB	114	40	200	pass
01-VBOU3-SB-0007-D	Manganese	Total	0.046		0.806	0.8	mg/kg	IVC WISE	93	82	113	<del></del>
01-VBQU3-SB-0007-D	Mercury Nickel			<u> </u>	50	58.7	mg/kg		100	<del></del>	<del></del>	pass
01-VBOU3-SB-0007-D		Total	8.9		5000	8700	mg/kg	<del> </del>		61	126	pass
	Potassium	Total	2700	<del></del>		<del></del>	mg/kg	<del> </del>	120	56	172	pass
01-VBOU3-SB-0007-D	Selenium	Total	ND		200	203	mg/kg	1	101 105	76	104	pass
01-VBOU3-SB-0007-D	Silver	Total	1.1	ļ	<del> </del>	6.32	mg/kg	<del> </del>	<u> </u>	75	141	pass
01-VBOU3-SB-0007-D	Sodium	Total	880	<u> </u>	5000	5850	mg/kg	<del> </del>	100	78	111	pass
01-VBOU3-SB-0007-D	Thallium	Total	ND		200	199	mg/kg	<del> </del>	. 99	87	101	pass
01-VBOU3-SB-0007-D	Vanadium	Total	30	<u> </u>	50	90.3	mg/kg	110 : : : :	121	50.	. 169	pass
01-VBOU3-SB-0007-D	Zinc	Total	3500		50	3470	mg/kg	NC MSB		70	200	NA NA
01-VBOU3-SB-0009-C	Mercury	Total	0.036		0	0.88	mg/kg	-	101	82	113	pass
01-VBOU3-SB-0016-B	Aluminum	Total	31000		198	30800	mg/kg	NC MSB		50	200	NA
01-VBOU3-SB-0016-B	Antimony	Total	ND		49.5	17.4	mg/kg		35	20	200	pass
01-VBQU3-SB-0016-B	Arsenic	Total	22		198	193	mg/kg		86	76	111	pass

Lab QC Eval_v4,xls: MS Page 1 of 11

### Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

#### A. SOIL SAMPLES

Sample ID	. Anayte	Analyte Type	Field S Result (	•	Spike Amount (mg/kg)	Matrix S	pike Resu	lt (mg/kg)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptance Criteria Evaluation
01-VBOU3-SB-0016-B	Barium	. Total	1500		198	1630	mg/kg	NC MSB		52	159	NA .
01-VBOU3-SB-0016-B	Beryllium	Total	ND		4.95	4.31	mg/kg		78	72.	105	pass
01-VBOU3-SB-0016-B	Cadmium	Total	ND		4.95	4.25	mg/kg		85	40	130	pass
01-VBOU3-SB-0016-B	Calcium	Total	13000		4950	17900	mg/kg	<del> </del>	91	43	165	pass
01-VBOU3-SB-0016-B	Chromium	Total	7.6	<del></del>	19.8	23.7	mg/kg		82	70	200	pass
01-VBOU3-SB-0016-B	Cobalt	Total	12	<del></del> -	49.5	50.8	mg/kg		79	72	106	pass
01-VBOU3-SB-0016-B	Copper	Total	15		24.8	35.6	mg/kg	<del> </del>	85	37	187	pass
01-VBOU3-SB-0016-B	Iron	Total	23000		99	19100	mg/kg	NC MSB		70	200	NA.
01-VBOU3-SB-0016-B	Lead	Total	10		49.5	51.9	mg/kg	-	. 84	70.	200	pass '
01-VBOU3-SB-0016-B	Magnesium	Total	4100	····	4950	8280	mg/kg	<del> </del>	84	64	145	pass
01-VBOU3-SB-0016-B	Manganese	Total	380		49.5	340	mg/kg	NC MSB		40 .	200	.NA
01-VBOU3-SB-0016-B	Mercury	Total	ND		0.833	0.516	mg/kg	N	. 59	82	113	fail
01-VBOU3-SB-0016-B	Nickel	Total	7.3	· · · · · ·	49.5	. 46.7	mg/kg		80	61	126	pass
01-VBOU3-SB-0016-B	Potassium	Total	1400		4950	5870	mg/kg	<b></b> .	91	56	172	pass
01-VBOU3-SB-0016-B	Selenium	Total	ND		198	182	mg/kg	<u> </u>	92	76	104	pass
01-VBOU3-SB-0016-B	Silver	Total	ND .		4.95	4.69	mg/kg	<del></del>	85	75	141	pass
01-VBOU3-SB-0016-B	Sodium	Total	2700	·	4950	7180	mg/kg		90	78	111	pass
01-VBOU3-SB-0016-B	Thallium	Total	ND		198	173	mg/kg		87	87	101	pass
01-VBOU3-SB-0016-B	Vanadium	Total	45		49.5	83.8	mg/kg	<del> </del>	79	50.	169	pass
01-VBOU3-SB-0016-B	Zinc	Total	54		49.5	83.7	mg/kg	N	60	70	200	fail
01-VBOU3-SB-0018-A	Aluminum	Total	10000		198	15300	mg/kg	NC MSB	- co	50	200	NA NA
01-VBOU3-SB-0018-A	Antimony	Total	ND		49.5	22,7	mg/kg	140 14100	46	20	200	pass
01-VBOU3-SB-0018-A	Arsenic	Total	2.6		198	189	mg/kg		94	76	111	pass
01-VBOU3-SB-0018-A	Barium	Total	100		198	307	mg/kg		104	52	159	pass
01-VBOU3-SB-0018-A	Beryllium	Total	ND		4.95	4.65	mg/kg	<del> </del>	86	72	105	pass
01-VBOU3-SB-0018-A	Cadmium	Total	ND ND		4.95	4.6	mg/kg		92	40	130	pass
01-VBOU3-SB-0018-A	Calcium	Total	3200		4950	7980	mg/kg		98	43	165	pass
01-VBOU3-SB-0018-A	Chromium	Total	11		19.8	30.9	<del></del>		102	70	200	pass
01-VBOU3-SB-0018-A	Cobalt	Total	4.8		49.5	49.5	mg/kg		90	72	106	<u> </u>
01-VBOU3-SB-0018-A	Copper	Total	130		24.8	72.4	mg/kg	NC MSB	90	37	187	pass
01-VBOU3-SB-0018-A	. Iron	Total	12000	<del></del>	99	13300	mg/kg	NC MSB		70	200	NA NA
01-VBOU3-SB-0018-A	Lead	Total	44		49.5	76.8	mg/kg mg/kg	N N	66	70	200	fail
01-VBOU3-SB-0018-A	Magnesium	Total	1800		4950	7060	mg/kg		106	64	145	pass
01-VBOU3-SB-0018-A	Manganese	Total	170		49.5	251	mg/kg		174	40	200	pass
01-VBOU3-SB-0018-A	Mercury	Total	ND		0.833	0.769			91	82	113	pass
01-VBOU3-SB-0018-A	Nickel	Total	6.6		49.5	50.6	mg/kg mg/kg	-	89	61	126	pass
01-VBOU3-SB-0018-A	Potassium	Total	1900	<del></del>	4950	7510			114	56	172	<u>`</u>
			ND ND		ļ		mg/kg					pass
01-VBOU3-SB-0018-A	Selenium Silver	Total Total	ND	<del></del>	198 4.95	196 4.81	mg/kg mg/kg		99 · 82	76 75	104 141	pass -
01-VBOU3-SB-0018-A	Sodium	Total	ND		4.95	4710			95			pass
	Thallium						mg/kg			78	111	pass
01-VBOU3-SB-0018-A		Total	ND 33		198	184	mg/kg	<u> </u>	92	87	101	pass
01-VBOU3-SB-0018-A	Vanadium	Total	22		49.5	70.9	mg/kg		99	50	169	pass
01-VBOU3-SB-0018-A	Zinc	Total	36 ND		49.5	80.7	mg/kg		90	70	200	pass
01-VBOU3-SB-0020-A	Mercury : Aluminum	Total	ND		0.833	0.787	mg/kg	NC MCC	94	82	113	pass
01-VBOU3-SB-0023-A		Total	17000		200	29400	mg/kg	NC MSB		50	200	NA -
01-VBOU3-SB-0023-A	Antimony	Total	ND OF		50	19.2	mg/kg	<u> </u>	38	20 -	200	pass
01-VBOU3-SB-0023-A	Arsenic	Total	3.5		200	194	mg/kg		95	76	111	pass
01-VBOU3-SB-0023-A	Barium	Total	83		200	299	mg/kg		-108	52	159	pass
01-VBOU3-SB-0023-A	Beryllium	Total	ND		5	5.17	mg/kg	· ·	94	72	105	pass
01-VBOU3-SB-0023-A	Cadmium	Total	ND		5	4.68	mg/kg		94	40	130 ·	pass

Lab QC Eval_v4.xis: MS Page 2 of 11

## Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

### A. SOIL SAMPLES

Sample ID	Anayte	Analyte Type	Field S Result (		Spike Amount (mg/kg)	Matrix S	pike Resu	lt (mg/kg)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptance Criteria Evaluation
01-VBOU3-SB-0023-A	Calcium	Total	6600		5000	12000	mg/kg		109	43	165	pass
01-VBOU3-SB-0023-A	Chromium	Total	13		20	37.7	mg/kg		124	70	200	pass
01-VBOU3-SB-0023-A	Cobalt	Total	5.6		50	53.5	mg/kg		96	72	106	pass
01-VBOU3-SB-0023-A	Copper	Total	30		25	53.3	mg/kg		93	37	187	pass
01-VBOU3-SB-0023-A	Iron	Total	17000		100	19600	mg/kg	NC MSB		70	200	NA
01-VBOU3-SB-0023-A	Lead	Total	35		50	83.4	mg/kg		96	70	200	pass
01-VBOU3-SB-0023-A	Magnesium	Total	3000		5000	8810	mg/kg	,	117	64	145	pass
01-VBOU3-SB-0023-A	Manganese	Total	270		50	342	mg/kg	NC MSB		40	200	NA
01-VBOU3-SB-0023-A	Mercury	Total	ND		0.833	0.765	mg/kg		88	82	113	pass
01-VBOU3-SB-0023-A	Nickel	Total	9.9		50	58.6	mg/kg	T	97	61	126	pass
01-VBOU3-SB-0023-A	Potassium	Total	2000		5000	7350	mg/kg		108	56	172	pass
01-VBOU3-SB-0023-A	Selenium	Total	ND		200	199	mg/kg		99	76	104	pass
01-VBOU3-SB-0023-A	Silver	Total	ND		5	5.24	mg/kg		97	75	141	pass
01-VBOU3-SB-0023-A	Sodium	Total	520		5000	5110	mg/kg		92	78	111	pass
01-VBOU3-SB-0023-A	Thallium	Total	ND		200	189	mg/kg		94	87	101	pass
01-VBOU3-SB-0023-A	Vanadium	Total	30		50	94.1	mg/kg		127:	50	169	pass
01-VBOU3-SB-0023-A	Zinc	Total	93		50	135	mg/kg		84	70	200	pass
01-VBOU3-SB-0026-B	Aluminum	Total	25000		202	30100	mg/kg	NC MSB		50	200	NA NA
01-VBQU3-SB-0026-B	Antimony	Total	ND		50.5	16.9	mg/kg		33	20	200	pass
01-VBQU3-SB-0026-B	Arsenic	Total	4.1		202	187	mg/kg.	<del>                                     </del>	91	76	111	pass
01-VBOU3-SB-0026-B	Barium	Total	110		202	337	mg/kg		112	52	159	pass
01-VBOU3-SB-0026-B	Beryllium	Total	1		5.05	5.5	mg/kg		89	72	105	pass
01-VBOU3-SB-0026-B	Cadmium	Total	ND	<del></del>	5.05	5.57	mg/kg	<u> </u>	110	40	130	pass
01-VBOU3-SB-0026-B	Calcium	Total	7000		5050	10500	mg/kg	<del>                                     </del>	69	43	165	pass
01-VBOU3-SB-0026-B	Chromium	Total	13		20.2	34.7	mg/kg	<del> </del>	110	70	200	pass
01-VBOU3-SB-0026-B	Cobalt ·	Total	7.1		50.5	55.7	mg/kg	<u> </u>	96	72	106	pass
01-VBOU3-SB-0026-B	Copper	Total	19		25.3	46.1	mg/kg	<del> </del>	106	37	187	pass
01-VBOU3-SB-0026-B	iron	Total	24000		101	22100	mg/kg	NC MSB		70	200	NA
01-VBOU3-SB-0026-B	Lead	Total	50		50.5	110	mg/kg	1	120	70	200	pass
01-VBOU3-SB-0026-B	Magnesium	Total	3700		5050	8670	mg/kg		99	64	145	pass
01-VBOU3-SB-0026-B	Manganese	Total .	520		50,5	603	mg/kg	NC MSB		40	200	NA
01-VBOU3-SB-0026-B	Mercury	Total	0.039		0.833	0.802	mg/kg	1.0	92	82	113	pass
01-VBOU3-SB-0026-B	Nicket	Total	- 9.1		50,5	56.6	mg/kg		94	61	126	pass
01-VBQU3-SB-0026-B	Potassium	Total	2100		5050	6950	mg/kg	<del> </del>	97	56	172	pass
01-VBOU3-SB-0026-B	Selenium	Total	ND		202	188	mg/kg	<del> </del>	93	76	104	pass
01-VBOU3-SB-0026-B	Silver	Total	ND		5.05	5.11	mg/kg	<del> </del>	96	. 75	141	pass
01-VBOU3-SB-0026-B	Sodium	Total	790		5050	5160	mg/kg	<del> </del>	87	78	111	pass
01-VBOU3-SB-0026-B	Thallium	Total	ND		202	180	mg/kg	-	89	87	101	pass
01-VBOU3-SB-0026-B	Vanadium	Total	35		50.5	89.2	mg/kg	<del> </del>	108	50	169	pass
01-VBOU3-SB-0026-B	Zinc	Total	87		50.5	149	mg/kg	<del> </del>	122	70	200	pass
01-VBOU3-SB-0027-B	Aluminum	Total	28000		198	36000	mg/kg	NC MSB	.44	50	200	NA NA
01-VBOU3-SB-0027-B	Antimony	Total	ND ND		49.5	17.3	mg/kg	AC IVIOD	35	20	200	
	Arsenic	Total	10		<del> </del>	208		-	100	76	<del></del>	pass
01-VBOU3-SB-0027-B					198		mg/kg				J11	pass
01-VBOU3-SB-0027-B	Barium	Total	280		198	456	mg/kg	<u> </u>	89	52	159	pass
01-VBOU3-SB-0027-B	Beryllium	Total	0.75		4.95	5.37	mg/kg		93	72	105	pass ·
01-VBOU3-SB-0027-B	Cadmium	Total	ND		4.95	5.27	mg/kg	1	98	40	130	pass

Lab QC Eval_v4.xls: MS Page 3 of 11

### Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

### A. SOIL SAMPLES

Sample ID	Anayte	Analyte Type	Field S Result	Spike Amount (mg/kg)	Matrix S	pike Resu	lt (mg/kg)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptance Criteria Evaluation
01-VBOU3-SB-0027-B	Chromium	Total	13	19.8	34	mg/kg		105	70	200	pass
01-VBOU3-SB-0027-B	Cobalt	Total	12	49.5	59.6	mg/kg		95	72	106	pass
01-VBOU3-SB-0027-B	Соррег	Total	66	24.8	90.6	mg/kg		100	37	187	pass
01-VBOU3-SB-0027-B	Iron	Total	27000	99	26500	mg/kg	NC MSB		70	200	NA
01-VBOU3-SB-0027-B	Lead	Total	40	49.5	93.5	mg/kg		108	70	200	pass
01-VBOU3-SB-0027-B	Magnesium	Total	4800	4950	9790	mg/kg		102	64	145	pass
01-VBOU3-SB-0027-B	Manganese	Total	650	 49.5	458	mg/kg	NC MSB		40	200	NA
01-VBOU3-SB-0027-B	Mercury	Total	0.077	0	0.886	mg/kg		94	82	113	pass
01-VBOU3-SB-0027-B	Nickel	.Total	13	49.5	57.4	mg/kg		90	61	126	pass
01-VBOU3-SB-0027-B	Potassium	Total	2300	 4950	7750	mg/kg		110	56	172	pass
01-VBOU3-SB-0027-B	Selenium	Total	ND	198	202	mg/kg		102	76 ·	104	pass
01-VBOU3-SB-0027-B	Silver	Total	1.1	4.95	5.87	mg/kg		96	75	141	pass
01-VBOU3-SB-0027-B	Sodium	Total	1000	 4950	5790	mg/kg		96	78	111	pass
01-VBOU3-SB-0027-B	Thallium	Total	ND	 198	191 .	mg/kg	•	96	87	-101	pass
01-VBOU3-SB-0027-B	Vanadium	Total	54	49.5	104	mg/kg		102	50	169	pass
01-VBOU3-SB-0027-B	Zinc	Total	130	 49.5	166	mg/kg	N	65	70	200	fail
01-VBOU3-SB-0028-A	Mercury	Total	. ND	0.833	0.653	mg/kg	N	76	82 .	113	fail

Fail - Percent recovery does not meet QC acceptance criteria (recoveries are outside of documented historical lab acceptance limits for a chemical).

QC = Quality Control

Lab QC Eval_v4.xls: MS Page 4 of 11

N = Percent recoveries outside QC control limits.

NC MSB = Not calculated. Parent sample concentrations greater than four times the spiked amounts.

NA = QC acceptance criteria not evaluated. Percent recovery not available for analyte.

Pass = Percent recovery within QC acceptance criteria (recoveries are within documented historical lab acceptance limits for a chemical).

## Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

### B. GROUNDWATER SAMPLES

Sample ID	Anayte	Analyte Type	Field S Result	•	Spike Amount (ug/L)	Matrix S	Spike Resu	ult (ug/L)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptance Criteria Evaluation
01-VBOU3-RIN-0002	Aluminum	Total	- 210	_	2000	2490	ug/L		114	83	119	pass
01-VBOU3-RIN-0002	Antimony	Total	ND		40	42	ug/L		105	89	109	pass
01-VBOU3-RIN-0002	Arsenic	Total .	ND		40	39.6	ug/L		99	87	109	pass
01-VBOU3-RIN-0002	Banum	Total	ND		2000	2110	ug/L		105	85	120	pass
01-VBOU3-RIN-0002	Beryllium	Total	ND		40	38.1	ug/L		95	86	115	pass
01-VBOU3-RIN-0002	Cadmium	Total	ND		40	40.4	ug/L		101 -	89	·110	pass
01-VBOU3-RIN-0002	Calcium	Total	240		50000	49800	ug/L		99	48	153	pass
01-VBOU3-RIN-0002	Chromium	Total	ND		200	216	ug/L		107	73	135	pass
01-VBOU3-RIN-0002	Cobalt	Total	ND		500	514	ug/L		103	82	119	pass
01-VBOU3-RIN-0002	Copper	Total	ND		250	253	ug/L		100	82	129	pass
01-VBOU3-RIN-0002	Iron	Total	420		1000	1510	ug/L		108	52	155	pass
01-VBOU3-RIN-0002	Lead	Total	ND		500	513	ug/L		102	89	121	pass
01-VBOU3-RIN-0002	Magnesium	Total	ND		50000	50200	ug/L	İ	100	62	146	pass
01-VBOU3-RIN-0002	Manganese	Total	ND		500	539	ug/L		106	79	121	pass
01-VBOU3-RIN-0002	Nickel	Total	ND		500	516	ug/L		103 -	84	120	pass
01-VBOU3-RIN-0002	Potassium	Total	ND		50000	48300	ug/L		97	76	132	pass
01-VBOU3-RIN-0002	Selenium	Total	ND		2000	1970	ug/L		99	71	140	pass
01-VBOU3-RIN-0002	Silver	Total	ND		50	49.3	ug/L		99	75	141	. pass
01-VBOU3-RIN-0002	Sodium	Total	МĎ		50000	48600	ug/L	i	97	70	203	. pass
01-VBOU3-RIN-0002	Thallium	Total	ND		40	43.3	ug/L		108	84	120	pass
01-VBOU3-RIN-0002	Vanadium	Total	ND		500	537	ug/L	1	107	85	120	pass
01-VBOU3-RIN-0002	Zinc	Total	ND		500	487	ug/L		96	60	137	pass
01-VBOU3-RIN-0003	Aluminum	Total	ND		2000	2090	ug/L		101	83	119	pass
01-VBOU3-RIN-0003	Antimony	Total	ND		40	42	ug/L		104	89	109	pass
01-VBOU3-RIN-0003	Arsenic	Total	ND		40	39.3	ug/L		98	87	109	pass
01-VBOU3-RIN-0003	Banum	Total	ND		2000	2120	ug/L		106 ·	85	120	pass
01-VBOU3-RIN-0003	Beryllium	Total	ND		40	42.3	ug/L		106	86	115	pass
01-VBOU3-RIN-0003	Cadmium	Total	ND		40	40.5	ug/L		101	89	110	pass
01-VBOU3-RIN-0003	Calcium	Total	520		50000	50700	ug/L	Ī	100	48	153	pass
01-VBOU3-RIN-0003	Chromium	Total	ND		200	214	ug/L		106	73	135	pass
01-VBOU3-RIN-0003	Cobait	Total	ND		500	514	ug/L		103	82	119	pass
01-VBOU3-RIN-0003	Copper	Total	ND		250	252	ug/L		101	82	129	·· pass
01-VBOU3-RIN-0003	iron	Total	170		1000	1180	ug/L		101	52	155	pass
01-VBOU3-RIN-0003	Lead	Total	ND		500	526	ug/L		105	89	. 121	pass
01-VBOU3-RIN-0003	Magnesium	Total	200		50000	51500	ug/L		103	62	146	pass
01-VBOU3-RIN-0003	Manganese	Total	ND.		500	523	ug/L		104	79	121	pass
01-VBOU3-RIN-0003	Nickel	· Total	ND		500	518	ug/L		103	84	120	. pass
01-VBOU3-RIN-0003	Potassium	Total	ND		50000	51100	ug/L		102	76	132	pass
01-VBQU3-RIN-0003	Selenium	Total	ND		2000	2070	ug/L		104	71.	140	pass
01-VBOU3-RIN-0003	Silver	Total	ND		50 ⁻	49.5	ug/L		98	75 .	141	pass
01-VBOU3-RIN-0003	Sodium	Total	ND		50000	49700	ug/L .		99	70	· 203	pass
01-VBOU3-RIN-0003	Thallium	Total	ND		40	41.7	ug/L		104	84	120	pass
01-VBOU3-RIN-0003	Vanadium	Total	ND		500	535	ug/L	J	107	85	120	pass
01-VBOU3-RIN-0003	Zinc	Total	ND		500	501	ug/L		99	60	137	pass

Lab QC Eval_v4.xis: MS Page 5 of 1

## Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

#### **B. GROUNDWATER SAMPLES**

Sample ID	Anayte	Analyte Type	l	Sample (ug/L)	Spike Amount (ug/L)	Matrix S	Spike Res	ult (ug/L)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptanc Criteria Evaluation
MW-31-072804	Antimony	Total	ND	•	40	39.7	ug/L		99	89	109	pass
MW-31-072804	Arsenic	Total	ND		40	38.1	ug/L		95	87	109	pass
MW-31-072804	Beryllium	Total	ND	-	40	43.3	ug/L		108	86	115	pass
MW-31-072804	Cadmium	Total	ND		40	39.6	ug/L		99	89 -	110	pass
MW-31-072804	·Thallium	Total	ND		40	43 6	ug/L		109	84	120	pass
MW-33-050304	Aluminum	Total	26000		2000	46400	ug/L	NC MSB		83	119	NA NA
MW-33-050304	Antimony	Tota!	ИD		40	13.2	ug/L	N	33	89	109	fail
MW-33-050304	Antimony	Dissolved	ND		40	41.8	ug/L	·	104	80	117	pass
MW-33-050304	Arsenic	Total	7.1		40	47.3	ug/L		101	87	109	pass
MW-33-050304	Arsenic	Dissolved	2		40	44	ug/L		105	79	120	pass
MW-33-050304	Barium	Total	220		2000	2300	ug/L		104	85	120	pass
MW-33-050304	Beryllium	Total	1.6		40	41 7	ug/L	<u> </u>	100	86	115	pass
MW-33-050304	Beryllium	Dissolved	ND		40	45.3	ug/L		113	76	126	pass
MW-33-050304	Cadmium	Total	87		40	129	ug/L		105	89	110	pass
MW-33-050304	Cadmium	Dissolved	69		40	110	ug/L	ļ	103	82	115	pass
MW-33-050304	Calcium	Total	77000	<del></del>	50000	125000	ug/L	<del> </del>	96	48	153	pass
MW-33-050304	Chromium	Total	26		200	222	-	<u> </u>	98	73	135	· · · · · · · · · · · · · · · · · · ·
MW-33-050304	<del> </del>	Total	64		500	526	ug/L			82		pass
	Cobalt	<del></del>			-		ug/L	<u> </u>	92		119	pass
MW-33-050304	Copper	Total	96		250	346	ug/L	NO MED	100	82	129	pass
MW-33-050304	Iron	Total	28000		1000	32300	ug/L	NC MSB		52	155	NA
MW-33-050304	Lead	Total	26		500	495	ug/L	<u> </u>	94	89	121	pass
MW-33-050304	Magnesium	Total	11000		50000	63400	ug/L		104	62	146	pass
MW-33-050304	Manganese	Total	1300		500	1770	ug/L	<u>  ·                                     </u>	88	79	121	pass
MW-33-050304	Nickel	Total	46		500	517	ug/L	ļ	94	84	120	pass
MW-33-050304	Potassium	Total	6500		50000	58400	ug/L	ļ	104	76	132	pass
MW-33-050304	Selenium	Total	ND		2000	1890	ug/L		95	71	140	pass
MW-33-050304	Silver	Total	ND		50	50	ug/L		98	75	141	pass
MVV-33-050304	Sodium	Total	100000		50000	148000	ug/L		96	70	203	pass
MW-33-050304	Thallium	Total	ND		40	43.4	ug/L		106	84	120	pass
MW-33-050304	Thallium	Dissolved	ND .		40	41.5	ug/L	ļ	104	77	124	pass
MW-33-050304	Vanadium	Total	38		500	531	ug/L		99	85	120	pass.
MW-33-050304	Zinc	Total	940		500	1380	ug/L		88	60	137	pass
MW-33-052104	Aluminum	Total	580		2000	3240	ug/L	N	133	83	119	fali
MW-33-052104	Antimony	Dissolved	ND		40	40	ug/L		99	80	117	pass
MW-33-052104	Arsenic	Dissolved	2		40	42.8	ug/L		102	79	120	pass
MW-33-052104	Banum	Total	29		2000	2110	ug/L		104	85	120	pass
MW-33-052104	Beryllium	Dissolved	ND		40	45.1	ug/L	ļ	113	76	126	pass
MW-33-052104	Cadmium	Dissolved	40		40	80	ug/L		100	82	115	pass
MW-33-052104	Calcium -	Total	66000		50000	117000	ug/L		101	48	153	pass
MW-33-052104	Chromium	Total	ND		200	192	ug/L		96	73	135	pass
MW-33-052104	Cobalt	Total	ND		500	471	ug/L	ļ. <u>.</u>	94	82	119	pass
MW-33-052104	Copper	Total	ND		250	270	ug/L		104	82	129	pass
MW-33-052104	Iron	Total	560		1000	1690	ug/L		113	52	155	pass
MW-33-052104	Lead	Total	ДN		500	479	ug/L		96	89	121	pass
MW-33-052104	Magnesium	Total	6700		50000	59200	ug/L		105	62	146	pass
MW-33-052104	Manganese	Total	51		500	538	ug/L		97	79	121	pass
MW-33-052104 .	Mercury	Total	ND		5	5.04	ug/L ·		100	84	114	pass
MW-33-052104	Nickel	Tota!	ND		500	466	ug/L		91	84	120	pass
MW-33-052104	Potassium	Total	МĎ		50000	53900	ug/L		103	76	132	pass
MW-33-052104	Selenium	Total	ND-		2000	2000	ug/L	† - · · · ·	100	71	140 -	pass

.ab QC Eval_v4.xls: MS Page 6 of 11

### Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

. GROUNDWATER SA	WIFLES				Spike	· · · · · ·						QC Acceptance
Sample ID	Anayte	Analyte Type	Field S Result	iample (ug/L)	Amount (ug/L)	Matrix S	pike Resu	ılt (ug/L)	Percent Recovery	Lower Limit	Upper Limit	Criteria Evaluation
MW-33-052104	Silver	Total	ND		50	49.7	ug/L		98	75	141	pass
MW-33-052104	Sodium	Total	82000		-50000	134000	ug/L		104	70	. 203	pass
MW-33-052104	Thallium	Dissolved	ND		40	41.3	ug/L		103	77	124	pass
MW-33-052104	Vanadium	Total	ND		500	492	ug/L		98	85	120	pass
MW-33-052104	Zinc	Total	190		500	642	ug/L		91	60	137	pass
MW-33-070104	Aluminum	Totaí	420		2000	2820	ug/L	- N	120	83	119	fail
MW-33-070104	Aluminum	Dissolved	ND		2000	2020	ug/L		101	83	119	pass
MW-33-070104	Antimony	Dissolved	ND		40	40.7	ug/L		100	80	117	pass
MW-33-070104	Antimony	Total	ND		40	41.4	ug/L		103	89	109	pass
MW-33-070104	Arsenic	Dissolved	2.8		40	42	ug/L		98	79	120	pass
MW-33-070104	Arsenic	Total	3.1		40	43	ug/L		100 ·	87	109	pass
MW-33-070104	Barium	Total	30		2000	2170	ug/L		107	85	120	pass
MW-33-070104	Barium	Dissolved	26		2000	2080	ug/L		103	85	120	pass
MW-33-070104	Beryllium	Dissolved	ND		40	41.8	ug/L		104	76	126 -	pass
MW-33-070104	Beryllium	Total	ND		40	42.7	ug/L		106 ·	86	115	pass
MW-33-070104	Cadmium	Dissolved	26	-	40	64.4	ug/L		96	82	115	pass
MW-33-070104	Cadmium	Total	27		40	66.2	ug/L		98	89	110	pass
MW-33-070104	Calcium	Total	75000		50000	126000	ug/L		102	48	153	pass
MW-33-070104	Calcium	Dissolved	73000		50000	121000	ug/L		97	48	153	pass
MW-33-070104	Chromium	Total	ND		200	214	ug/L		106 .	73	135	pass
MW-33-070104	Chromium	Dissolved	ND		200	206	ug/L		103	73	135	pass
MW-33-070104	Cobalt	Total	ND		500	520	ug/L		104	82	119	pass
MW-33-070104	Cobalt	Dissolved	ND		500	511	ug/L		100	82	119	pass
MW-33-070104	Copper	Total	ND		250	269	ug/L		104	82	129	pass
MW-33-070104	Соррег	Dissolved	ND		250	257	ug/L		100	82	129	pass
MW-33-070104	Iron	Total	330		1000	1390	ug/L		106	52	155	pass
MW-33-070104	iron	Dissolved	ND		1000	974	ug/L:		97	52	155	pass
MW-33-070104	Lead	Total	ND		500	522	ug/L		104	-89	121	pass
MW-33-070104	Lead	Dissolved	ND		500	507	ug/L		101	89	121	pass
MW-33-070104	Magnesium	Total	7300		50000	59300	ug/L		104	62	146	pass
MW-33-070104	Magnesium	Dissolved	7000		50000	56500	ug/L	<del></del>	99	62	146	pass
MW-33-070104	Manganese	Total	32		500	562	ug/L	<del></del>	106	79	121	pass
MW-33-070104	Manganese	Dissoived	15		500	530	ug/L	<del>                                     </del>	103.	79	121	pass
MW-33-070104	Mercury	Dissolved	ND	<del></del>	5	5.28	ug/L		105	84	114	pass
MW-33-070104	Mercury	Total	ND		5	4:82	ug/L	<del> </del>	95	84	114	pass
MW-33-070104	Nickel	Total	ND		500	531	ug/L		105	84	120	
MW-33-070104	Nickel	Dissolved	ND		500	510			100	84	120	pass
MW-33-070104	Potassium	Total	ND		50000	55000	ug/L	<u> </u>	106	76	132	pass
		<b></b>			50000	51600	<del></del>	-,		76	<del> </del>	pass
MW-33-070104 MW-33-070104	Potassium	Dissolved	ND		2000	2030	ug/L	ļ	102		132	
	Selenium	Total	ND		<del></del>		ug/L .		<del></del>	71	140	pass
MW-33-070104	Setenium	Dissolved	ND	·	2000	2000	ug/L		100	71	140	pass
MW-33-070104	Silver	Total	ND		50	55.4	ug/L		111	75	141	pass
MW-33-070104	Silver	Dissolved	ND		50	53.7	ug/L		-107	75	141	pass
MW-33-070104	Sodium	.Total	93000		50000	. 145000	ug/L		105	70	203	pass
MW-33-070104	Sodium	Dissolved	92000		50000	140000	ug/L	<u> </u>	97	70	203	pass
MW-33-070104	Thallium	Dissolved	ND		40	37.6	ug/L	ļ	94	77	124	. pass
MW-33-070104	Thallium	Total	ND	<u> </u>	40	38.3	ug/L	ļ <u>.</u>	96	84	120	pass
MW-33-070104	Vanadium	Total	ND		500	532	ug/L	<u>`</u>	106	85	120	pass
MW-33-070104	Vanadium	Dissolved	ND		500	513	ug/L		102	85	120	pass
MW-33-070104	Zinc	Total	220		500	707	ug/L		98	60	137	pass
MW-33-070104	Zinc	Dissolved	200		500	664	ug/L		93	60	137	pass

Lab QC Eval_v4.xls: MS Page 7 of 11

### Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

### B. GROUNDWATER SAMPLES

Sample ID	Anayte	Analyte Type	Field Sa Result (		Spike Amount (ug/L)	Matrix S	Spike Resi	ult (ug/L)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptanc Criteria Evaluation
MW-33-072804	Aluminum	Total	110		2000	2200	ug/L		104	83.	119	pass .
MW-33-072804	Barium	Total	34		2000	2020	ug/L		99	85	120	pass
MW-33-072804	Calcium	Total	100000		50000	153000	∪g/L		106	48	153	pass
MW-33-072804	Chromium	Total	ND		200	214	ug/L.		106	73	135	pass
MW-33-072804	Cobalt	Total	ND		500	523	ug/L		104	82	119	pass
MW-33-072804	Copper	Total	ND		250	· 253	ug/L		98	82	129	pass
MW-33-072804	Iron	Total	170	_	1000	1200	ug/L		103	52	155	pass
MW-33-072804	Lead	Total	ND		500	523	ug/L		104	89	121	pass
MW-33-072804	Magnesium	Total	9800		50000	62700	ug/L		106	62	146	pass
MW-33-072804	, Manganese	Total	23		500	547	ug/L	<del> </del>	105	79	121	pass
MW-33-072804	Nickel	Total	ND		500	528	ug/L		104	84	120	pass
MW-33-072804	Potassium	Total	ND		50000	54600	ug/L		104	76	132	pass
MW-33-072804	Selenium	Total	ND		2000	2080	ug/L		104	71	140	pass
MW-33-072804	Silver	Total	ND		50	52	ug/L		103	75	141	pass
MW-33-072804	Sodium	Total	120000		50000	172000	ug/L		112	70	203	pass
MW-33-072804	Vanadium	Total	ND		500	524	ug/L		105	85	120	pass
MW-33-072804	Zinc	Total	250		500	745	ug/L		98	60	137	pass
MW-34-052104	Aluminum	Dissolved	ND -		2000	2180	ug/L		109	83	119	pass
MW-34-052104	Banum	Dissolved	62		2000	2090	ug/L		101	85	120	pass
		Dissolved			50000			NC MCD	101	48	153	<del>-</del>
MW-34-052104	Calcium		630000			664000	ug/L	NC MSB	00			NA
MW-34-052104	Chromium	Dissolved	ND		200	186	ug/L		93	73	135	pass
MW-34-052104	Cobalt	Dissolved	ND		500	469	ug/L		93	82	119	pass
MW-34-052104	Copper	Dissolved	11		250	283	ug/L		109	82	129	pass
MW-34-052104	Iron	Dissolved	180		1000	1200	ug/L		102	52	155	pass
MW-34-052104	Lead	Dissolved	ND		500	484	ug/L		97	89	121	pass
MW-34-052104	Magnesium	Dissolved	57000		50000	109000	ug/L		104	62	146	pass
MW-34-052104	Manganese	Dissolved	640		500	1090	ug/L		91	79	121	pass
MW-34-052104	Nickel	Dissolved	. ND		500	474	ug/L		89	84	120	pass
MW-34-052104	Potassium	Dissolved	12000		50000	67700	ug/L		111	76	132	pass
MW-34-052104	Selenium	Dissolved	ND		2000	2160	ug/L		108	71	140	pass
MW-34-052104	Silver	Dissolved	ND		50	53.7	ug/L		106	75	141	pass
MW-34-052104	Sodium	Dissolved	680000		50000	718000	ug/L	NC MSB		70	203	NA
MW-34-052104	Vanadrum	Dissolved	ND		500	477	· ug/L	·	95	85	120	pass
MW-34-052104	Zinc	Dissolved	45		500	515	ug/L	·	94	60	137	pass
KP-GW-16-111904	Aluminum	Dissolved	ND		2000	2150	ug/L		104	83	119	pass
KP-GW-16-111904	Antimony	Dissolved	ND		40	41.8	ug/L		104	80	117	pass
KP-GW-16-111904	Arsenic	Dissolved	ND		40	43.9	ug/L		109	79	120	pass
KP-GW-16-111904	Barium	Dissolved	71		2000	2130	ug/L		103	85	120	pass
KP-GW-16-111904	Beryllium	Dissolved	ND		40	42.6	ug/L		106	76	126	pass
KP-GW-16-111904	Cadmium	Dissolved	50		40	90	ug/L		100	82	115	pass
KP-GW-16-111904	Calcium	Dissolved	230000		50000	281000	ug/L			48	153	NA
KP-GW-16-111904	Chromium	Dissolved	ND		200	198	ug/L		99	73	135	pass
KP-GW-16-111904	Cobalt	Dissolved	ND		500	489	ug/L		97	82	119	pass
KP-GW-16-111904	Copper	Dissolved	ND		250	262	ug/L		104	82	129	pass
KP-GW-16-111904	tron	Dissolved	120		1000	1110	ug/L		100	52	155	pass
KP-GW-16-111904	Lead	Dissolved	ND		500	510	ug/L		102	89	121	pass
KP-GW-16-111904	Magnesium	Dissolved	37000		50000	90600	ug/L		107	62	146	pass
KP-GW-16-111904	Manganese	Dissolved	330		500	822	ug/L		98	79	121	pass
KP-GW-16-111904	Mercury	Dissolved	ND		5	5.46	ug/L		109	85	114	pass
KP-GW-16-111904	Nickel	Dissolved	ND		500	497	ug/L		98	84	120	pass
KP-GW-16-111904	Potassium	Dissolved	8200		50000	64400	ug/L		112	76	132	pass
10 - 0 11-10-11 11004	i viassiuiii	Pipadived	<b>4200</b>		55550	÷-1-00	agr.		112	,,,	154	heas

Lab QC Eval_v4.xis: MS

## Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

### B. GROUNDWATER SAMPLES

Sample ID	Anayte	Analyto Type	•	Sample (ug/L)	Spike Amount (ug/L)	Matrix S	Spike Resi	ult (ug/L)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptanc Criteria Evaluation
KP-GW-16-111904	Silver	Dissolved	ND		50	54.1	· ug/L		108	75	141	pass
KP-GW-16-111904	Sodium	Dissolved	260000		50000	306000	ug/L			70	203	NA
KP-GW-16-111904	Thallium	Dissolved	ND		40	40.1	ug/L		100	77	124	pass
KP-GW-16-111904	Vanadium	Dissolved	ND		500	500	ug/L		100	85	120	pass
KP-GW-16-111904	Zinc	Dissolved	150		500	657	ug/L		101	60	137	pass
KP-GW-16-111904	Aluminum	Total	220	J	2000	2500	ug/L		114	83	119	pass
KP-GW-16-111904	Barium	Total	74		2000	2070 -	ug/L		100	· 85	120	pass
KP-GW-16-111904	Calcium	Total	230000		50000	292000	ug/L	NC MSB		48	153	NA
KP-GW-16-111904	Chromium	Total	ND		200	189	ug/L		94	73	135	pass
KP-GW-16-111904	Cobalt	Total	ND		500	466	ug/L		93	82	119	pass
KP-GW-16-111904	Copper	Total	ND		250	260	ug/L		103	82	129	pass
KP-GW-16-111904	Iron	Total	240		1000	1330	ug/L		110	52	155	pass
KP-GW-16-111904	Lead	Total	ND		500	485	ug/L	<del> </del>	97	89	121	pass
KP-GW-16-111904	Magnesium	Total	36000		50000	94300	ug/L		116	62	146	pass
KP-GW-16-111904	Manganese	Total	490		500	989	ug/L	<del>                                     </del>	99	79	121	pass
KP-GW-16-111904	Mercury	Total	ND		5	5.14	ug/L		101	85	114	<del></del>
KP-GW-16-111904	Nickel	Total	ND		500	475	ug/L		94	84	120	pass pass
	<del></del>									<del> </del>		<u> </u>
KP-GW-16-111904 KP-GW-16-111904	Potassium Selenium	Total	7800		50000	64400 2020	ug/L		113	76 71	132	pass
KP-GW-16-111904	Silver	Total Total	ND ND		2000 50	52.3	ug/L		101	75	140	pass
	Sodium	Total	250000		50000	318000	ug/L	NC MSB	104	70	203	NA NA
KP-GW-16-111904		<del></del>		·	<del></del>		ug/L	INC MISB				
KP-GW-16-111904	Vanadium	Total	ND		500	487	ug/L		97	85	120	pass
KP-GW-16-111904	Zinc	Total	150	J	500	595	ug/L	<u> </u>	89	60	137	pass
KP-GW-46-111904A	Antimony	Total	ND		40	44.6	ug/L	<del> </del> :	111	89	109	fail
KP-GW-46-111904A	Arsenic	Total	ND		40	44.2	ug/L	· ·	109	87	109	pass
KP-GW-46-111904A	Beryllium	Total	ND		40	48	ug/L	ļ. <u></u>	120	86	115	fall
KP-GW-46-111904A	Cadmium	Total	23		40	63	ug/L	ļ	100	89	110	pass
KP-GW-46-111904A	Thallium	Total	ND		40	41.9	ug/L	<u> </u>	104	84	120	pass
KP-SW-1-032805	Aluminum	Total	ND		2000	2110	ug/L		104	83	119	pass
KP-SW-1-032805	Banum	Total	34		2000	2080	ug/L	<u> </u>	102	85	120	pass
KP-SW-1-032805	Calcium	Total	70000		50000	123000	ug/L	·	106	48	153	pass
KP-SW-1-032805	Chromium	Total	ND		200	205	ug/L	<b></b>	101	73	135	pass
KP-SW-1-032805	Cobalt	Total	ND		500	498	ug/L	ļ	100	82	119	pass
KP-SW-1-032805	Copper	Total	ND		250	252	ug/L	<u> </u>	. 101	82	129	pass
KP-SW-1-032805	Iron	Total	150		1000	1120	ug/L		97	52	155	pass
KP-SW-1-032805	Lead	Total	ND		500	497	ug/L	ļ	99	89	121	pass
KP-SW-1-032805	Magnesium	Total	12000		50000	63200	ug/L		102	62	146	pass
KP-SW-1-032805	Manganese	Total	ND		500	500	ug/L		100	79	121	pass
KP-SW-1-032805	Nickel	Total	ND		500	501	ug/L	<u> </u>	. 99	84	120	pass
KP-SW-1-032805	Potassium	Total	ND		50000	52000	ug/L		99	76	132	pass
KP-SW-1-032805	Selenium	Total	ND		2000	2060	ug/L		. 102	71	140	pass
KP-SW-1-032805	Silver	Total	ND		50	53.2	ug/L		103	75	141	pass
KP-SW-1-032805	Sodium	Total	170000		50000	224000	ug/L		109	70	203	pass
KP-SW-1-032805	Vanadium	Total	ND	_	500	516	ug/L		103	85	120	pass
KP-SW-1-032805	Zinc	Total	22		500	512	ug/L	1	98	60	137	pass
KP-SW-2-032805	Antimony	Total	ND		40	41.6	ug/L		103	89	109	pass
KP-SW-2-032805	Arsenic	Total	1		40	41.5	ug/L		101	87	109	pass
KP-SW-2-032805	Beryllium	Total	ND		40	40.5	ug/L		101	86	.115	pass
KP-SW-2-032805	Cadmium	Total	4.6		40	45.1	ug/L	-	101	89	110	pass
KP-SW-2-032805	Thallium	Total	ND		40	40.8	ug/L		102	84	120	pass
PS-1-050205	Aluminum	Dissolved	190		2000	2310	ug/L	-	102	83	119	pass
	i Alumillium	LUISSUIVEU			1 4000	2310	: uur		ו וטם	. 63		ı Dass

Lab QC Eval_v4.xis; MS Page 9 of 11

### Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

### B. GROUNDWATER SAMPLES

Sample ID	Anayte	Analyte Type	1	Sample t (ug/L)	Spike Amount (ug/L)	Matrix S	ipike Resi	ult (ug/L)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptant Criteria Evaluation
PS-1-050205	Arsenic	Dissolved	ND		40	40.8	ug/L		101	79	120	pass
PS-1-050205	Barium	Dissolved	65		2000	2160	ug/L		105	85	120	pass
PS-1-050205	Beryllium	Dissolved	ND		40	42.1	· ug/L		105	76	126	pass
PS-1-050205	Cadmium	Dissolved	ND		40	38.9	ug/L		97	82	115	pass
PS-1-050205	Calcium	Dissolved	65000		50000	115000	ug/L		100	48	153	pass
PS-1-050205	Chromium	Dissolved	ND		200	202	ug/L		101	73	135	pass
PS-1-050205	Cobalt	Dissolved	ND		500	506	ug/L		99	82	119	pass
PS-1-050205	Copper	Dissolved	ND		250	257	ug/L		102	82	129	pass
PS-1-050205	tron	Dissolved	150		1000	1170	ug/L		102	52	155	pass
PS-1-050205	Lead	Dissolved	ND		500	506	ug/L		101	89	121	pass
PS-1-050205	Magnesium	Dissolved	12000		50000	63700	ug/L		104	62	146	pass
PS-1-050205	Manganese	Dissolved	360	·	. 500	844	ug/L	1	98	79	121	pass
PS-1-050205	<u>-</u>	Dissolved	ND		5	5.16		-	103	85	114	
	Mercury				<del> </del>		ug/L	<del> </del>				. pass
PS-1-050205	Nickel	Dissolved	ND		500	504	ug/L	<u> </u>	101	84	120	pass
PS-1-050205	Potassium	Dissolved	8600		50000	61600	ug/L		106	76	132	pass
PS-1-050205	Selenium	Dissolved	ND		2000	2090	ug/L		104	71	140	pass
PS-1-050205	Silver	Dissolved	ND		50	54.9	ug/L		110	75	141	pass
PS-1-050205	Sodium	Dissolved	330000		50000	376000	ug/L	NC MSB		70	203	NA
PS-1-050205	Thallium	Dissolved	ND		40	40.2	ug/L		101	77	124	pass
PS-1-050205	Vanadium	Dissolved	ND		500	504	ug/L		100	85	120	pass
PS-1-050205	Zinc	Dissolved	ND		500	493	ug/L		97 .	60	137	pass
PS-1-050205	Aluminum	Total	100000		2000	152000	ug/L			83	119	NA
PS-1-050205	Antimony	Total	ND	R	40	9.18	ug/L		22	89	109	fail
PS-1-050205	Arsenic	Total	28	J	40	60.1	ug/L		80	87	109	fali
PS-1-050205	Barium	Total	1400	J	2000	3290	ug/L		96	85	120	. pass
PS-1-050205	Beryllium	Total	4.4		4C	33.7	ug/L		73	86	115	fail
PS-1-050205	Cadmium	Total	1.6	_	40	39.8	ug/L		96	89	110	pass
PS-1-050205	Calcium	Total	100000	<del>-</del> -	50000	148000	ug/L		88	48	153	pass
PS-1-050205	Chromium	Total	160		200	366	ug/L	-	101	73	135	pass
PS-1-050205	Cobalt	Total	50		500	516		-	93	82	119	· ·
		-	98		<del> </del>	339	ug/L					pass
PS-1-050205	Copper	Total			250	<u> </u>	ug/L		97	82	129	pass
PS-1-050205	Iron	Total	170000		1000	177000	ug/L	NC MSB	· ·	52 ·	155	NA :
PS-1-050205	Lead	Total	110		500	568	ug/L	-	92	89	121	pass
PS-1-050205	Magnesium	Total	33000		50000	84400	ug/L		102	62	146	pass
PS-1-050205	Manganese	Total	5800		500	6100	ug/L	NC MSB		79	121	NA.
PS-1-050205	Mercury	Total	ND		5	5.14	ug/L		100	85	114	pass
PS-1-050205	Nickel	Total	70		500	541	ug/L		94	84	120	pass
PS-1-050205	Pctassium	Total	19000		50000	69800	ug/L		101	76	132	pass .
PS-1-050205	Selenium	Total	ND		2000	1890	ug/L		94	71	140	pass
PS-1-050205	Silver	Total	ND		50	52.3	ug/L		103	75	141	pass
PS-1-050205	Sodium	Total	300000		50000	342000	ug/L	NC MSB		70	203	NA
PS-1-050205	Thallium	Total	1.2		40	37	ug/L		90	84	120	pass.
PS-1-050205	Vanadium	Total	220		500	743	ug/L		105	85	120	pass
PS-1-050205	Zinc	Total	420		500	868	ug/L		89	60	137	pass
P-PS-18-091905	Aluminum	Dissolved	160		2000	2320	ug/L	[	108	83	119	pass
P-PS-18-091905	Aluminum	Total	32000		2000	55100	ug/L	NC MSB		83	119	NA NA
(P-PS-18-091905	Antimony	Dissolved	ND		40	40.7	ug/L	<u> </u>	101	80	117	pass
(P-PS-18-091905	Antimony	Total	ND	UJ	40	21.5	ug/L	N	52	89	109	fali
(P-PS-18-091905	Arsenic	Dissolved	ND		40	40.5	ug/L	'	100	79.	120	pass
(P-PS-18-091905 (P-PS-18-091905	Arsenic	Total	11	<b>_</b>	40	47.8	ug/L		92	87	109	pass
	Barium	Dissolved	170		2000	2230	ug/L	1	103	85	120	pass

Lab QC Eval_v4 xis: MS Page 10 of 11

### Table E-5. Data Quality Assessment Evaluation of Matrix Spike (MS) Sample Results

### B. GROUNDWATER SAMPLES

Sample ID	Anayte	Analyte Type	Field S Result	•	Spike Amount (ug/L)	Matrix S	pike Res	ult (ug/L)	Percent Recovery	Lower Limit	Upper Limit	QC Acceptance Criteria Evaluation
KP-PS-18-091905	Beryllium	Dissolved	ND		40	43.2	ug/L		108	76	126	- pass
KP-PS-18-091905	Beryllium	Total	2.4		40	35.6	ug/L	N	83	86	115	fail
KP-PS-18-091905	Cadmium	Dissolved	2.3		40	41	ug/L		97	82	115	pass
KP-PS-18-091905	Cadmium	Total	14		40	52.5	ug/L	Î	95	89	110	pass
KP-PS-18-091905	Calcium	Dissolved	110000		50000	161000	ug/L		95	48	153	pass
KP-PS-18-091905	Calcium	Total	110000		50000	158000	ug/L		97	48	153	pass
KP-PS-18-091905	Chromium	Dissolved	ND		200	194	ug/L		96	73	135	pass
KP-PS-18-091905	Chromium	Total	60		200	259	ug/L		99	.73	135	pass
KP-PS-18-091905	Cobalt	Dissolved	ND		500	494	ug/L		97	82	119	pass
KP-PS-18-091905	Cobalt	Total	27		500	511	ug/L		97	82	119	pass
KP-PS-18-091905	Copper	Dissolved	ND		250	268	ug/L		104	82	129	pass
KP-PS-18-091905	Copper	Total	69		250	328	ug/L:		104	82 .	129	pass .
KP-PS-18-091905	1ron	Dissolved	240		1000	1240	ug/L		101	52	155	pass
KP-PS-18-091905	Iron	Total	49000		1000	54700	ug/L	NC MSB		. 52	155	NA
KP-PS-18-091905	Lead	Dissolved	ND		500	497	ug/L		. 99	89	121	pass
KP-PS-18-091905	Lead	Total	54		500	533	ug/L		96	. 89	121	pass
KP-PS-18-091905	Magnesium	Dissolved	25000		50000	73300	ug/L		97	62	146	pass
KP-PS-18-091905	Magnesium	Total	29000		50000	78700	ug/L		99	62	146	pass
KP-PS-18-091905	Manganese	Dissolved	2900		500	3320	ug/L	NC MSB		79	121	NA ·
KP-PS-18-091905	Manganese	Total	6800		500	7290	ug/L	NC MSB		79	121	NA
KP-PS-18-091905	Mercury	Dissolved	ND		5	5.09	ug/L		102	85	114	pass
KP-PS-18-091905	Mercury	Total	ND		5	4.48	ug/L		. 88	85	114	pass
KP-PS-18-091905	Nickel	Dissolved	ND		500	492	ug/L		97	84	120	pass
KP-PS-18-091905	Nickel	Total	47		500	521	ug/L		95	84	120	pass
KP-PS-18-091905	Potassium	Dissolved	29000		50000	80400	ug/L		104	76	132	pass
KP-PS-18-091905	Potassium	Total	34000		50000	87800	ug/L		107	76	132	pass
KP-PS-18-091905	Selenium	Dissolved	ND		2000	2110	ug/L		105	71	140	pass
KP-PS-18-091905	Selenium	Total	ND		2000	2030	ug/L		101	71	140	pass
KP-PS-18-091905	Silver	Dissolved	ND		50	53.8	ug/L		106	75	141	pass
KP-PS-18-091905	Silver	Total	ND		50	51.8	ug/L		104	75	. 141	pass
KP-PS-18-091905	Sodium	Dissolved	180000		50000	234000	ug/L		. 100	70	203	pass
KP-PS-18-091905	Sodium	Total	170000		50000	222000	ug/L		100	· 70	203	pass
KP-PS-18-091905	Thallium	Dissolved	ND		40	42.5	ug/L	1	106	77	124	pass
KP-PS-18-091905	Thallium	Total	ND		40	41.1	ug/L		101	84	120	pass
KP-PS-18-091905	Vanadium	Dissolved	ND		500	495	ug/L	1.	99	85	120	pass
KP-PS-18-091905	Vanadium	Total	79		500	582	ug/L		101	85	120	pass
KP-PS-18-091905	Zinc	Dissolved	36		500	486	ug/L		90	60	137	pass
KP-PS-18-091905	Zinc	Total	470		500	931	ug/L	<del>                                     </del>	93	60	137	pass

Fail = Percent recovery does not meet QC acceptance criteria (recovenes are outside of documented historical lab acceptance limits for a chemical).

Lab QC Eval_v4.xls: MS Page 11 of 11

N = Percent recoveries outside QC control limits.

NC MSB = Not calculated. Parent sample concentrations greater than four times the spiked amounts

NA = QC acceptance criteria not evaluated. Percent recovery not available for analyte.

Page = Percent recovery within QC acceptance criteria (recovenes are within documented historical lab acceptance limits for a chemical).

QC = Quality Control

A. SOIL

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (mg/kg)	Spike Amount	Percent Recovery (%)	Lower	Upper Limit (%)	QC Acceptance Criteria Evaluation
D3L230000649C	D3L190461	1/5/2004 6:26	Aluminum	Total	201	200	100	80	110	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Antimony	Total	48.4	50	97	80	105	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Arsenic	Total	191	200	[.] 95	80	111	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Barium	Total	203	200	102	80	117	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Beryllium	Total	4.74	5	95	80	114	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Cadmium	Total	4.9	5	98	80	119	pass
D3L230000649C	D3L190461	1/5/2004 6:26	Calcium	Total	5060	5000	101	80	116	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Chromium	Total	19.6	20	98	80	120	pass
D3L230000649C	D3L190461	12/31/2003·21:20	Cobalt	Total	48.3	50	97	80	112 .	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Copper	Total	23.7	25	95	80	117	pass
D3L230000649C	D3L190461	1/5/2004 6:26	Iron	Total	99.7	100	100	80	120	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Lead	Total ·	50.4	50	101	80	116	pass
D3L230000649C	D3L190461	1/5/2004 6:26	Magnesium	Total	5030	5000	101	80	115.	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Manganese	Total	49	50	98	80	113	pass .
D3L230000649C	D3L190461	12/31/2003 21:20	Nickel	Total	48.5	50	97	80	115	pass .
D3L230000649C	D3L190461	1/5/2004 6:26	Potassium	Total '	4390	5000	88	80	111	pass .
D3L230000649C	D3L190461	12/31/2003 21:20	Selenium	Total	198	200	99	80	112	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Silver	Total	4.8	5	96	80	109	pass
D3L230000649C	D3L190461	1/5/2004 6:26	Sodium	Total	4760	5000	95	80	117	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Thallium	Total	194	200	97	80	109	pass
D3L230000649C	D3L190461	12/31/2003 21:20	Vanadium	Total	48.8	50	98	80	113	pass
D3L230000649C	D3L190461	1/5/2004 6:26	Zinc	Total	49.8	50	100	80	115	pass
D3L230000648C	D3L190419	1/5/2004 1:03	Aluminum	Total	208	200	104	80	110	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Antimony	Total	47	50	94	80	105	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Arsenic	Total	188	200	94	80	111	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Barium	Total	197	200	98	80	117	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Beryllium	Total	4.64	5	93	80	114	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Cadmium	Total	4.82	5	96	. 80	119	pass
D3L230000648C	D3L190419	1/5/2004 1:03	Calcium	Total	5160	5000	103	80	116	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Chromium	Total	19.4	20	97	80	120	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Cobalt	Total	47.5	50	95	80	112	pass .
D3L230000648C	D3L190419	12/30/2003 18:10	Copper	Total	23	25	92	80	117	pass
D3L230000648C	D3L190419	1/5/2004 1:03	Iron	Total	103	100	103	80	120	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Lead	Total	48.4	50	97	80	116	pass
D3L230000648C	D3L190419 D3L190419	1/5/2004 1:03	Magnesium	Total Total	5110 48.3	5000	102 97	80 80	115	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Manganese	Total	47.8	50	96	80	113	pass
D3L230000648C	D3L190419	12/30/2003 18:10 1/5/2004 1:03	Nickel Potassium	Total	4440	5000	89	80	115	pass pass
D3L230000648C	D3L190419	12/30/2003 18:10	Selenium	Total	188	200	94	80	112	· · · · · · · · · · · · · · · · · · ·
D3L230000648C	D3L190419	12/30/2003 18:10	Silver	Total	4.68	5	94	80	109	pass pass
D3L230000648C	D3L190419	1/5/2004 1:03	Sodium	Total	4890	5000	98	80	117	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Thallium	Total	185	200	93	80	109	pass
D3L230000648C	D3L190419	12/30/2003 18:10	Vanadium	Total	48.2	50	96	80	113	pass
D3L230000648C	D3L190419	1/5/2004 1:03	Zinc	Total	50.2	50	100	80	115	pass
D3L230000647C	D3L190419	1/5/2004 1:03	Aluminum	Total	194	200	97	80	110	pass
D3L230000647C	D3L190464				49.4		99	<del>                                     </del>	105	
D3F530000041C	D3L190404	1/4/2004 2:13	Antimony	Total	49.4	50	99	80	100	pass

Lab QC Eval_v4.xls: LCS . Page 1 of 14

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (mg/kg)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
D3L230000647C	D3L190464	1/4/2004 2:13	Arsenic	Total	196	200	98	80	111	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Barium	Total	206	200	103	80	117	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Beryllium	Total	4.72	5	94	80	114	pass
D3L230000647C	D3L190464	1/4/2004, 2:13	Cadmium	Total	4.95	5 .	99	80	119	pass
D3L230000647C	D3L190464	1/5/2004 4:09	Calcium	Total	4960	5000	99	80	116	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Chromium	Total	19.7	20	98	80	120	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Cobalt	Total	49.2	50	98	80	112	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Copper	Total	23.6	25	94	80	117	pass
D3L230000647C	D3L190464	1/5/2004 4:09	Iron	Total	97.4	100	97	80	120	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Lead	Total	50.3	50	101	80	116	pass
D3L230000647C	D3L190464	1/5/2004 4:09	Magnesium	Total	4900	5000	98	80	115	pass
D3L230000647C	D3L190464	1/5/2004 4:09	Manganese	Total	48.7	50	. 97	80	113	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Nickel	Total	50.2	50	100	80	115	pass
D3L230000647C	D3L190464	1/5/2004 4:09	Potassium	Total	4250	5000	85	80	. 111	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Selenium	Total	200	200	100	80	112	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Silver	Total	4.9	. 5	98	80	109	pass
D3L230000647C	D3L190464	1/5/2004 4:09	Sodium	Total	4570	5000	91	80	117	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Thatlium	Total	197	200	99	80	109	pass
D3L230000647C	D3L190464	1/4/2004 2:13	Vanadium	Total	48.7	50	97	80	113	pass
D3L230000647C	D3L190464	1/5/2004 4:09	Zinc	Total	49.4	50	99	80	115	pass .
D3L220000303C	D3L190464	12/31/2003 14:22	Mercury	Total	0.76	0.833	91	82	113	pass
D3L220000302C	D3L190461	12/31/2003 13:42-	Mercury	Total	0.84	0.833	101	82	113	pass
D3L220000301C	D3L190419	12/31/2003 12:15	Mercury	Total	0.83	0.833	100	82	113	pass
D3L220000300C	D3L190405	12/23/2003 16:20	Mercury	Total	0.823	0.833	. 99	82	113	pass
D3L220000299C	D3L190390	12/27/2003 21:21	Mercury	Total	0.848	0.833	102	82	: 113	pass
D3L220000299C	D3L190405	12/27/2003 21:21	Mercury	Total	0.848	0.833	102	82	113	pass
D3L220000296C	D3L190390	12/23/2003 14:40	Mercury	Total	0.828	0.833	99	82	113	pass
D3L190000678C	D3L190405	12/30/2003 3:07	Aluminum	Total	185	200	93	80	110	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Antimony .	Total	47.3	50	95	80	105	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Arsenic ·	Total	191 .	200 :	95	. 80	111 .	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Banum	Total	196	200	98	80	117	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Beryllium	Total	4.64	5	93	80	114	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Cadmium	Total	4.78	5	96	80	. 119	pass
D3L190000678C	D3L190405	12/30/2003 3:07	Calcium	Total	4690	5000	94	80	116	. pass
D3L190000678C	D3L190405	12/23/2003 19:13	Chromium	Total	19.3	20	96	80	120	pass
D3L190000678C	D3L190405	- 12/23/2003 19:13	Cobalt	Total	47.4	50	95	80	112	pass.
D3L190000678C	D3L190405	12/23/2003 19:13	Copper	Total	23.3	25 ·	93	80	117	pass
D3L190000678C	D3L190405	12/30/2003 3:07	Iron	Total	93.6	100	94	80.	120	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Lead	Total	49.5	50 .	- 99	80	116	pass .
D3L190000678C	D3L190405	12/30/2003 3:07	Magnesium	Total	4790	-5000	96 '	80	· 115	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Manganese	Total	47.7	50	95	80	113	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Nickel	'Total	47.9	50	96	80	115	pass
D3L190000678C	D3L190405	12/30/2003 3:07	Potassium	Total	4840	5000	97	80	111	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Selenium	Total	201	200	101	80	112	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Silver	Total	. 4.68	5	94	80	109	pass
D3L190000678C	D3L190405	12/30/2003 3:07	Sodium	Total	4830	5000	97	80	117	pass

Lab QC Eval_v4.xis: LCS Page 2 of 14

A. SOIL

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (mg/kg)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
D3L190000678C	D3L190405	12/23/2003 19:13	Thallium	Total	191	200	96	80	109	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Vanadium	Total	47.9	50	96	80	·i13	pass
D3L190000678C	D3L190405	12/23/2003 19:13	Zinc	Total	46.3	50	93	80	115	pass
D3L190000594C	D3L190390	12/30/2003 0:05	Aluminum	Total	197	200	98	80	110	pass
D3L190000594C	D3L190390	12/23/2003 14:34	Antimony	Total	51	50	102	80	105	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Arsenic	Total	216	200	108	80	·111	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Barium	Total	226	200	113	80	117	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Beryllium	Total	5.12	5	102	80	114	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Cadmium	· Total	5.48	5	110	80	119	pass
D3L190000594C	D3L190390	12/30/2003 0:05	Calcium	Total	4980	5000	100	80	116	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Chromium	Total	21.7	20	109	.80	120	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Cobalt	Total	53.9	50	108	80	112	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Соррег	Total	26.8	. 25	· 107	80	117	pass
D3L190000594C	D3L190390	12/30/2003 0:05	Iron	Total	99.9	100	. 100	80	120	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Lead	Total	56.2	50	112	80	116	pass
D3L190000594C	D3L190390	12/30/2003 0:05	Magnesium	Total	5120	5000	102	80	115	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Manganese	Total :	54.7	50 ·	109	80 .	113	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Nickel	Total	55.2	50	110	80	115	pass
D3L190000594C	D3L190390	12/30/2003 0:05	Potassium	Total	5130	5000	103	80	111	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Selenium	Total	221	200	111	80	112	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Silver	Total	5.25	5	105	80	109	pass
D3L190000594C	D3L190390	12/30/2003 0:05	Sodium	Total	4980	5000	100	80	117	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Thailium	Total	215	200	108 .	80	109	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Vanadium	Total	54.3	50	109	80 ·	113	pass
D3L190000594C	D3L190390	12/22/2003 23:43	Zinc	Total	52.2	50	104	80	115	pass
D3L130000135C	D3L110408	12/28/2003 19:24	Aluminum	Total	194	200	97	80	110	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Antimony	Total	49.5	50	99	80	105	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Arsenic	Total	201	200	100	. 80	111	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Barium	Total	207	200	103	80	117	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Beryllium	Total	4.87	5	97	80	114	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Cadmium	Total	4.91	5	98	80	119	pass
D3L130000135C	D3L110408	12/28/2003 19:24	Calcium	Total	5060	5000	101	80	116	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Chromium	Total	19.4	20	97	80	120	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Cobalt	Total	48.3	50-	97	80	112	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Copper	Total	25.2	25	101	80	117	pass
D3L130000135C	D3L110408	12/28/2003 19:24	Iron	Total	101	100	101	80	120	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Lead	Total	51	50	102	80	116	pass
D3L130000135C	D3L110408	12/28/2003 19:24	Magnesium	Total	5070	5000	101	80	115	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Manganese	Total	49.3	50	99	80	113	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Nickel	Total	47.8	50	. 96	80	115	pass
D3L130000135C	D3L110408	12/28/2003 19:24	Potassium	Total	5000	5000	100	.80	111	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Selenium	Total	210	200	105	80	112	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Silver	Total	4.61	. 5	92	80	109	pass
D3L130000135C	D3L110408	12/28/2003 19:24	Sodium	Total	4980	5000	100	80	117	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Thallium	Total	201	200	101	80.	109	pass
D3L130000135C	D3L110408	12/19/2003 17:24	Vanadium	Total	48.6	50	97	80	113	pass
D3L130000135C	D3L110408	12/19/2003 17:24	vanadium	iotai	40.0	50	97	60	.113	pass .

Lab QC Eval_v4.xls: LCS Page 3 of 14

#### A. SOIL

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (mg/kg)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
D3L130000135C	D3L110408	12/19/2003 17:24	Zinc	Total	45.2	50	90	80	115	pass
D3L120000435C	D3L110408	12/18/2003 16:40	Mercury	Total	0.807	0.833	97	82	113	pass
D3L120000434C	D3L110408	12/17/2003 17:36	Mercury	Total	0.808	0.833	97	82	113	pass
D3L110000608C	D3L100414	12/29/2003 19:05	Aluminum ·	Total	189	200	94	80	110	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Antimony	Total	45.8	50	92	80	105	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Arsenic	Total	185	200	93	80	111	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Barium	Total	196	200	98	80	117	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Beryllium	Total	4.26	5	85	80	114	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Cadmium	Total	4.57	· 5	91	80	119	pass
D3L110000608C	D3L100414	12/29/2003 19:05	Calcium	Total	4820	5000	96	80	116	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Chromium	Total	18.1	20	90	80	120	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Cobalt	Total	45.5	50	91	80	112	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Copper	Total	23.6	25	94	80	117	pass
D3L110000608C	D3L100414	12/29/2003 19:05	Iron	Total	97.1	100	97	80	120	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Lead	Total	47.8	50	96	80	116	pass
D3L110000608C	D3L100414	12/29/2003 19:05	Magnesium	Total	4850	5000	97	80	115	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Manganese	Total	45.4	50	91	80	113	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Nickel	Total	45.9	50	92	80	115	pass
D3L110000608C	D3L100414	12/29/2003 19:05	Potassium	Total	4730	5000	95	80	111	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Selenium	Total	193	200	96	80 .	112	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Silver	Total	4.5	. 5	90	80	109	pass
D3L110000608C	D3L100414	12/29/2003 19:05	Sodium	Total	4810	5000	96	80	117	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Thallium	Total	189	200	94	80	109	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Vanadium	Total	45.9	50	92	80	113	pass
D3L110000608C	D3L100414	12/19/2003 11:18	Zinc	Total	43	. 50	86	80	115	pass
D3L110000321C	D3L100414	12/18/2003 16:15	Mercury	Total	0.815	0.833	98	82	113	pass
D3L110000319C	D3L100414	12/18/2003 15:24	Mercury	Total	0.83	0.833	100	82	113	pass

Fail = Percent recovery does not meet QC acceptance criteria (recoveries are outside of documented historical lab acceptance limits for a chemical).

Pass = Percent recovery within QC acceptance criteria (recoveries are within documented historical lab acceptance limits for a chemical).

QC = Quality Control

Lab QC Eval_v4.xls: LCS Page 4 of 14

### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria
D3L110000334C	D3L100414	12/15/2003 18:44	Mercury	Total	5.15	5	103	84	114	Evaluation pass
D3L120000442C	D3L110408	12/15/2003 17:20	Mercury	Total	4.91	5	98	84	114	pass
D3L130000128C	D3L110408	12/19/2003 2:56	Antimony	Total	39.8	40	100	89	109	pass
D3L130000128C	D3L110408	12/19/2003 2:56	Arsenic	Total	38.6	40	96	87	109	pass
D3L130000128C	D3L110408	12/19/2003 2:56	Beryllium	Total	35.5	40	89	86	115	pass
D3L130000128C	D3L110408	12/19/2003 2:56	Cadmium	Total	39.1	40	98	89.	110	pass
D3L130000128C	D3L110408	12/19/2003 2:56	Thallium	· Total	42.4	40	106	84	120	pass
D3L130000167C	D3L110408	12/22/2003 14:40	Aluminum	Total	1940	2000	97	86	108	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Barium	Total	2160	2000	108	93	113	pass
D3L130000167C	D3L110408	12/22/2003 14:40	Calcium	Total	50100	50000	. 100	89	. 110 .	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Chromium	Total	218	200	109	89	112	pass
D3L130000167C	D3L110408	12/16/2003 11;11	Cobalt	Total	527	500	105	86	107	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Copper	Total	258	250	103	86	110	pass.
D3L130000167C	D3L110408	12/22/2003 14:40	Iron	Total	1010	1000	101	88	110	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Lead	Total	526	500	105	91	111	pass
D3L130000167C	D3L110408	12/22/2003 14:40	Magnesium	Total	49900	50000	100	91	111	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Manganese	Total	543	500	109	90	110	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Nickel	Total	528	500	106	90	110	pass
D3L130000167C	D3L110408	12/22/2003 14:40	Potassium	Total	47400	50000	95	86	111	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Selenium	Total	2050	2000	103	88	110	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Silver	Total	49.8	50	100	-85	114	pass
D3L130000167C	D3L110408	12/22/2003 14:40	Sodium	Total	47600	50000	95	91	112	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Vanadium	Total	546	500	109	88	112	pass
D3L130000167C	D3L110408	12/16/2003 11:11	Zinc	Total	498	500	100	85	110	pass
D3L160000478C	D3L100414	12/29/2003 5:22	Aluminum	Total	1990	2000	100	86	108	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Barium	Total	2000	2000	100	93	113	pass
D3L160000478C	D3L100414	12/29/2003 5:22	Calcium.	Total	50900	50000	102	89	110	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Chromium	Total	193	. 200	97	89	112	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Cobalt	Total	476	500	95	86	107	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Copper	Total	236	250	94	86	110	pass
D3L160000478C	D3L100414	12/29/2003 5:22	Iron	Total	1010	1000	101	88	110	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Lead	Total	492	500	98	91	111	pass
D3L160000478C	D3L100414	12/29/2003 5:22	Magnesium	Total	51900	50000	104	91	111	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Manganese	Total	478	500	96	90	110	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Nickel	Total	482	500	96	90	110	pass
D3L160000478C	D3L100414	12/29/2003 5:22	Potassium	Total	51200	50000	102	86	111	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Selenium	Total	1950	2000	97	88	110	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Silver	Total	47.1	50	94	85	114	pass
D3L160000478C	D3L100414	12/29/2003 5:22	Sodium	Total	50800	50000	102	91	112	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Vanadium	Total	494	500	99	88	112	pass
D3L160000478C	D3L100414	12/19/2003 13:40	Zinc	Total	459	500	. 92	85	110	pass
D3L170000625C	D3L100414	12/24/2003 7:20	Antimony	Total	41	40	102	. 89.	109	pass
D3L170000625C	D3L100414	12/24/2003 7:20	Arsenic	Total	40.1	40	- 100	87	109	pass
D3L170000625C	D3L100414	12/24/2003 7:20	Beryllium	Total	42.8	40	107	86	115	pass
D3L170000625C	D3L100414	12/24/2003 7:20	Cadmium	Total	40.8	40	102	89	110	pass
D3L170000625C	D3L100414	12/24/2003 7:20	Thallium	· Total	42.4	40	106	. 84	120	pass

Lab QC Eval_v4.xls: LCS Page 5 of 14

### **B. GROUNDWATER**

B. GROUNDWAT	EK									
Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
D3L210000117C	D3L190390	12/24/2003 6:19	Antimony	Total	40.4	40	101	89	109	pass
D3L210000117C	D3L190390	12/24/2003 6:19	Arsenic	Total	39.5	40	99	87	109	pass
D3L210000117C	D3L190390	12/24/2003 6:19	Beryllium	Total	41.9	40	105	86	115	pass
D3L210000117C	D3L190390	12/24/2003 6:19	Cadmium	Total	40.5	40	101	89	110	pass
D3L210000117C	D3L190390	12/24/2003 6:19	Thallium	Total	41.7	40	104	84	120	pass
D3L210000118C	D3L190390	12/29/2003 7:31	Aluminum	Total	2010	2000	101	86	108	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Barium	Total	2130	2000	107	93	113	pass
D3L210000118C	D3L190390	12/29/2003 7:31	Calcium	Total	51700	50000	103	89	110	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Chromium	Total	212	200	106	89	112	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Coball	Total	515	500	103	86	107	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Copper	Total	252	250	101	86	110	pass
D3L210000118C	D3L190390	12/29/2003 7:31	Iron	Total	1030	1000	103	88	110	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Lead	Total	528	500	. 106	91	111	pass
D3L210000118C	D3L190390	12/29/2003 7:31	Magnesium	Total	52400	50000	105	91	111	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Manganese	Total	518	500	104	90	110	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Nickel	Total	519	500	104 .	90	110	pass
D3L210000118C	D3L190390	12/29/2003 7:31	Potassium	Total	52400	50000	105	86	111	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Selenium	Total	2110	2000	106	88	110	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Silver	Total	49.4	50	99	85	114	pass
D3L210000118C	D3L190390	12/29/2003 7:31	Sodium	Total	50500	50000	-101	. 91	112	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Vanadium	Total	532	500	106	88	112	pass
D3L210000118C	D3L190390	12/23/2003 17:15	Zinc	Total	497	500	99	85	110	pass
D3L220000305C	D3L190390	12/22/2003 18:57	Mercury	Total	4.82	5	96	84	114	pass
D3L220000306C	D3L190419	12/30/2003 17:33	Mercury	Total	4.8	5	-96	- 84	114	pass
D3L220000307C	D3L190461	12/30/2003 18:48	Mercury	Tota!	4.82	5	96	84	114	pass
D3L300000671C	D3L190419	1/7/2004 18:16	Aluminum	Total	1970	2000	99	86	108	pass
D3L300000671C	D3L190461	1/7/2004 18:16	Aluminum	Total .	1970	2000	99	86	108	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Barium	Total	2150	2000	107	93	113	pass
D3L300000671C	D3L190461	1/7/2004 14:53	Barium	Total	2150	2000	107 -	93	113	pass
D3L300000671C	D3L190419	1/7/2004 18:16	Calcium	Total	49100	50000	98	89	110	pass
D3L300000671C	D3L190461	1/7/2004 18:16	Calcium	Total	49100	50000	98	89	110	pass
D3L300000671C	D3L190461	1/7/2004 14:53	Chromium	Total	211	200	105	89	112	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Chromium	Total	211	200	105	89	112	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Cobalt	Total	510	500	102	86	107	pass
D3L300000671C	D3L190461	1/7/2004 14:53	Cobalt	Total	510	500	102	86	107	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Copper	Total	256	' 250	102	86	110	pass
D3L300000671C	D3L190419	1/7/2004 18:16	Iron	Total	989	1000	99 .	88	110	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Lead	Total	515	500	103	91	111	pass
D3L300000671C	D3L190419	1/7/2004 18:16	Magnesium	Total	51100	50000	102	91 .	111	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Manganese	Total	526	500	105	90	110	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Nickel	Total	503	. 500	101	90	110	· pass
D3L300000671C	D3L190419	1/7/2004 18:16	Potassium	Total	53700	. 50000	107	86	111	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Selenium	Total	1960	2000	98	88	110	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Silver	Total	49.6	50	99	85	.114	pass
D3L300000671C	D3L190419	1/7/2004 18:16	Sodium	Total	. 50000	50000	100	91	112	pass
D3L300000671C	D3L190419	1/7/2004 14:53	Vanadium	Total	526	500	105	88	112	pass

Lab QC Eval_v4.xls: LCS Page 6 of 14

### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
D3L300000671C	D3L190419	1/7/2004 14:53	Zinc	Total	490	500	98	85	110	pass
D3L300000672C	D3L190419	1/7/2004 17:57	Antimony	Total	42.3	40	106	89	109	pass
D3L300000672C	D3L190419	1/7/2004 17:57	Arsenic	Total	39.9	40	100	87	109	pass
D3L300000672C	D3L190419	1/7/2004 17:57	Beryllium	Total	37.9	40	95	86	115	pass
D3L300000672C	D3L190419	1/7/2004 17:57	Cadmium	Total	39.8	40	100	89	110	pass
D3L300000672C	D3L190419	1/7/2004 17:57	Thallium	Total	42.2	40	105	84	120	pass
	D4E040112	5/17/2004 12:18:00 AM	Aluminum	Dissolved	2010	2000	100	86	108	pass
· ·	D4E040112	5/17/2004 8:26:00 PM	Antimony	Dissolved	39.9	40	100	89	109	pass
	D4E040112	5/17/2004 8:26:00 PM	Arsenic	Dissolved	· 39.8	40	100	87	109	pass
	D4E040112	5/15/2004 2:50:00 AM	Barium -	Dissolved	2120	2000 .	106	93	113	pass
	D4E040112	5/17/2004 8:26:00 PM	Beryllium	Dissolved	43.8	40	110	86	115	pass
	D4E040112	5/17/2004 8:26:00 PM	Cadmium	Dissolved	39.7	40	99	89	110	pass
	D4E040112	5/17/2004 12:18:00 AM	Calcium	Dissolved	48600	50000	97	89	110	pass
	D4E040112	5/15/2004 2:50:00 AM	Chromium	Dissolved	184	200	92	89	112	pass
	D4E040112	5/15/2004 2:50:00 AM	Cobalt	Dissolved	458	500	92	86	107	pass
	D4E040112	5/15/2004 2:50:00 AM	Copper	Dissolved	249	250	100	86	110	pass
-	D4E040112	5/17/2004 12:18:00 AM	Iron	Dissolved	1030	1000	103	88	110	pass
	D4E040112	5/15/2004 2:50:00 AM	Lead	Dissolved	467	500	93	91	111	pass
	D4E040112	5/17/2004 12:18:00 AM	Magnesium	Dissolved	50500	50000	101	91	111	pass
	D4E040112	5/15/2004 2:50:00 AM	Manganese	Dissolved	473	500	95	90	110	pass
	D4E040112	5/13/2004 10:50:00 AM	Mercury	Dissolved	5.25	5	105	84	114	pass
	D4E040112	5/15/2004 2:50:00 AM	Nickel	Dissolved	465	500	93	90	110	pass
	D4E040112	5/17/2004 12:18:00 AM	Potassium	Dissolved	49300	50000	99	86	111	pass
	D4E040112	5/15/2004 2:50:00 AM	Selenium	Dissolved	1910	2000	95	88	110	pass
	D4E040112	5/15/2004 2:50:00 AM	Silver	Dissolved	49.8	50	100	85	114	pass
	D4E040112	5/17/2004 12:18:00 AM	Sodium	Dissolved	49400	50000	99	91	112	pass
	D4E040112	5/17/2004 8:26:00 PM	Thallium	Dissolved	41.4	40	103	84	120	pass
<del> </del>	D4E040112	5/15/2004 2:50:00 AM	Vanadium	Dissolved	471	500	94	88	112	pass
	D4E040112	5/15/2004 2:50:00 AM	Zinc	Dissolved	450	500	90	85	110	pass
	D4E040112	5/15/2004 8:31:00 AM	Aluminum	Total	2160	2000.	108	86	108	pass
	D4E040112	5/18/2004 8:09:00 PM	Antimony	Total	39.9	40	100	89	109	pass
	D4E040112	5/18/2004 8:09:00 PM	Arsenic	Total	41.4	40	103	87	109	pass
	D4E040112	5/14/2004 10:11:00 PM	Barium	Total	2130	2000	107	93	ุ 113	pass
	D4E040112	5/18/2004 8:09:00 PM	Beryllium	Total	. 42	40	105	86	115	pass
	D4E040112	5/18/2004 8:09:00 PM	Cadmium	Total	40.8	40	102	89	110	pass
	D4E040112	5/15/2004 8:31:00 AM	Calcium	Total	52000	50000	104	89	110	pass
	D4E040112	5/14/2004 10:11:00 PM	Chromium	Total	191	200	95	89	112	pass
	D4E040112	5/14/2004 10:11:00 PM	Cobalt	Total	473	500	95	86	107	pass
	D4E040112	5/14/2004 10:11:00 PM	Copper	Total	248	250·	99	86	110	pass
	D4E040112	5/15/2004 8:31:00 AM	Iron	Total	1070	1000	107	88	110	pass
	D4E040112	5/14/2004 10:11:00 PM	Lead	Total	479	500	96	91	111	pass
	D4E040112	5/15/2004 8:31:00 AM	Magnesium	Total	52700	50000	105	91	11,1	pass
	D4E040112	5/14/2004 10:11:00 PM	Manganese	Total	485	500	97	90	110	pass
	D4E040112	5/10/2004 3:19:00 PM	Mercury	Total	4.83	5	97	84	114	pass
	D4E040112	5/14/2004 10:11:00 PM	Nickel	Total	481	500	96	90	110	pass
	D4E040112	5/15/2004 8:31:00 AM	Potassium	Total	51000	50000	102	86	111	pass

Lab QC Eval_v4.xls: LCS Page 7 of 14

### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
	D4E040112	5/14/2004 10:11:00 PM	Selenium	Total	1920	2000	96	88	110	pass
	D4E040112	5/14/2004 10:11:00 PM	Silver	Total	50.4	50	101	85	114	pass
	D4E040112	5/15/2004 8:31:00 AM	Sodium	Total	51700	50000	103	91	112	pass
•	D4E040112	5/18/2004 8:09:00 PM	Thallium	Tota!	42.5	40	106	84	120	pass
	D4E040112	5/14/2004 10:11:00 PM	Vanadium	Total	488	500	98	88	112	pass
	D4E040112	5/14/2004 10:11:00 PM	Zinc	Total	464	500	93	85 '	110	pass
	D4E260121	6/4/2004 2:17:00 AM	Aluminum	Dissolved	2100	2000	105	86	108	pass
	D4E260121	6/19/2004 8:08:00 PM	Antimony	Dissolved	38.7	40	97	89	109	pass
	D4E260121	6/19/2004 8:08:00 PM	Arsenic	Dissolved	40.3	40	101	87	109	pass
	D4E260121	6/1/2004 8:29:00 PM	Barium	Dissolved	2200	2000	110	93	113	pass
	D4E260121	6/19/2004 8:08:00 PM	Beryllium	Dissolved	45.7	40	114	86	115	pass
	D4E260121	6/19/2004 8:08:00-PM	Cadmium	Dissolved	40.5	40.	101	89	110	pass
<del></del>	D4E260121	6/4/2004 2:17:00 AM	Calcium	Dissolved	51400	50000	103	89	110	pass
	D4E260121	6/1/2004 8:29:00 PM	Chromium	Dissolved	201	200	100	89	112	pass
	D4E260121	6/1/2004 8:29:00 PM	Coball	Dissolved	490	500	. 98	86	107	pass
	D4E260121	6/1/2004 8:29:00 PM	Copper	Dissolved	271	250	108	86	110	. pass
	D4E260121	6/4/2004 2:17:00 AM	iron	Dissolved	1050	1000.	105	88	110	pass
	D4E260121	6/1/2004 8:29:00 PM	Lead	Dissolved	499	500	100	91	111	pass
	D4E260121	6/4/2004 2:17:00 AM	Magnesium	Dissolved	52400	50000	105	91	111	pass
	D4E260121	6/1/2004 8:29:00 PM	Manganese	Dissolved	513	500	103	90 .	110	pass
	D4E260121	6/6/2004 12:37:00 PM	Mercury	Dissolved	4.68	5	94	84	114	pass
	D4E260121	6/1/2004 8:29:00 PM	Nickel	Dissolved	477	500	95	90	1:10	pass
	D4E260121	6/4/2004 2:17:00 AM	Potassium	Dissolved	50600	50000	101	86	111	pass
	D4E260121	6/1/2004 8:29:00 PM	Selenium	Dissolved	2110	2000	106	88	110	pass
	D4E260121	6/1/2004 8:29:00 PM	Silver :	Dissolved	51.5	50	. 103	85	114	pass
· · · · ·	D4E260121	6/4/2004 2:17:00 AM	Sodium	Dissolved	51500	500,00	103	91	112	pass
	D4E260121	6/19/2004 8:08:00 PM	Thallium	Dissolved	43.2	40	108	84	120	pass
	D4E260121	6/1/2004 8:29:00 PM	Vanadium	Dissolved	514	. 500	103	88	112	pass
	D4E260121	6/1/2004 8:29:00 PM	Zinc	Dissolved	477	500	95	85	110	pass
	D4E260121	6/4/2004 1:32:00 AM	Aluminum	Total	2100	2000	105	86	108	pass
,	D4E260121	6/19/2004 1:02:00 PM	Antimony	Total	39.9	40	100	89	109	pass
	D4E260121	6/19/2004 1:02:00 PM	Arsenic	Total	39.3	40	98	87	109	pass
	D4E260121	6/1/2004 7:43:00 PM	Barium	Total	2110	2000	.106	93	113	pass
	D4E260121	6/19/2004 1:02:00 PM	Beryllium	Total	40.9	40	102	86	115	pass
	D4E260121	6/19/2004 1:02:00 PM	Cadmium	Total	39.5	40	99	89	110	pass
	D4E260121	6/4/2004 1:32:00 AM	. Calcium	Total	51900	50000	104	89	110	pass
	D4E260121	6/1/2004 7:43:00 PM	Chromium	Total	197	200	98	` 89	112	pass
	D4E260121	6/1/2004 7:43:00 PM	Cobalt	Total	477	500	. 95	86	107	pass
<del></del>	D4E260121	6/1/2004 7:43:00 PM	Copper	Total	260	250	104	86	110	pass
·	D4E260121	6/4/2004 1:32:00 AM	Iron	Total	1070	1000	107	88	110	pass
	D4E260121	6/1/2004 7:43:00 PM	Lead	Total	486	500	97	. 91	111	pass
	D4E260121	6/4/2004 1:32:00 AM	Magnesium	Total	52600	50000	105	91	111	pass
	D4E260121	6/1/2004 7:43:00 PM	Manganese	Total	500 .	500	100	90	110	pass
	D4E260121	6/6/2004 2:05:00 PM	Mercury	Total	4.96	5	99	84	114	pass
	D4E260121	6/1/2004 7:43:00 PM	Nickel	Total	466	500	93	90	110-	pass
	D4E260121	6/4/2004 1:32:00 AM	Potassium	Total	50700	50000	101	86	111	pass

Lab QC Eval_v4.xls. LCS Page 8 of 14

### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
	D4E260121	6/1/2004 7:43:00 PM	Selenium	Total	2020	2000	101	88	110	pass
	D4E260121	6/1/2004 7:43:00 PM	Silver	Total	50.3	50	101	85	114	pass
	D4E260121	6/4/2004 1:32:00 AM	Sodium	Total	52200	50000	104	91	112	pass
	D4E260121	6/19/2004 1:02:00 PM	Thallium	Total	42.2	40	105	84	120	pass
	D4E260121	6/1/2004 7:43:00 PM	Vanadium	Total	501	500	100	88	112	pass
	D4E260121	6/1/2004 7:43:00 PM	Zinc	Total	455	500	91	85	110	pass
	D4G010356	7/22/2004 2:48:00 AM	Aluminum	Dissolved	2040	2000	102	86	108	pass
	D4G010356	7/12/2004 7:45:00 PM	Antimony	Dissolved	39.2	40	98	89	109	pass
	D4G010356	7/12/2004 7:45:00 PM	Arsenic	Dissolved	37.9	40	95 .	87	109	pass
	D4G010356	7/13/2004 3:46:00 AM	Barium	Dissolved	2080	2000	104	93	113	'pass
	D4G010356	7/12/2004 7:45:00 PM	Beryllium	Dissolved	40.7	40	102	86	115	pass
	D4G010356	7/12/2004 7:45:00 PM	Cadmium	Dissolved	38.9	40	97	89	110	pass
	D4G010356	7/22/2004 2:48:00 AM	Calcium	Dissolved	50200	50000	100	89	110	pass
	D4G010356	7/13/2004 3:46:00 AM	Chromium	· Dissolved	210	200	105	89	112	pass
	D4G010356	7/13/2004 3:46:00 AM	Cobalt	Dissolved	510	500	102	86	107	pass
	D4G010356	7/13/2004 3:46:00 AM	Copper	Dissolved	251	250	100	86	110	pass
	D4G010356	7/22/2004 2:48:00 AM	. Iron	Dissolved	978	1000	98	88	110	pass
	D4G010356	7/13/2004 3:46:00 AM	Lead	Dissolved	511	500	102	91	111	pass
	D4G010356	7/22/2004 2:48:00 AM	Magnesium	Dissolved	50300	50000	101	91	111	pass
	D4G010356	7/13/2004 3:46:00 AM	Manganese	Dissolved	525	500	. 105	90	110	pass
	D4G010356	7/14/2004 11:15:00 PM	Mercury	Dissolved	5.19	5	104	84	114	pass .
	D4G010356	7/13/2004 3:46:00 AM	Nickel	Dissolved	516	500	103	90	110	pass
	D4G010356	7/22/2004 2:48:00 AM	Potassium	Dissolved	50000	50000	100	86	113	pass
	D4G010356	7/13/2004 3:46:00 AM	Selenium	Dissolved	2030	2000	102	88	110	pass
	D4G010356	7/13/2004 3:46:00 AM	Silver	Dissolved	54.2	50	108	85	114	pass
	D4G010356	7/22/2004 2:48:00 AM	Sodium	Dissolved	49600	50000	99	91	112	pass
	D4G010356	7/12/2004 7:45:00 PM	Thallium	Dissolved	39.5	40	99	84	120	pass
	D4G010356	7/13/2004 3:46:00 AM	Vanadium	Dissolved	521	500	104	88	112	pass
	D4G010356	7/22/2004 2:48:00 AM	Zinc	Dissolved	484	500	97	85	110	pass .
	D4G010356	7/22/2004 1:52:00 AM	Aluminum	Total	2030	2000	101	86	108	pass
	D4G010356	7/12/2004 8:30:00 PM	Antimony	Total	40.9	40	. 102	89	109	pass .
	D4G010356	7/12/2004 8:30:00 PM	Arsenic	Total	38.8	40	97	87	109	pass
	D4G010356	7/13/2004 2:45:00 AM	Barium	Total	2060	2000	103	93	113	pass
	D4G010356	7/12/2004 8:30:00 PM	Beryllium	Total	41.8	40	104	86	115	pass
	D4G010356	7/12/2004 8:30:00 PM	Cadmium	Total	39.5	40	99	. 89	110	pass
	D4G010356	7/22/2004 1:52:00 AM	Calcium	Total	50000	50000	100	89	110	pass
	D4G010356	7/13/2004 2:45:00 AM	Chromium	Total	207	200	103	89	112	pass
	D4G010356	7/13/2004 2:45:00 AM	Cobalt	Total	501	500	100	86	107	pass
	D4G010356	7/13/2004 2:45:00 AM	Copper	Total	245	250	98	86	110	pass
	D4G010356	7/22/2004 1:52:00 AM	Iron	Total	967	1000	97	88	110	pass
	D4G010356	7/13/2004 2:45:00 AM	Lead	Total	503	500	101	91	111	pass
	D4G010356	7/22/2004 1:52:00 AM	Magnesium	Total	50100	50000	100	91	111	pass
	D4G010356	7/13/2004 2:45:00 AM	Manganese	Total	515	500	103	90	110	pass
	D4G010356	7/14/2004 10:34:00 PM	Mercury	Total	4.81	5	96	84	114	pass
	D4G010356	7/13/2004 2:45:00 AM	Nickel	Total	509	500	102	90	110	pass
	D4G010356	7/22/2004 1:52:00 AM	Potassium	Total	50000	50000	100	86	111	pass

Lab QC Eval_v4.xls: LCS Page 9 of 14

### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
	D4G010356	7/13/2004 2:45:00 AM	Selenium	Total	1970	2000	98	88	110	pass
	D4G010356	7/13/2004 2:45:00 AM	Silver	Total	53.3	50	107	85	114	pass
	D4G010356	7/22/2004 1:52:00 AM	Sodium	Total	49800	50000	100	91	112	pass
	D4G010356	7/12/2004 8:30:00 PM	Thallium	Total -	39.6	40	99	84	120	pass
	D4G010356	7/13/2004 2:45:00 AM	Vanadium	Total	511	500	102	88	112	pass
	D4G010356	7/22/2004 1:52:00 AM	Zinc	Total	485	500	97	85	110	pass
	D4G280388	8/7/2004 5:23:00 AM	Aluminum	Dissolved	2080	2000	104	86	108	pass
	D4G280388	8/12/2004 9:59:00 PM	Antimony	Dissolved	39.5	40	99	89	109	pass
	D4G280388	8/12/2004 9:59:00 PM	Arsenic	Dissolved	39.4	40	98	87	109	pass
	D4G280388	8/6/2004 7:42:00 PM	Barium	Dissolved	2110	2000	106	93	113	pass
	D4G280388	8/12/2004 9:59:00 PM	Beryllium	Dissolved	40.8	40	102	86	115	pass
	D4G280388	8/12/2004 9:59:00 PM	Cadmium	Dissolved	39.9	40	100	89	110	pass
	D4G280388	8/7/2004 5:23:00 AM	Calcium	Dissolved	51800	50000	104	89	110	pass
	D4G280388	8/6/2004 7:42:00 PM	Chromium	Dissolved	211	200	106	89	112	pass
	D4G280388	8/6/2004; 7:42:00 PM	Cobalt	Dissolved	506	500	101	86	107	pass
	D4G280388	8/6/2004 7:42:00 PM	Copper	Dissolved	242	250	97	86	110	pass
	D4G280388	8/7/2004 5:23:00 AM	Iron	Dissolved	1050	1000	105	88	110	pass
	D4G280388	8/6/2004 7:42:00 PM	Lead	Dissolved	521	500	104	91	· 111	pass
	D4G280388	8/7/2004 5:23:00 AM	Magnesium	Dissolved	53800	50000	108	91	111	pass
	D4G280388	8/6/2004 7:42:00 PM	Manganese	Dissolved	- 522	500	104	90	110	pass
	D4G280388	8/12/2004 1:20:00 PM	Mercury	Dissolved	5.46	5	109	84	114	pass
	D4G280388	8/6/2004 7:42:00 PM	Nickel	Dissolved	524	500	105	90	110	pass
	D4G280388	8/7/2004 5:23:00 AM	Potassium	Dissolved	51700	50000	103	86	111	pass
	D4G280388	8/6/2004 7:42:00 PM	Selenium	Dissolved	2080	2000	104	88	1.10	pass
	D4G280388	8/6/2004 7:42:00 PM	Silver	Dissolved	50	- 50	100	85	114	pass
	D4G280388	8/7/2004 5:23:00 AM	Sodium	Dissolved	54300	50000	109	91	112	pass
:	D4G280388	8/12/2004 9:59:00 PM	Thallium	Dissolved	40.8	40	102	84	120	pass
	D4G280388	8/6/2004 7:42:00 PM	Vanadium	Dissolved	516 .	500	103	88	112	pass
	D4G280388	8/6/2004 7:42:00 PM	Zinc	Dissolved	525	500	105	85	110	pass
	D4G280388	8/6/2004 3:22:00 AM	Aluminum	Total	1990	2000	. 99	86	108	pass
	D4G280388	8/9/2004 5:38:00 PM	Antimony	Total	40.4	40	101	89	109	pass
	D4G280388	8/9/2004 5:38:00 PM	Arsenic	Total	39.4	40	98	87	109	pass
	D4G280388	8/4/2004 9:53:00 AM	Barium	Total	2070	2000	104	93	113,	pass
	D4G280388	8/9/2004 5:38:00 PM	Beryllium	Total	43.4	40	. 109	86	115	pass
	D4G280388	8/9/2004 5:38:00 PM	Cadmium	Total	40.3	40	101	89	110	pass
	D4G280388	8/6/2004 3:22:00 AM	Calcium	Total	50100	50000	100	89	110	pass
	D4G280388	8/4/2004 9:53:00 AM	Chromium	Total	204	200	. 102	89	. 112	pass
	D4G280388	8/4/2004 9:53:00 AM	Cobalt	Total	499	500	100	86	107	pass
·	D4G280388	8/4/2004 9:53:00 AM	Copper	Total	250	250	100	86	110	pass
	D4G280388	8/6/2004 3:22:00 AM	Iron	Total	1020	1000	102	88	110	pass
	D4G280388	8/4/2004 9:53:00 AM	Lead	Total	503	500	101	91	111	pass
	D4G280388	8/6/2004 3:22:00 AM	Magnesium	Total .	51900	50000	104	91	111.	pass
	D4G280388	8/4/2004 9:53:00 AM	Manganese	Total	508	500	102	90	110	pass
	D4G280388	8/13/2004 3:10:00 PM	Mercury	Total	5.16	5	103	84	114	pass
	D4G280388	8/4/2004 9:53:00 AM	Nickel	Total	502	500	100	. 90	110	pass
<del></del> -	D4G280388	8/6/2004 3:22:00 AM	Potassium	Total	50600	50000	101	86	111	pass

Lab QC Eval_v4.xis: LCS Page 10 of 14

#### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
	D4G280388	8/4/2004 9:53:00 AM	Selenium	Total	2060	2000	103	88	110.	pass
	D4G280388	8/4/2004 9:53.00 AM	Silver	Total	50.6	50	101	85	114	pass
	D4G280388	8/6/2004 3:22:00 AM	Sodium	Total	51500	50000	103	91	112	pass
·	D4G280388	8/9/2004 5:38:00 PM	Thallium	Total	44.1	40	110	84	120	pass
	D4G280388	8/4/2004 9:53:00 AM	Vanadium	Total	508	500	102	88	112	pass
	D4G280388	8/6/2004 3:22:00 AM	Zinc	Total	481	500	96	85	110	pass
D4K190000595C	D4K190487	11/23/2004 20:49	Aluminum	Total	2000	2000	100	86	108	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Barium	Total	2040	2000	102	93	113	pass
D4K190000595C	D4K190487	11/23/2004 20:49	Calcium	Total	53000	50000	106	89	110	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Chromium	Totai	195	200	98	89	112	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Cobalt	Total	471	500	94	86	107	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Copper	Total	246	250	98	86	110	pass
D4K190000595C	D4K190487	11/23/2004 20:49	Iron	Total	1050	1000	105	88	110	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Lead	Total	486	500	97	91-	111	pass
D4K190000595C	D4K190487	11/23/2004 20:49	Magnesium	Total	53500	50000	107	91	1.11	pass
D4K190000595C	D4K190487	11/23/2004 20:49	Manganese	Total	486	500	97	90	110	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Nickel	Total	· 488	500	98	90	110	pass
D4K190000595C	D4K190487	11/23/2004 20:49	Potassium	Total	52400	50000	105	86	111	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Selenium	Total	1920	2000	96	88	110	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Silver	Total	50.8	50	102	85	114	pass
D4K190000595C	D4K190487	11/23/2004 20:49	Sodium	Totai	53400	50000	107	91	112	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Vanadium	Total	492	500	98	88	112	pass
D4K190000595C	D4K190487	11/22/2004 19:36	Zinc	Total	459	500	92	85	110	pass
D4K190000614C	D4K190487	11/25/2004 11:53	Aluminum	Dissolved	1930	2000	97	86	108	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Barium	Dissolved	2060	2000	103	93	113	pass
D4K190000614C	D4K190487	11/25/2004 11:53	Calcium	Dissolved	51800	50000	104	89	110	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Chromium	Dissolved	203	200	101	89	112	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Cobalt	Dissolved	491	500	98 -	86	107	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Copper	Dissolved	250	250	100	86	110	pass
D4K190000614C	D4K190487	11/25/2004 11:53	Iron	Dissolved	998	1000	100	88	110	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Lead	Dissolved	505	500	101	91	111	pass
D4K190000614C	D4K190487	11/25/2004 11 53	Magnesium	Dissolved	52200	50000	104	91	111	pass
D4K190000614C	D4K190487	11/25/2004 11:53	Manganese	Dissolved	493	500	99	90	110	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Nickel	Dissolved	505	500	101	90	110	pass
D4K190000614C	D4K190487	11/25/2004 11:53	Potassium	Dissolved	53700	50000	107	86	111	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Selenium	Dissolved	2010	2000	100	88	110	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Silver	Dissolved	53.1	50	106	85	114	pass
D4K190000614C	D4K190487	11/25/2004 11:53	Sodium	Dissolved	52300	50000	105	91	112	pass
D4K190000614C	D4K190487	11/29/2004 13:27	Vanadium	Dissolved	506	500	101	88	112	pass
D4K190000614C	D4K190487	11/25/2004 11:53	Zinc	Dissolved	491	500	98	85	110	pass
D4K190000616C	D4K190487	12/1/2004 17:53	Antimony	Dissolved	40.9	40	102	89	109	pass
D4K190000616C	D4K190487	12/1/2004 17:53	Arsenic	Dissolved	41.7	40	104	87	109	pass
D4K190000616C	D4K190487	12/1/2004 17:53	Beryllium	Dissolved	42	40	105	96	115	pass
D4K190000616C	D4K190487	12/1/2004 17:53	Cadmium	Dissolved	42.2	40	105	89	110	pass
	D4K190487	12/1/2004 17:53	Thallium	Dissolved	41.6	40	104	84	120	pass
D4K190000616C										

Lab QC Eval_v4.xls: LCS Page 11 of 14

### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
D4K290000241C	D4K190487	12/1/2004 20:52	Arsenic	Total	41.3	40	103	87	109	pass
D4K290000241C	D4K190487	12/1/2004 20:52	Beryllium	Total	·42.6	40	106	86	115	pass
D4K290000241C	D4K190487	12/1/2004 20:52	Cadmium	Total	38.6	40	97	89	110	pass
D4K290000241C	D4K190487	12/1/2004 20:52	Thallium	Total	43.4	40	108	84	120	pass
D4K240000531C	D4K190487	11/30/2004 12:46	Mercury	Total	4.91	5	98	85	114	pass
D4K240000537C	D4K190487	12/2/2004 17:48	Mercury	Dissolved	5.25	5	105	85	114	pass
D5C290000583C	D5C280224	3/31/2005 0:31	Aluminum	Total	1960	2000	98	86	108	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Barium	Total	2050	2000	103	93	113	pass
D5C290000583C	D5C280224	3/31/2005 0:31	Calcium	Total	51900	50000	104	89	110	´ pass
D5C290000583C	D5C280224	3/30/2005 16:16	Chromium	Total	205	200	103	89	_112	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Cobalt	Total	495	500	99	86	107	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Copper	Total	247	250	99	86	110	pass
D5C290000583C	D5C280224	3/31/2005 0:31	Iron	Total	1050	1000	105	88	110	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Lead	Total	497	500	99	91	.111	pass
D5C290000583C	D5C280224	3/31/2005 0:31	Magnesium	Total	50200	50000	100	91	111	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Manganese	Total	499	500	100	90	110	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Nickel	Total	503	500	101	90	110	pass
D5C290000583C	D5C280224	3/31/2005 0:31	Potassium	Total	48300	50000	97	86	111	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Selenium	Total	2020	2000	101	88	110	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Silver	Total	53.1	50	106	85	114	pass
D5C290000583C	D5C280224	3/31/2005 0:31	Sodium	Total	50000	50000	100	91	112	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Vanadium	Total	513	500	103	88	112	pass
D5C290000583C	D5C280224	3/30/2005 16:16	Zinc	Total	488	500	98	85	110	pass
D5C290000584C	D5C280224	3/30/2005 22:06	Antimony	Total	40.9	40 -	102	89	109	pass
D5C290000584C	D5C280224	3/30/2005 22:06	Arsenic	Total	40.1	40	100	87	109	pass
D5C290000584C	D5C280224	3/30/2005 22:06	Beryllium	Total	42.3	. 40	106	86	115	pass
D5C290000584C	D5C280224	3/30/2005 22:06	Cadmium	Total	40.6	. 40	101 .,	89	110	pass
D5C290000584C	D5C280224	3/30/2005 22:06	Thallium	Total	42.4	40	106	84 .	120	pass
D5C290000109C	D5C280224	3/29/2005 17:53	Mercury	Total	4.86	5	97	85	114	pass
D5E040000197C	D5E020222	5/6/2005 21:59	Aluminum	Dissolved	2030	2000	102	86	108	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Barium	Dissolved	2090	2000	104	93	113	pass
D5E040000197C	D5E020222	5/6/2005 21:59	Calcium	Dissolved	50800.	50000	. 102	89	. 110	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Chromium	Dissolved	200	200	100	89	112.	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Cobalt	Dissoived	487	500	97	86	107	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Copper	Dissolved	245	250	98	86	. 110	pass
D5E040000197C	D5E020222	5/6/2005 21:59	iron	Dissolved	1030	1000	103	88	110	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Lead	Dissolved	493	500	99	91	111	pass
D5E040000197C	D5E020222	5/6/2005 21:59	Magnesium	Dissolved	. 51400	50000	103	91	111	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Manganese	Dissolved	498	500	100	90	110	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Nickel	Dissolved	497	500	99	90	110	pass
D5E040000197C	D5E020222	5/6/2005 21:59	Potassium	Dissolved	52000	50000	104	86	111	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Selenium	Dissolved	1980	2000	99	88	110	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Silver	Dissolved	52.7	50	105	85	114	pass
D5E040000197C	D5E020222	5/6/2005 21:59	Sodium	Dissolved	51700	50000	103	91	112	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Vanadium	Dissolved	498	500	100	88	112	pass
D5E040000197C	D5E020222	5/6/2005 12:17	Zinc	Dissolved	471	500	94	85	110	pass

Lab QC Eval_v4.xls: LCS Page 12 of 14

### B. GROUNDWATER

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit	QC Acceptance Criteria
D5E040000223C	D5E020222		Aluminum	Total	2000	2000	100	06	(%)	Evaluation
D5E040000223C	<del>                                     </del>	5/6/2005 19:51	<b></b>	<del> </del>	<del> </del>	<del></del>		86	108	pass
	D5E020222	5/6/2005 15:08	Barium	Total	1960	2000	98	93	113	pass
D5E040000223C	D5E020222	5/6/2005 19:51	Calcium	Total	50000	50000	100	89	110	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Chromium	Total	206	200	103	89	112	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Cobalt	Total	503	500	101	86	107	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Copper	Total	235	250	94	86	110	pass
D5E040000223C	D5E020222	5/6/2005 19:51	Iron	Total	1020	1000	102	88	110	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Lead	Total	507	500	101	91	111	pass
D5E040000223C	D5E020222	5/6/2005 19:51	Magnesium	Total	50700	50000	101	91	111	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Manganese	Total	507	500	101	90	110	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Nickel	Total	507	500	101	90	110	pass
D5E040000223C	D5E020222	5/6/2005 19:51	Potassium	Total	51000	50000	102	86	111	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Selenium	Total	1970	2000	. 99	88	110	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Silver	Total	50.3	50	. 101	85	114	pass
D5E040000223C	D5E020222	5/6/2005 19:51	Sodium	Total	51300	50000	103	91	112	pass
D5E040000223C	D5E020222	5/6/2005 15:08	Vanadium	Total	508	500	102	88	112	pass
D5E040000223C	D5E020222	5/6/2005 19:51	Zinc	Total	483	500	97	85	110	pass
D5E040000643C	D5E020222	5/9/2005 22:12	Antimony	Dissolved	40.5	40	101	89	109	pass
D5E040000643C	D5E020222	5/9/2005 22:12	Arsenic	Dissolved	39.4	40	99	87	109	pass
D5E040000643C	D5E020222	5/9/2005 22:12	Beryllium	Dissolved	42 ·	40	105	86	115	pass
D5E040000643C	D5E020222	5/9/2005 22:12	Cadmium	Dissolved	39.4	40	98	89	110	pass
D5E040000643C	D5E020222	5/9/2005 22:12	Thallium	Dissolved	40.9	40	102	84	120	pass
D5E040000644C	D5E020222	5/9/2005 23:10	Antimony	Total	39.5	40	99	89	109	pass
D5E040000644C	D5E020222	5/9/2005 23:10	Arsenic	Total	37.5	40	94	87	109	pass
D5E040000644C	D5E020222	5/9/2005 23:10	Beryllium	Total	38.9	40	97	86	115	pass
D5E040000644C	D5E020222	5/9/2005 23:10	Cadmium	Total	38.2	40	95	89	110	pass
D5E040000644C	D5E020222	5/9/2005 23:10	Thallium	Total	40.9	40	102	84	120	pass
D5E090000233C	D5E020222		Mercury	Total	5.03	5	101	85	114	pass
D5E090000238C	D5E020222	5/9/2005 17:51 5/9/2005 17:27	Mercury	Dissolved	4.96	5	99	85	114	pass
D51220000492C	D5I190220	9/27/2005 17:29	Aluminum	Dissolved	2080	2000	104	86	108	pass
D5I220000237C	D5I190220	9/26/2005 21:02	Aluminum	Total	1910	2000	96	86	108	pass
D5I220000527C	D5l190220	9/29/2005 2:27	Antimony	Dissolved	40.3	40	101	89	109	pass
D5I220000193C	D5I190220		Antimony	Total	40.4	40	101	89	109	pass
Ɗ51220000527C	D5I190220	9/27/2005 19:48	Arsenic	Dissolved	40	40	100	87	109	pass
D51220000193C	D5I190220	9/29/2005 2:27	Arsenic	Total	38.4	40	96	87	109	pass
D51220000193C	D5I190220	9/27/2005 19:48	Barium	Dissolved	2110	2000	106	93	113	pass
D51220000492C	D5/190220	9/28/2005 2:55	Barium	Total	1980	2000	99	93	113	pass
D5i220000237C	D5I190220	9/28/2005 8:03	Beryllium	Dissolved	44.5	40	111	86	115	pass
D5i220000327C	D51190220	9/29/2005 2:27	Beryllium	Total	41.5	40	104	86	115	pass
D51220000193C	D51190220	9/27/2005 19:48	Cadmium	Dissolved	39.5	40	99	89	110	<del></del>
		9/29/2005 2:27		Total		40	99	<del> </del>		pass
D51220000193C	D51190220	9/27/2005 19:48	Cadmium		38.8			89	110	pass
D51220000492C	D5 190220	9/27/2005 17:29	Calcium	Dissolved	51300	50000	103	89	110	pass.
D51220000237C	D51190220	9/26/2005 21:02	Calcium	Total	46200	50000	92	89 86	110	pass
D51220000492C	D51190220	9/28/2005 2:55	Chromium	Dissolved	196	200	98	89	112	pass
D51220000237C	D5I190220	9/28/2005 8:03	Chromium	Total	195	200	98	89	112	pass
D51220000492C	D5I190220	9/28/2005 2:55	Cobalt	Dissolved	492	50C	98	86	107	pass

Lab QC Eval_v4.xls: LCS Page 13 of 14

#### **B. GROUNDWATER**

Lab Sample ID	Sample Analysis Lot	Analysis Date/Time	Anayte	Analyte Type	Result (ug/L)	Spike Amount	Percent Recovery (%)	Lower Limit (%)	Upper Limit (%)	QC Acceptance Criteria Evaluation
D51220000237C	D5I190220	9/28/2005 8:03	Cobalt	Total	488	500	98	86	107	pass
D51220000492C	D5I190220	9/28/2005 2:55	Copper	Dissolved	283	250	113	86	110	pass
D5I220000237C	D5l190220	9/28/2005 8:03	Copper	Total	249	250	100	86	110	pass
D5I220000492C	D51190220	9/27/2005 17:29	Iron	Dissolved	1040	1000	104	88	110	pass
D5I220000237C	D51190220	9/26/2005 21:02	Iron	Total	938	1000	94	88	110	pass
D51220000492C	D5I190220	9/28/2005 2:55	Lead	Dissolved	496	500	99	91	111	pass
D51220000237C	D5I190220	9/28/2005 8:03	Lead	Total	484	500	. 97	91	111	pass
D51220000492C	D5I190220	9/27/2005 17:29	Magnesium	Dissolved	50700	50000	101	91	111	pass
D51220000237C	D5l190220	9/26/2005 21:02	Magnesium	Total	47300	50000	95	91	111	pass
D51220000492C	D5I190220	9/28/2005 2:55	Manganese	Dissolved	499	500	100	90	110	pass
D5I220000237C	D5I190220	9/28/2005 8:03	Manganese	Total	495	500	99 -	90	110	pass
D51220000500C	D5I190220	9/23/2005 17:41	Mercury	Dissolved	4.97	5	99	85	- 114	pass
D5I260000235C	D51190220	9/26/2005 17:52	Mercury	Dissolved	4.95	5	99	85	114	pass
D5l260000218C	D5l190220	9/26/2005 17:15	Mercury	Total	4.92	5	98	85	114	pass
D5I220000522C	D5l190220	9/23/2005 18:53	Mercury	Total	5.08	5	102	85	114	pass
D5I220000492C	D5l190220	9/28/2005 2:55	Nickel	Dissolved	493	500	99	90	110	pass
D51220000237C	D5I190220	9/28/2005 8:03	Nickel	Total	482	500	96	90	110	pass
D5I220000492C	D5I190220	9/27/2005 17:29	Potassium	Dissolved	52500	50000	105	86	111	pass
D51220000237C	D51190220	9/26/2005 21:02	Potassium	Tota!	50100	50000	100	86	111	pass
D5I220000492C	D5l190220	9/28/2005 2:55	Selenium	Dissolved	2070	2000	104	88	110	pass
D51220000237C	D5l190220	9/28/2005 8:03	Selenium	Total	2000	2000	100	88	110	pass
D5I220000492C	D51190220	9/28/2005 2:55	Silver	Dissolved	52.2	50	104	85	114	pass
D51220000237C	D5l190220	9/28/2005 8:03	Silver	Total	50.9	50	102	85	114	pass
D51220000492C	D5I190220	9/27/2005 17:29	Sodium	Dissolved	52500	50000	105	91	112	pass
D5I220000237C	D51190220	9/26/2005 21:02	Sodium	Total	48500	50000	97	91	112	pass
D51220000527C	D5I190220	9/29/2005 2:27	Thallium	Dissolved	45.5	. 40	114	84	120:	pass
D51220000193C	D5I190220	9/27/2005 19:48	Thallium	Total	42.7	.40	107	84	120	pass
D5I220000492C	·D5l190220	9/28/2005 2:55	Vanadium	Dissolved	501	500	100	88	112	pass
D5I220000237C	D5I190220	9/28/2005 8:03	Vanadium	Total	497	500	99	88	112	pass
D51220000492C	D5l190220	9/28/2005 2:55	Zinc	Dissolved	472	500	94.	85	110.	pass
D5I220000237C	D5l190220	9/28/2005 8:03	Zinc '	Total	461	500	92	85	110	pass

Fail = Percent recovery does not meet QC acceptance criteria (recovenes are outside of documented historical tab acceptance (im.ts for a chemical).

Lab QC Eval_v4.xls: LCS Page 14 of 14

Pass = Percent recovery within QC acceptance chieria (recoveries are within documented historical tab acceptance limits for a chemical).

QC = Quality Control

Table E-7. Data Quality Assessment Evaluation of Laboratory Duplicate Samples

A. SOIL															
Lab		Sampl		Lot			yzed	Anayte	Analyte Type	<u> </u>	Result (mg			RPD (%)	Acceptance
MSD	MS	MSD '	MS	MSD	MS	MSD	MS	/	raidiffic Type		MSD	N	AS	5 (76)	Criteria
	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/29/2003 20.55	12/29/2003 20:51	Aluminum	Total	35400	mg/kg NC MSB	30800	NC MSB	13,90%	pass .
	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Antimony	Total	16.3	mg/kg	17.4		6.53%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Arsenic	Total	200	mg/kg	193		3,56%	pass
D3L100414018D	D3L1004140185	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Barium	Total	1600	mg/kg NC MSB	1630	NC MSB	1.86%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Beryllium	Total	4.69	mg/kg	4,31		8.44%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Cadmium	Total	4.46	mg/kg	4.25	·	4.82%	pass
D3L100414018D		01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/29/2003 20:55	12/29/2003 20:51	Calcium	Total	17700	mg/kg	17900		1.12%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Chromium	Total	26.2	mg/kg	23.7		10.02%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13 08	Cobalt	Total	54.7	mg/kg	50.8		7.39%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13 08	Copper	Total	38.6	mg/kg	35.6		8.09%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/29/2003 20:55	12/29/2003 20:51	Iron	Total	21600	mg/kg NC MSB	19100	NC MSB	12.29%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13.08	Lead	Total .	54.2	mg/kg	51.9		4.34%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/29/2003 20:55	12/29/2003 20.51	Magnesium	Total	9160	mg/kg	8280		10,09%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Manganese	Total	392	mg/kg NC MSB	340	NC MSB	14.21%	pass
D3L100414001D	D3L100414001S	01-VBOU3-SB-0028-A	D3L100414001S	D3L100414	D3L100414	12/19/2003 8:34	12/18/2003 15:28	Mercury	Total	0.807	mg/kg •	0.653	N	21.10%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/18/2003 16:32	12/18/2003 16.30	Mercury	Total'	0.286	mg/kg N *	0.516	N	57.36%	fall
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13 08	Nickel	Total	49,6	mg/kg	46,7		6.02%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/29/2003 20:55	12/29/2003 20:51	Potassium	Total	6290	mg/kg	5870		6.91%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Selenium	Total	188	mg/kg	182		3.24%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Silver	Total	4.97	mg/kg	4.69		5.80%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/29/2003 20:55	12/29/2003 20:51	Sodium	Total	7090	mg/kg	7180		1.26%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	. 12/19/2003 13:12	12/19/2003 13:08	Thallium	Total	179	mg/kg	173		3.41%	pass
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Vanadium	Total	91.5	mg/kg	83.8		8.78%	pass.
D3L100414018D	D3L100414018S	01-VBOU3-SB-0016-B	D3L100414018S	D3L100414	D3L100414	12/19/2003 13:12	12/19/2003 13:08	Zinc	Total	92.9	mg/kg	83.7	N	- 10.42%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/28/2003 21:05	12/28/2003 21:01	Aluminum	Total	15700	mg/kg NC MSB	15300	NC MSB	2,58%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19.04	Antimony	Total	22.4	mg/kg	- 22,7		1.33%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19:04	Arsenic	Total	189	mg/kg	189		0.00%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19.04	Barium	Total	317	mg/kg	307		3.21%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19.04	Beryllium	Total	4.63	mg/kg	4.65		0.43%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19.04	Cadmium	Total	4.59	mg/kg	4.6		0.22%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/28/2003 21:05	12/28/2003 21:01	Calcium	, Total .	7840	mg/kg	7980		1.77%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19:04	Chromium	Total	31.3	mg/kg	30.9		1.29%	pass
D3L110408016D	D3L110408016S	01-VBQU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19 09	12/19/2003 19:04	Cobalt	Total	49.6	mg/kg .	49.5		0.20%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19:04	Соррег	Total	58.8	mg/kg NC MSB	72.4	NC MSB	20,73%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/28/2003 21:05	12/28/2003 21:01	Iron	Total	14400	mg/kg NC MSB	13300	NC MSB	7.94%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19:04	Lead	Total	72.4	mg/kg N	76.8	N	5.90%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/28/2003 21:05	12/28/2003 21:01	Magnesium	Total	7180	mg/kg	7060		1.69%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19:04	Manganese	Total	237	mg/kg	251		5.74%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19.09	12/19/2003 19:04	Nickel	Total	50.5	mg/kg	50.6		0.20%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/28/2003 21.05	12/28/2003 21:01	Polassium	Total	7680	mg/kg	7510		2.24%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19.09	12/19/2003 19.04	Selenium	Total	196	mg/kg	196		0.00%	pass

A. SOIL

A. SOIL Lat	ь ID	Sampl	e ID	Lot	Ö	Anal	yzed				Result (mg	/kg)	1	ac
MSD	Ms	MSD	MS	MSD	. MS	MSD	MS	Anayte	Analyte Type		MSD	MS	RPD (%)	Acceptance Criteria
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19.04	Silver	Total	4.75	mg/kg	4.81	1.26%	pass
D3L110408016D	D3L110408016\$	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/28/2003 21.05	12/28/2003 21,01	Sodium	Total	4530	mg/kg	4710	3.90%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L1104080166	D3L110408	D3L110408	12/19/2003 19.09	12/19/2003 19.04	Thallium	Total	184	mg/kg	184	0.00%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19:04	Vanadium	Total	73.2	mg/kg	70.9	3.19%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/19/2003 19:09	12/19/2003 19:04	Zinc	Total	80.6	mg/kg	80.7	0.12%	pass
D3L110408001D	D3L110408001S	01-V8OU3-SB-0020-A	D3L110408001S	D3L110408	D3L110408	12/18/2003 8.56	12/17/2003 17:40	Mercury	Total	0.781	mg/kg	0.787	0.77%	pass
D3L110408016D	D3L110408016S	01-VBOU3-SB-0018-A	D3L110408016S	D3L110408	D3L110408	12/18/2003 16.52	12/18/2003 16:50	Mercury	Total	0.748	mg/kg	0.769 .	2.77%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/30/2003 0:36	12/30/2003 0.32	Aluminum	Total	34000	mg/kg NC MSB	36000 NC MSB	5.71%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Antimony	Total	17.5	mg/kg	17.3	1.15%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Arsenic	Total	206	mg/kg !	208	0.97%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0.11	Barium	Total	528	mg/kg	456	14,63%	pass
D3L190390004D	D3L1903900045	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0.15	12/23/2003 0:11	Beryllium	Total	5.3	mg/kg	5.37	1.31%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0.15	12/23/2003 0.11	Cadmlum	Total	5,34	mg/kg	5.27	1.32%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/30/2003 0.36	12/30/2003 0.32	Calcium	Total	20100	mg/kg	18600	7.75%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D31.190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Chromium	Total	35	mg/kg	34	2,90%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L1903900045	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Cobalt	Total	59.4	mg/kg	59.6	0.34%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Copper -	Total	88.5	mg/kg	90.6	2.35%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/30/2003 0.36	12/30/2003 0:32	Iron	Total	23400	mg/kg NC MSB	26500 NC MSB	12.42%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Leád	Total	203	mg/kg N	93.5	73.86%	fail
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/30/2003 0.36	12/30/2003 0:32	Magnesium	Total	9230	mg/kg	9790	5.89%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Manganese	Total	549	mg/kg NC MSB	458 NC MSB	18.07%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 14:56	12/23/2003 14:50	'Mercury	Total	0.853	mg/kg	0.886	3.80%	pass
D3L190390019D	D3L 190390019S	01-VBOU3-SB-0009-C	D3L190390019S	D3L190390	D3L190390	12/27/2003 21:26	12/27/2003 21:24	Mercury	Total	0.883	mg/kg	0.88	0.34%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Nickel	Total	57.9	mg/kg	57.4	0.87%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/30/2003 0:36	12/30/2003 0:32	Potassium	Total	7750	mg/kg	7750	0.00%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	. 12/23/2003 0:15	12/23/2003 0:11	Selenium	Total	201	mg/kg	202	0.50%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Silver	Total	5,86	mg/kg	5.87	0.17%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/30/2003 0:36	12/30/2003 0:32	Sodium	Total	5580	mg/kg	5790	3.69%	pass

Table E-7. Data Quality Assessment

<b>Evaluation of Laboratory Duplicate Sam</b>

A. SOIL	b ID	Sampl	e ID	Lot	מו	Anal	vzed		<del></del>		D	esult (mg	/ka\			ı uc
MSD	MS	MSD	MS	MSD	мѕ	MSD	MS	Anayte	Analyte Type		MSD	esun (mg	T .	MS	RPD (%)	Acceptance Criteria
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0.15	12/23/2003 0:11	Thallium	Total ·	190	mg/kg		191		0,52%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0.15	12/23/2003 0:11	· Vanadium	· Total	101	mg/kg		104		2,93%	pass
D3L190390004D	D3L190390004S	01-VBOU3-SB-0027-B	D3L190390004S	D3L190390	D3L190390	12/23/2003 0:15	12/23/2003 0:11	Zinc	Total	186	mg/kg		166	N	.11.36%	päss
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/30/2003 4:49	12/30/2003 4:45	Aluminum	Total	26000	mg/kg	NC MSB	25100	NC MSB	3.52%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Antimony	Total	20.4	mg/kg	<del></del>	20.8	ļ	1.94%	pass
D3L190405016D	D3L1904050165	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Arsenic	Total	207	mg/kg		211	Ì	1.91%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Barium	Total	359	. mg/kg		364	i	1.38%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Beryllium	Total	5.16	mg/kg		5.17	1	0,19%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20.58	12/23/2003 20:53	Cadmlum	Total	294	mg/kg	NC MSB	271	NC MSB	8.14%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/30/2003 4:49	12/30/2003 4:45	Calcium	Total	10400	mg/kg	N	11000	N	5.61%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20.58	12/23/2003 20:53	Chromium	Total	35.3	mg/kg		34.7		1.71%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Cobalt	Total	54 ·	mg/kg		54.6		1.10%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Copper	Total	115	mg/kg		130	N	12.24%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/30/2003 4 49	12/30/2003 4:45	lron	Total	22500	mg/kg	NC MSB	21900	NC MSB	2.70%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Lead	Total	82.4	mg/kg		88.4	Ī	7.03%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/30/2003 4.49	12/30/2003 4:45	Magnesium	Total	8840	mg/kg		8780	1.	0.68%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20.58	12/23/2003 20:53	Manganese	Total	364	mg/kg	NC MSB	407	NC MSB	11.15%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	Ð3L190405	12/23/2003 16.30	12/23/2003 16:24	Mercury -	Total .	0.829	mg/kg		0.8		3.56%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Nickel	Total	58.4	mg/kg		58.7		0.51%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/30/2003 4:49	12/30/2003 4:45	Potassium	Total	8850	mg/kg		8700		1.71%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20.58	12/23/2003 20:53	Selenium	Total	199	mg/kg		203		1,99%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	. 12/23/2003 20:58	12/23/2003 20:53	Silver	Total	6.1	mg/kg		6.32		3.54%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/30/2003 4:49	12/30/2003 4:45	Sodium	Total	6050	. mg/kg		5850		3.36%	, pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Thallium	Total	195	mg/kg		199		2.03%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/23/2003 20:58	12/23/2003 20:53	Vanadium	Total	92	mg/kg		90,3		1.87%	pass
D3L190405016D	D3L190405016S	01-VBOU3-SB-0007-D	D3L190405016S	D3L190405	D3L190405	12/28/2003 0:09	12/28/2003 0:04	Zinc	Total	3470	mg/kg	NC MSB	3470	NC MSB	0.00%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	1/5/2004 1.21	1/5/2004 1:16	Aluminum	Total	12200	mg/kg	NC MSB	11100	NC MSB	9,44%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18;28	12/30/2003 18:24	Antimony	Total .	.26.8	mg/kg		29.2	L	8.57%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB:0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Arsenic	Total	209	mg/kg		210	1	0.48%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L1904190015	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Barium	Total	426	mg/kg	:_	370	<u> </u>	14.07%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Beryllium	Total	4.84	mg/kg		4.9	: !	1.23%	pass.
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Cadmium	Total	9.28	mg/kg		9.51	<u> </u>	2.45%	pass
D3L190419001D	.D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	1/5/2004 1:21	1/5/2004 1:16	Calcium	Total	12000	mg/kg		11300	·	6,01%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	. D3L190419	D3L190419	.12/30/2003 18:28	12/30/2003 18:24	Chromium	Total	28.8	mg/kg		29.5	<u> </u>	2.40%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D31.190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Cobalt .	Total	51	mg/kg		51.7	<u> </u>	1.36%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Copper	Total	482	mg/kg	NC MSB	537	NC MSB	10.79%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	1/5/2004 1:21	1/5/2004 1:16	łron	, Total .	16900	mg/kg	NC MSB	14000	NC MSB	18.77%	. pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001\$	D3L190419	D3L190419	12/30/2003 18:28	· 12/30/2003 18:24	Lead	Total	383	mg/kg	N	352	N	8.44%	pass .
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	1/5/2004 1:21	1/5/2004 1:16	Magnesium	Total	.6960	mg/kg		6910	<u> </u>	0.72%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Manganese	Total	269	mg/kg		243		10.16%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/31/2003 12:20	12/31/2003 12:19	Mercury .	Total :	0,941	ing/kg		0.952		1,16%	pass

					15								- 00
Lab	ID	Sample	e ID	Lot	1D	Anal		Anayte	Analyte Type	Result (mg		RPD (%)	Acceptance
MSD	. MS	MSD	MS	MSD	MS	MSD	MS	Anayle	Analyte Type	MSD	MS	Kr D ( A)	Criteria
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Nickel	Total	55.1 mg/kg	55.7	1.08%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	1/5/2004 1:21	1/5/2004 1:16	Potassium	Total	6120 mg/kg	6050	1.15%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18.28	12/30/2003 18:24	Selenium	Total	196 mg/kg	196	0.00%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18:28	12/30/2003 18:24	Silver	Total	9.08 mg/kg	8.73	3,93%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L 190419	1/5/2004 1:21	1/5/2004 1.16	Sodium	Total	5080 mg/kg	5100	0.39%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18.28	12/30/2003 18:24	Thallium	Total	182 mg/kg	185	1,63%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	12/30/2003 18.28	12/30/2003 18:24	Vanadium	Total	70.6 mg/kg	72.8	3.07%	pass
D3L190419001D	D3L190419001S	01-VBOU3-SB-0004-A	D3L190419001S	D3L190419	D3L190419	1/5/2004 1:21	1/5/2004 1:16	Zinc	Total	411 mg/kg NC MSB	424 ; NC MSB	3.11%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L 190461	1/5/2004 7:28	1/5/2004 7:24	Aluminum	Total	40900 mg/kg NC MSB	30100   NC MSB	30.42%	fall
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22.23	Antimony	Total	17,6 mg/kg	16.9	4.06%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Arsenic	Total	192 mg/kg	187	2.64%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22.28	12/31/2003 22.23	Barlum	Total	310 mg/kg	337	8.35%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22 28	12/31/2003 22.23	Beryllium	Total	.5,65 mg/kg	5.5	2.69%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Cadmium	Total	5.02 mg/kg	5.57	10.39%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	1/5/2004 7:28	1/5/2004 7:24	Calcium	Total	12300 mg/kg	10500	15.79%	pass.
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Chromium	Total	37 mg/kg	34.7	6.42%	pass
D3L190461009D	D3L 190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Cobalt	Total	56.6 mg/kg	55.7	1.60%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22.28	12/31/2003 22:23	Copper	Total	45,3 mg/kg	46.1	1.75%	pess
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	1/5/2004 7:28	1/5/2004 7.24	Iron	Total	29200 mg/kg NC MSB	22100 NC MSB	27.68%	fail
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Lead	Total	101 mg/kg	110	8.53%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	1/5/2004 7:28	1/5/2004 7:24	Magnesium	Total	9660 mg/kg	8670	10.80%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Manganese	Total	774 mg/kg NC MSB	603 NC MSB	24.84%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 14:08	12/31/2003 14:06	Mercury	Total	0.789 mg/kg	0.802	1.63%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Nickel	Total	58.2 mg/kg	56.6	2.79%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	1/5/2004 7:28	1/5/2004 7:24	Potassium	Total	7020 mg/kg	6950	1.00%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3I,190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Selenium	Total	193 mg/kg	1BB	2.62%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	. 12/31/2003 22:28	12/31/2003 22:23	Silver	Total	5.34 mg/kg	5.11	4.40%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	1/5/2004 7:28	1/5/2004 7:24	Sodium	Total	5580 mg/kg	5160	7,82%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Thallium	Total	184 mg/kg	180	2.20%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	12/31/2003 22:28	12/31/2003 22:23	Vanadium	Total	102 mg/kg	89.2	13.39%	pass
D3L190461009D	D3L190461009S	01-VBOU3-SB-0026-B	D3L190461009S	D3L190461	D3L190461	1/5/2004 7:28	1/5/2004 7:24	Zinc	Total	138 mg/kg	149	7.67%	pass



A. SOIL

MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD   MSD	Lat	i ID	Sampl	e ID	Lot	ID .	. Ana	lyzed				Result (mg	/kg)			QC
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/12004 1.13 11/12004 1.09 Animony Total 19.5 mg/kg 19.2 1.55% D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L190464018D D3L19046401	MSD	MS	MSD	MS	MSD .	мѕ	MSD	MS	Anayte	Analyte Type		MSD		/IS	RPD (%)	Acceptance Criteria
D3.190464018D D3.190464018S 01-VBOU3-SB-0023-A D3.190464018S D3.190464	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	Aluminum	Total	22100	mg/kg NC MSB	29400	NC MSB	28.35%	fail
D3L190464018D D3L19046018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Antimony	Total	19.5	mg/kg	19.2		1.55%	pass
D3L1904640185   D3L1904640185   D1-VBCU3-SB-0023-A   D3L1904640185   D3L190464   D3L190464   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185   D3L1904640185	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1.13	1/1/2004 1:09	Arsenic	Total	197	mg/kg	194		1.53%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Cadmium Total 4.82 mg/kg 4.68 2.95% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Chromium Total 33.9 mg/kg 37.7 10.61% D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190	3L190464018D	D3L190464018S	01-VBQU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Barlum	Total	280	mg/kg	299		6.56%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/2004 1:13 1/1/2004 1:09 Chromium Total 33.9 mg/kg 37.7 10.61% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 11/1/2004 1:13 1/1/2004 1:09 Chromium Total 33.9 mg/kg 37.7 10.61% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:13 1/1/2004 1:09 Chromium Total 33.9 mg/kg 53.5 2.08% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:13 1/1/2004 1:09 Chromium Total 52.4 mg/kg 53.5 2.08% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:13 1/1/2004 1:09 Copper Total 53.6 mg/kg 53.3 0.56% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:13 1/1/2004 1:09 Copper Total 53.6 mg/kg 53.3 0.56% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:13 1/1/2004 1:09 Copper Total 53.6 mg/kg 53.3 0.56% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:09 Copper Total 14500 mg/kg NC MSB 19600 NC MSB 29.91% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:13 1/1/2004 1:09 Lead Total 88.7 mg/kg 83.4 6.16% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/1/2004 1:03 1/1/2004 1:09 Lead Total 88.7 mg/kg 83.4 NC MSB 18.18% D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464018D D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464018D D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L1904640185	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Beryllium	Total	5.08	mg/kg	5.17		1.76%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/12004 1:13 1/1/2004 1:09 Chromium Total 33.9 mg/kg 37.7 10.6114 D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/12004 1:13 1/1/2004 1:09 Cobalt Total 52.4 mg/kg 53.5 2.08% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 11/12004 1:13 1/1/2004 1:09 Copper Total 53.6 mg/kg 53.3 0.56% D3L190464018S D3L190464 D3L190464 D3L190464 11/12004 1:13 1/1/2004 1:09 Copper Total 53.6 mg/kg 53.3 0.56% D3L190464018D D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Cadmium	Total	4.82	mg/kg	4.68		2.95%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L1	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	Calcium .	Total	10700	mg/kg	12000		11.45%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Copper Total 53.6 mg/kg 53.3 0.56% D3L190464018D D3L190464018S D1-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Lead Total 88.7 mg/kg 88.14 6.16% D3L190464018D D3L190464018S D3L190464 D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 5:55 Magnesium Total 7370 mg/kg 88.14 6.16% D3L190464018D D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Chromium	Total	33.9	mg/kg	37.7		10.61%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Iron Total 14500 mg/kg NC MSB 19600 NC MSB 29.91% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Lead Total 88.7 mg/kg 83.4 6.16% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Magnesium Total 7370 mg/kg 8810 17.80% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Magnesium Total 285 mg/kg NC MSB 342 NC MSB 18.18% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Nickel Total 57.6 mg/kg 58.6 1.72% D3L190464018D D3L190464018D D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Selenium Total 203 mg/kg 7350 14.76% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Selenium Total 203 mg/kg 199 1.99% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Total 4750 mg/kg 5110 7.30% D3L190464018D D3L190464018D D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018D D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L19	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Cobalt	Total	52.4	mg/kg .	53.5		2.08%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Lead Total 88.7 mg/kg 83.4 6.16% D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L19046	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Copper	Total	53.6	mg/kg	53,3		0.56%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Magnesium Total 7370 mg/kg 8810 17.80% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Magnesium Total 285 mg/kg NC MSB 342 NC MSB 18.18% D3L190464018B D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Nickel Total 57.6 mg/kg 58.6 1.72% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Potasstum Total 6340 mg/kg 7350 14.76% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Selenium Total 203 mg/kg 199 1.99% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Sodium Total 4750 mg/kg 5110 7.30% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Thallium Total 193 mg/kg 189 2.09% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Vanadium Total 83 mg/kg 94.1 12.54%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	. Iron	Total	14500	mg/kg NC MSB	19600	NC MSB	29.91%	fail
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Manganese Total 285 mg/kg NC MSB 342 NC MSB 18.18% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Nickel Total 57.6 mg/kg 58.6 1.72% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Potassium Total 6340 mg/kg 7350 14.76% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Selenium Total 203 mg/kg 199 1.99% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Sodium Total 4750 mg/kg 5110 7.30% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Thallium Total 193 mg/kg 189 2.09% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Vanadium Total 83 mg/kg 94.1 12.54%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Lead	Total	88.7	mg/kg	83.4		6.16%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Nickel Total 57.6 mg/kg 58.6 1.72½ D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Potassium Total 6340 mg/kg 7350 14.76% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Selenium Total 203 mg/kg 199 1.99% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 5:55 Sodium Total 4750 mg/kg 5110 7.30% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Thallium Total 193 mg/kg 189 2.09% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Vanadium Total 83 mg/kg 94.1 12.54%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	Magnesium	Total	7370	mg/kg	8810		17.80%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Potassium Total 6340 mg/kg 7350 14.76% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1:13 1/1/2004 1:09 Selenium Total 203 mg/kg 199. 1.99% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Sodium Total 4750 mg/kg 5110 7.30% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Thallium Total 193 mg/kg 189 2.09% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Vanadium Total 83 mg/kg 94.1 12.54%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	Manganese	Total	285	mg/kg NC MSB	342	NC MSB	18.18%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Selenium Total 203 mg/kg 199. 1.99% D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 5:55 Sodium Total 4750 mg/kg 5110 7.30% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Thallium Total 193 mg/kg 189 2.09% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Vanadium Total 83 mg/kg 94.1 12.54%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Nickel	Total	57.6	mg/kg	58.6		1.72%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.24 0.77% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1:13 1/1/2004 1:09 Silver Total 5.2 mg/kg 5.10 7.30% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1:13 1/1/2004 1:09 Thallium Total 193 mg/kg 189 2.09% D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Vanadium Total 83 mg/kg 94.1 12.54%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	Potassium	Total	6340	mg/kg	7350		14.76%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1:13 1/1/2004 1:09 Thallium Total 4750 mg/kg 5110 7.30% D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Selenium	Total	203	mg/kg	199.		1.99%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464018S D3L190464018S D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464018S D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D3L190464 D	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Silver .	Total	5.2	mg/kg	5.24		0.77%	pass
D3L190464018D D3L190464018S 01-VBOU3-S8-0023-A D3L190464018S D3L190464 D3L190464 1/1/2004 1:13 1/1/2004 1:09 Vanadium Total 83 mg/kg 94.1 12.54%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	Sodium	Total	4750	mg/kg	5110		7.30%	pass
	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Thallium	Total	193	mg/kg	189		2.09%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 1/5/2004 6:00 1/5/2004 5:55 Zinc Total 114 mg/kg N 135 16.87%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/1/2004 1:13	1/1/2004 1:09	Vanadium	Total	83	mg/kg	94.1		12.54%	pass
	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	1/5/2004 6:00	1/5/2004 5:55	Zinc	Total	114	mg/kg N	135		16.87%	pass
D3L190464018D D3L190464018S 01-VBOU3-SB-0023-A D3L190464018S D3L190464 D3L190464 12/31/2003 15:09 12/31/2003 15:07 Mercury Total 0.774 mg/kg 0.765 1.17%	3L190464018D	D3L190464018S	01-VBOU3-SB-0023-A	D3L190464018S	D3L190464	D3L190464	12/31/2003 15:09	12/31/2003 15:07	Mercury	Total	0.774	mg/kg	0.765 .		1.17%	pass

Fail = Relative Percent Difference (RPD) does not meet QC acceptance criteria (RPD>20%).

* RPD is outside percent control (mits.)

N = Spiked recovery outside QC control limits.

NC MSB = Not calculated. Perent sample concentrations greater than four tenes the spiked amounts.

NA = QC acceptance criteria not evaluated. Matrix cpike and Matrix spike duplicate could not be compered, as parent sample concentration was 4 times the spike amount.

Pass = Relative Percent Difference (RPD) is within QC acceptance criteria (RPD<20%).

QC = Quality Control .

Lat	D ID	Sampl	e ID	Lot	ID	Ana	lyzed		•	Result (u	g/L)		QC
MSD	мѕ	MSD	MS	MSD	MS	MSD	MS	Anayte	Analyte Type	MSD	MS	RPD (%)	Acceptance Criteria
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/22/2003 15 02	12/22/2003 14:58	Aluminum	Total '	2530 ug/L	2490	1.59%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/19/2003 3.22	12/19/2003 3.19	Antimony	Total	41.3 ug/L	42.	1,68%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/19/2003 3:22	12/19/2003 3.19	Arsenic	Total	39.1 ug/L	39.6	1.27%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Barium	Total	2080 ug/L	2110	1.43%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/19/2003 3:22	12/19/2003 3:19	Beryflium	. Total	38.5 ug/L	38.1	1 04%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/19/2003 3:22	12/19/2003 3:19	Cadmium	Total	40.4 ug/L	40.4	0.00%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/22/2003 15:02	12/22/2003 14:58	Calcium	Total	48100 ug/L	49800	3.47%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11.43	12/16/2003 11:38	Chromium	Total	216 . ug/L	216	0.00%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Cobalt	Total	509 ug/L	514	0.98%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Copper	Total	249 ug/L	253	1.59%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/22/2003 15:02	12/22/2003 14.58	Iron	.Total	1570 ; ug/L	1510	3,90%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11,43	12/16/2003 11:38	Lead	Total	506 ug/L	513 .	1.37%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/22/2003 15:02	12/22/2003 14:58	Magnesium	Total	48400 , ug/L	50200	3.65%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Manganese	Total	536 ug/L	539	0.56%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11.43	12/16/2003 11:38	Nickel	Total	512 ug/L	516	0.78%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/22/2003 15:02	12/22/2003 14:58	Potassium	Total	46600 ug/L .	48300	3.58%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Selenium	Total	1950 ug/L	1970	1.02%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S _	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Silver	Total .	48.2 ug/L	49.3	2.26%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/22/2003 15:02	12/22/2003 14:58	Sodium	Total	47200 ug/L .	48600	2.92%	. pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/19/2003 3:22	12/19/2003 3:19	Thallium	Total	42.3 ug/L	43.3	2.34%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Vanadium	Total	535 ug/L	537	0.37%	pass
D3L110408021D	D3L110408021S	01-VBOU3-RIN-0002	D3L110408021S	D3L110408	D3L110408	12/16/2003 11:43	12/16/2003 11:38	Zinc	Total	. 486 ug/L	487	0.21%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/29/2003 7:48	12/29/2003 7:44	Aluminum	Total	2130 ug/L	2090	1.90%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/24/2003 6:34	12/24/2003 6:31	Antimony	Total	40.6 ug/L	42	3.39%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/24/2003 6:34	12/24/2003 6:31	Arsenic	Total	39 : úg/L	39.3	0.77%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L180390	12/23/2003 17:33	12/23/2003 17:29	Barium	Total	2160 ug/L	2120	1.87%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/24/2003 6:34	12/24/2003 6:31 .	Beryllium	Total	42.3 ug/L	42.3	0.00%	pass
D3L190390021D	D3L1903900215	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/24/2003 6:34	12/24/2003 6:31	Çadmjum	Total	40.4 ug/L	40.5	0.25%	. pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/29/2003 7:48	12/29/2003 7:44	Calcium	Total '	51600 ug/L	50700	1.76%	. pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L19039Q021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Chromium	Total .	216 ug/L	214	0.93%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Cobalt	Total	521 ug/L .	514	1:35%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Copper	Total	257 ug/L	252	1.96%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/29/2003 7:48	12/29/2003 7:44	tron	Total	1200 ug/L	1180	1.68%	pass
D3L 190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Lead	Total	533 ug/L	526	1.32%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	. 12/29/2003 7:48	12/29/2003 7:44	Magnesium	Total	52600 ug/L	51500	2.11%	pass
D3L190390021D	D3L190390021S	01-VBQU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29 .	Manganese	Total	528 ug/L	523	0.95%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Nickel	Total ·	524 ug/L	518	1,15%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/29/2003 7:48	12/29/2003 7:44	Potassium	Total	52800 ug/L	51100	3.27%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Selenium	Total	2100 ug/L	2070	1,44%	· pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17.33	12/23/2003 17.29	Silver	Total.	50.3 ug/L	49.5	1.60%	. pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/29/2003 7:48	12/29/2003 7:44	Sodium	. Total	52100 ug/l.	49700	4,72%	pass



Table E-7. Data Quality Assessment Evaluation of Laboratory Duplicate Samples

Lat	OID	Sampl	e ID	Lot	ID	Ana	yzed					Result (ug	/L)			ac
MSD	MS	MSD	MS	MSD	MS	MSD	MS	Anayte	Analyte Type		MSD			ıs	RPD (%)	Acceptance Criteria
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/24/2003 6:34	12/24/2003 6:31	Thallium	Total	42.3	ug/L	<u>i</u>	41.7		1.43%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Vanadium	Total	540	ug/L	<u></u>	535		0.93%	pass
D3L190390021D	D3L190390021S	01-VBOU3-RIN-0003	D3L190390021S	D3L190390	D3L190390	12/23/2003 17:33	12/23/2003 17:29	Zinc	Total	504	ug/L		501	:	0.60%	pass
		MW-31-072804	MW-31-072804	D4G280388	D4G280388	8/9/2004 6:19:00 PM	8/9/2004 6:15:00 PM	Antimony	Total	38.7	ug/L		39.7		2.55%	pass
	•	MW-31-072804	MW-31-072804	D4G280388	D4G280388	8/9/2004 6:19:00 PM	8/9/2004 6:15:00 PM	Arsenic	Fotal	37.5	ug/L		38.1		1.59%	pass
	·	MW-31-072804	MW-31-072804	D4G280388	D4G280388	8/9/2004 6:19:00 PM	8/9/2004 6:15:00 PM	Beryllium	Total	43.6	ug/L		43,3		0.69%	pass
		MW-31-072804	MW-31-072804	D4G280388	D4G280388	8/9/2004 6:19:00 PM	8/9/2004 6;15.00 PM·	Cadmium	Total	38.6	ug/L		39.6		2.56%	pass
		MW-31-072804	MW-31-072804	D4G280388	D4G280388	8/9/2004 6:19:00 PM	8/9/2004 6:15.00 PM	Thallium	, Total	44.5	ug/L		43,6		2.04%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/17/2004 8:42:00 PM	5/17/2004 8.39:00 PM	Antimony	Dissolved	39.8	ug/L		41.8		4.90%	pass
	-	MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/17/2004 8:42:00 PM	5/17/2004 8.39:00 PM	Arsenic	Dissolved	41.8	ug/L		44		5.13%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	: 5/17/2004 8:42:00 PM	5/17/2004 8.39:00 PM	Beryllium	Dissolved	41,8	ug/L		45.3		8.04%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/17/2004 8:42:00 PM	5/17/2004 8:39:00 PM	Cadmium	Dissolved	104	ug/L		110		5.61%	pass
		MW-33-050304 .	MW-33-050304	D4E040112	D4E040112	5/17/2004 8:42:00 PM	5/17/2004 8.39.00 PM	Thallium	Dissolved	39,7	ug/L		41.5		4,43%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/15/2004 8:50:00 AM	5/15/2004 8;45;00 AM	Aluminum	Total	42300	ug/L	NC MSB	46400	NC MSB	9.24%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/18/2004 8:19:00 PM	5/18/2004 8:16:00 PM	Antimony	Total .	13.7	ug/L	N	13.2	N	3.72%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/18/2004 8:19:00 PM	5/18/2004 8:16:00 PM	Arsenic	Total	47.1	ug/L		47.3		0.42%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Barium	Total	2320	ug/L		2300		0.87%	pass
		MW-33-050304	MVy-33-050304	D4E040112	D4E040112	5/18/2004 8:19:00 PM	5/18/2004 8:16.00 PM	Beryllium	Total	42.2	ug/L		41.7		1.19%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/18/2004 8:19.00 PM	5/18/2004 8:16:00 PM	Cadmium	Total	132	ug/L	N	129		2.30%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/15/2004 8:50:00 AM	5/15/2004 8:45:00 AM	Calcium	Total	116000	ug/L	i i	125000		7.47%	pass
-	,	MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Chromium	Total	222	ug/L	<del></del>	222		0.00%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Cobalt	Total	528	ug/L	<del></del>	526	· · ·	0.38%	pass
•••		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Copper	Total	349	ug/L	<del>                                     </del>	346		0,86%	pass
		MW-33-050304 .	MW-33-050304	D4E040112	D4E040112	5/15/2004 8:50:00 AM	5/15/2004 8 45:00 AM	Iron	Total	29400	ug/L	NC MSB	32300	NC MSB	9.40%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Lead	Total	496	ug/L	<del></del>	495		0.20%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/15/2004 8:50.00 AM	5/15/2004 8:45:00 AM	Magnesium	Total	58600	ug/L	<u>.                                      </u>	63400		7.87%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29.00 PM	5/14/2004 10:25:00 PM	Manganese	Total	1760	ug/L	ļ !	1770	<del></del>	0.57%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Nickel	Total	519	ug/L	<del>;</del>	517		0.39%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/15/2004 8:50:00 AM	5/15/2004 8:45.00 AM	Potassium	Total	53700	ug/L	<del> </del>	58400	·	8,39%	pass
		MW-33-050304	MW-33-050304	D4E040112	O4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25.00 PM	Selenium	Total	1890	ug/L	<del></del>	1890	·	0.00%	pass
	·	MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Silver	Total	50.6	ug/L	; )	.50		1,19%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/15/2004 8:50:00 AM	5/15/2004 8:45:00 AM	Sodium	Total	134000	, ug/L	-	148000		9.93%	pass
·····		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/18/2004 8;19:00 PM	5/18/2004 8:16:00 PM	Thallium	Total	43.3	ug/L		43.4		0,23%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Vanadium	Total	533	ug/L		531		0.38%	pass
		MW-33-050304	MW-33-050304	D4E040112	D4E040112	5/14/2004 10:29:00 PM	5/14/2004 10:25:00 PM	Zinc	Total	1380	ug/L	1	1380	·	0.00%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/19/2004 8:27:00 PM	6/19/2004 8:23:00 PM	Antimony	Dissolved	41.3	ug/L	<u> </u>	40		3.20%	pass
	·	MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/19/2004 8:27:00 PM	6/19/2004 8:23:00 PM	Arsenic	Dissolved	43.7	ug/L		42.8		2.08%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/19/2004 8:27:00 PM	6/19/2004 8:23:00 PM	Beryllium .	Dissolved	46.2	ug/L		45.1	<u>_</u>	2.41%	Dass
	<del> </del>	MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/19/2004 8.27:00 PM	6/19/2004 8:23:00 PM	Cadmium	Dissolved	82.9	ug/l.		80		3,56%	pass
	<u>-</u>	MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/19/2004 8:27:00 PM	6/19/2004 8:23:00 PM	Thallium	Dissolved	42.9	ug/L	<del> </del>	41.3		3,50%	l
			,	J	1046400121	3 1 3 2 0 0 7 0 . £ 1 . 0 0 F W	, U.20,00 FIV	i continued	C133014CG	*Z.J	LUGIL	!	41.3		3.0076	pass

ATER L	ab ID	Samp	le ID	Lot	ID .	Ana	yzed			Result (u	ig/L)	1	ac
MSD	MS	· MSD	MS	MSD	MS	MSD	MS	Anayte	Analyte Type	MSD	MS	RPD (%)	Acceptance Criteria
	1	MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8.01:00 PM	6/1/2004 7:57:00 PM	Barium	Total	2110 ug/L	2110	0.00%	pass
-		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/4/2004 1:50:00 AM	6/4/2004 1:46:00 AM	Calcium	Total	117000 ug/L	117000	0.00%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8.01.00 PM	6/1/2004 7:57:00 PM	Chromlum	Total	192 ug/L	192	0.00%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8.01:00 PM	6/1/2004 7:57:00 PM	Cobalt	Total	471 ug/L	471	0.00%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8.01.00 PM	6/1/2004 7:57:00 PM	Copper	Total	271 ug/L	270	0.37%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/4/2004 1.50:00 AM	6/4/2004 1.46:00 AM	Iron	Total	1710 ug/L	1690	1.18%	. pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8.01:00 PM	6/1/2004 7:57:00 PM	Lead	Total	481 ug/L	479	0.42%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/4/2004 1.50:00 AM	6/4/2004 1.46:00 AM	Magnesium	Total	59000 ug/L	59200	0.34%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8:01:00 PM	6/1/2004 7:57.00 PM	Manganese	Total	539 ug/L	538	0,19%	. pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/6/2004 2:11:00 PM	6/6/2004 2:09:00 PM	Mercury	Total	5.03 .ug/L	5.04	0.20%	pass
		MW-33-052104	MW-33-052104	.D4E260121	D4E260121	6/1/2004 B.01.00 PM	6/1/2004 7:57:00 PM	Nickel	Total	463 ug/L	466	0.65%	. pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/4/2004 1.50:00 AM	6/4/2004 1:46:00 AM	Potassium	Total	53600 ug/L	53900	0.56%	. pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8:01.00 PM	6/1/2004 7:57:00 PM	Selenium	Total	2000 ug/L	2000	0.00%	pass
		MW-33-052104	MW-33-052104	D4E280121	D4E260121	6/1/2004 8:01:00 PM	6/1/2004 7:57:00 PM	Silver	Total	49.9 ug/L	49.7	0.40%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/4/2004 1:50:00 AM	6/4/2004 1:46.00 AM	Sodium	Total	135000 ug/L	134000	0.74%	pass
		MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8:01:00 PM	6/1/2004 7:57.00 PM	Vanadium	Total	493   ug/L	492	0.20%	pass
		. MW-33-052104	MW-33-052104	D4E260121	D4E260121	6/1/2004 8:01.00 PM	6/1/2004 7:57:00 PM	Zinc	Total	643 ug/L	642	0,16%	pass
.,		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 3.07.00 AM	7/22/2004 3:02.00 AM	Aluminum	Dissolved	2040 ug/L	2020	0.99%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	'7/12/2004 . 8:04:00 PM	7/12/2004 8:00.00 PM	Antimony	Dissolved	41.7 ug/L	40.7	2.43%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/12/2004 8:04 00 PM	7/12/2004 8:00:00 PM	Arsenic	Dissolved	42.6 \ug/L	42	1.42%	pass
	1.	MW-33-070104	MW-33-070104	D4G010356.	D4G010356	· 7/13/2004 4:06:00 AM	7/13/2004 4:01:00 AM	Barium	Dissolved	2100 ug/L	2080	0.96%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/12/2004 8:04:00 PM	7/12/2004 8:00:00 PM	Beryllium	Dissolved	43.3 ug/L	.41.8	3.53%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/12/2004 8:04:00 PM	7/12/2004 8:00:00 PM	Cadmium	Dissolved	65.6 ug/L	64.4	1.85%	pass
		MW-33-070104	MW-33-070104	D4G010358	D4G010356	7/22/2004 3:07:00 AM	7/22/2004 3:02:00 AM	. Calcium	Dissolved	123000 ug/L	121000	1.64%	pass
	·	MW-33-070104 .	MW-33-070104	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4:01:00 AM	Chromium	Dissolved	207 ug/L	206	. 0.48%	. pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4:01:00 AM	Cobalt	Dissolved	515 ug/L	511	0.78%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4.01:00 AM	Copper	Dissolved	260 ug/L	257	1.16%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 3:07:00 AM	7/22/2004 3:02:00 AM	Iron	Dissofved	987 ug/L	974	1.33%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4:01:00 AM	Lead	Dissolved '	508 ug/L	507	0.20%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 3:07:00 AM	7/22/2004 3:02:00 AM	Magnesium	Dissolved	57400 ug/L	56500	1.58%	pass
		MW-33-070104	MW-33-070104	D4G010358	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4.01:00 AM	Manganese	Dissolved	533 ug/L	530	0.56%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/14/2004 11:24:00 PM	7/14/2004 11:22:00 PM	Mercury.	Dissolved	4.59 ug/L *	5,28	13.98%	pass
		MW-33-070104	MW-33-070104.	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4 01:00 AM	Nickel	.Dissolved	514 ug/L	510	0.78%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 3:07:00 AM	7/22/2004 3:02:00 AM	Potassium	Dissolved	52100 ug/L	51600	0.96%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4:01:00 AM	Selenium	Dissolved	2020 ug/L .	2000	1.00%	pass
		MW-33-070104 .	- MW-33-070104	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4:01:00 AM	Silver	Dissolved	54.4 ug/L	. 53.7	1.30%	pass
	1.	MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 3:07:00 AM	7/22/2004 3:02:00 AM	Sodium	Dissolved	143000 ug/L	140000	2,12%	pass
	· ·	MW-33-070104	MW-33-070104 .	D4G010356	D4G010356	7/12/2004 B:04:00 PM	7/12/2004 8:00:00 PM	Thallium	Dissolved	38.4 ug/L	.37.6	2.11%	pass
	<del> </del>	MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 4:06:00 AM	7/13/2004 4:01:00 AM	Vanadium	Dissolved	516 ug/L	513	0.58%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 3:07:00 AM	7/22/2004 3:02:00 AM	Zinc	Dissolved	673 ug/L	664	1.35%	pass

. D4G010356 D4G010356 7/22/2004 2:11:00 AM 7/13/2004 3:06:00 AM Aluminum



MW-33-070104

MW-33-070104

Table E-7. Data Quality Assessment Evaluation of Laboratory Duplicate Samples

L	ab ID	Sampl	le ID	Lot	1D	Ana	lyzed	Γ			-	Result (ug	/L)	T	QC
MSD	мѕ	MSD	MS	MSD	MS	MSD	MS	Anayte	Analyte Type		MSD		MS	RPD (%)	Acceptance Criteria
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/12/2004 8:56:00 PM	7/12/2004 8:45:00 PM	Antimony	Total	41.2	ug/L		41,4	0.48%	pass
		MW-33-070104	MW-33-070104	D4G010358	D4G010356	7/12/2004 8:56:00 PM	7/12/2004 8:45:00 PM	Arsenic	Total	42.4	ug/L		43	1.41%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3:00:00 AM	Barium	Total	2160	ug/L		2170	0.46%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/12/2004 8:56:00 PM	7/12/2004 8:45:00 PM	Beryllium	Total	41	ug/L	,	42.7	4,06%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/12/2004 8:56:00 PM	7/12/2004 8:45:00 PM	Cadmium	Total	66	ug/L		66.2	0.30%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 2:11:00 AM	7/22/2004 2:06:00 AM	Calcium	Total	125000	ug/L	1	126000	0.80%	pass
٠		- MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3:00:00 AM	Chromium	Total	212	ug/L	,	214	0.94%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3:00:00 AM	Cobatt	Total .	516	ug/L		520	0.77%	pass
- 1	-	MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3.00.00 AM	Copper	Total	267	ug/L		269	0.75%	pass
		MW-33-070104	MW-33-070104	D4G010356,	D4G010356	7/22/2004 2:11.00 AM	7/22/2004 2:06:00 AM	Iron	Total	1390	ug/L		1390	0.00%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	. 7/13/2004 3:06:00 AM	7/13/2004 3.00:00 AM	Lead	Tolal	521	ug/L		522	0.19%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 2:11:00 AM	7/22/2004 2:06.00 AM	Magnesium	Total	58900	ug/L		59300	0 68%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3.00,00 AM	Manganese	Total .	559	ug/L		562	0.54%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/14/2004 10:45:00 PM	7/14/2004 10.43:00 PM	Mercury	Total	4.76	ug/L		4.82	1.25%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	. 7/13/2004 3:06:00 AM	7/13/2004 3.00:00 AM	Nickel	Total	524 .	υg/L		531	1.33%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 2:11:00 AM	7/22/2004 2:06:00 AM	Potassium	. Total	54400	ug/L		55000	1 10%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3:00:00 AM	Selenium	Total	2020	ug/L		2030	0.49%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3:00:00 AM	Silver	Total.	. 55.7 .	ug/L		55.4	0.54%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 2:11:00 AM	7/22/2004 2:06:00 AM	Sodium	Total	145000	ug/L	[	145000	0.00%	pass
		. MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/12/2004 B:56:00 PM	7/12/2004 8:45:00 PM	Thallium	. Total	37.5	ug/L	[	38.3	2.11%	pass
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/13/2004 3:06:00 AM	7/13/2004 3:00:00 AM	Vanadium .	. Total .	528	ug/L	[—— _'	532	0.75%	· pass .
		MW-33-070104	MW-33-070104	D4G010356	D4G010356	7/22/2004 2:11:00 AM	7/22/2004 2:06:00 AM	Zinc	Total	703 .	· ug/L		707	0.57%	pass
n		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/6/2004 3:54:00 AM	8/6/2004 3:50:00 AM	Aluminum	Total	2250	ug/L	[	2200	2.25%	pass
	<u> </u>	MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10:28:00 AM	8/4/2004 10:23:00 AM	Barium	Total	2000	ug/L		2020	1,00%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/6/2004 3:54:00 AM	8/6/2004 3:50:00 AM	Calcium	Total	148000	ug/L		153000	3.32%	pass
	· · · · · ·	MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10:28:00 AM	8/4/2004 10:23:00 AM	Chromium	Total	210	ug/L		214	1.89%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10:28:00 AM	8/4/2004 10:23:00 AM	Cobalt	Total	511	ug/L		523	2.32%	pass
	:	MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10.28:00 AM	8/4/2004 10:23:00 AM	Copper	Total	250	ug/L	[	253	1.19%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/6/2004 3:54:00 AM	8/6/2004 3:50:00 AM	,iron	, .Total	1220	ug/L		1200	1.65%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10:28:00 AM	8/4/2004 10:23:00 AM	Lead .	Total	519	i ug/L	į – – į	523	0.77%	pass
	-	MVV-33-072804	MW-33-072804	D4G280388	D4G280388	8/6/2004 3:54.00 AM	8/6/2004 3:50:00 AM	Magnesium	. Total .	61500	ug/L		62700	1,93%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10:28:00 AM	8/4/2004 10:23:00 AM	Manganese	Total	535	ug/L		547	2.22%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10:28.00 AM	8/4/2004 10:23:00 AM	Nickel	Total	-517	ug/L		528	2.11%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/6/2004 3:54.00 AM	8/6/2004 3:50.00 AM	Potassium	Total ·	53800	ug/L		54600 :	1.48% _	pass
	1	MW-33-072804	MW-33-072804	. D4G280388	D4G280388	8/4/2004 10.28:00 AM	8/4/2004 10:23:00 AM	, Selenium	Total	2040	ug/L		2080	_ 1.94%	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/4/2004 10.28.00 AM	8/4/2004 10:23:00 AM	Silver	Total	51.2	ug/L	·	52	. 1.55%	pass
		MVV-33-072804	MW-33-072804	D4G280388	D4G280388	8/6/2004 3.54.00 AM	8/6/2004 3:50:00 AM	Sodium	Total	168000	ug/L		172000	2.35%	pass
	· ·	MW-33-072804	MW-33-072804	D4G280388	D4Ġ280388	8/4/2004 10:28.00 AM	8/4/2004 10:23.00 AM	Vanadium	Total	513	ug/L	f	524	2.12% .	pass
		MW-33-072804	MW-33-072804	D4G280388	D4G280388	8/6/2004 3:54:00 AM	8/6/2004 3:50:00 AM	Zinc :	Total	728	ug/L		745	2.31%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/4/2004 2:40:00 AM	6/4/2004 2:35:00 AM	Aluminum	Dissolved	2230	ug/l_	i	2180	2.27%	pass
.,		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8:53:00 PM	6/1/2004 8:48:00 PM	Barium	Dissolved .	2140	ug/L	· ·	2090	2,36%	pass

B. WATER

Lat	b ID	Samp	le ID	Lot	ID	Ana	lyzed		_		Result (u	g/L)		QC ]
MSD	MS	MSD	MS	MSD	мѕ	MSD	MS	Anayte	Analyte Type		MSD	MS	RPD (%)	Acceptance Criteria
·		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/4/2004 2:40,00 AM	6/4/2004 2:35,00 AM	Calcium	Dissolved	669000	ug/L NC MSE	664000 NC MSB	0.75%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8:53:00 PM	6/1/2004 8:48.00 PM	Chromium	Dissolved	189	ug/L	186	1.60%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8.53.00 PM	6/1/2004 8;48:00 PM	Cobalt	Dissolved	476	ug/L	469	1.48%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8.53:00 PM	6/1/2004 8:48:00 PM	Copper	Dissolved	291	ug/L	283	2.79%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/4/2004 2.40:00 AM	6/4/2004 2:35:00 AM	Iron	Dissolved	1230	ug/L '	1200	2.47%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8.53;00 PM	6/1/2004 8:48:00 PM	Lead	Dissolved	493	ug/L	484	1.84%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/4/2004 2:40:00 AM	6/4/2004 2:35:00 AM	Magnesium	Dissolved	110000	ug/L	109000	0.91%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8:53:00 PM	6/1/2004 8:48:00 PM	Manganese	Dissolved	1100	ug/L	1090	0,91%	pass
_		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8:53:00 PM	6/1/2004 8:48:00 PM	Nicket	Dissolved	482	ug/L	474	1.67%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/4/2004 2:40:00 AM	6/4/2004 2;35:00 AM	Potassium	Dissolved	69500	ug/L	67700	2.62%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8.53:00 PM	6/1/2004 8:48.00 PM	Selenium	Dissolved	2210	ug/L	2160	2.29%	pass
•		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8:53:00 PM	6/1/2004 8 48:00 PM	Silver	Dissolved	54.2	ug/L '	53.7	0.93%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/4/2004 2:40:00 AM	6/4/2004 2:35:00 AM	Sodium	Dissolved	725000	ug/L NC MSI	718000 NC MSB	0.97%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8:53:00 PM	6/1/2004 8:48:00 PM	Vanadium	Dissolved	485	ug/L	477	1.66%	pass
		MW-34-052104	MW-34-052104	D4E260121	D4E260121	6/1/2004 8:53:00 PM	6/1/2004 8.48:00 PM	Zinc	Dissolved	523	ug/L	515	1.54%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/25/04 12:12 PM	11/25/04 12:07 PM	Aluminum	Dissolved	2170	ug/L	2150	0.93%	pass
D4K190487001D	D4K190487001S	.KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	12/1/04 6:19 PM	12/1/04 6:08 PM	Anlimony	Dissolved	44.3	ug/L	41.8	5.81%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	12/1/04 6:19 PM	12/1/04 6:08 PM	Arsenic	Dissolved	45.8	ug/L	43.9	4.24%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM	Barlum	Dissolved	2180	ug/L	2130	2.32%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	12/1/04 6:19 PM	12/1/04 6:08 PM	Beryllium	Dissolved	45.1	ug/L	42.6	5.70%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	12/1/04 6:19 PM	12/1/04 6:08 PM	Cadmium	Dissolved	93.1	ug/L	90	3.39%	pass
D4K190487001D	D4K190487001S	, KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/25/04 12:12 PM	11/25/04 12:07 PM	Calcium	Dissolved	283000	ug/L NC MSI	281000 NC MSB	0.71%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM	Chromium	Dissolved	202	ug/L	198	2.00%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM	Cobalt	Dissolved	498	ug/L	489	1.82%	pass
D4K190487001D	1	KP-GW-16-111904	KP-GW-16-111904	. D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM	Copper	Dissolved	269	ug/L	262	2.64%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/25/04 12:12 PM	11/25/04 12:07 PM	lron	Dissolved	1130	ug/L	1110	1.79%	pass
D4K190487001D	D4K1904870015	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1.48 PM	11/29/04 1:42 PM	Lead	Dissolved	521	ug/L	510	2.13%	pass
D4K1904B7001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/25/04 12:12 PM	11/25/04 12:07 PM	Magnesium	Dissolved	91200	ug/L	90600	0,66%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/25/04 12.12 PM	11/25/04 12:07 PM	Manganese	Dissolved	828	ug/L	822	0.73%	pass
D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	12/2/04 5:58 PM	12/2/04 5:53 PM	Mercury	Dissolved	5.18	ug/L	5.46	5.26%	pass
	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM -	Nickel	Dissolved	506	ug/L	497	1.79%	pass
D4K19D487001D	D4K190487001S	· KP-GW-16-11.1904	KP-GW-16-111904	D4K190487	D4K190487	11/25/04 12:12 PM	11/25/04 12:07 PM	. Potassium	Dissolved	64900	ug/L	64400	0.77%	pass
D4K190487001D		KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM	Selenium	Dissolved	2160	ug/L	2110	2.34%	pass
	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM	Silver	Dissolved	55.3	ug/L	54.1	2.19%	pass
D4K190487001D	<del></del>	. KP-GW-16-111904	KP-GW-16-111904	.D4K190487	D4K190487	11/25/04 12:12 PM	11/25/04 12:07 PM	Sodium	Dissolved	307000	ug/L NC MS	306000 NC MSB	0.33%	pass
D4K190487001D		KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	12/1/04 6:19 PM	12/1/04 6:08 PM	Thallium	Dissolved	41.1	ug/L	40.1	2.46%	pass
D4K190487001D	<u> </u>	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/29/04 1:48 PM	11/29/04 1:42 PM	Vanadium ·	Dissolved	510	ug/L	500	1.98%	pass
	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/25/04 12:12 PM	11/25/04 12:07 PM	Zinc	Dissolved	663	ug/L	657	0.91%	pass
D4K190487001D		KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/23/04 9:22 PM	11/23/04 9:17 PM	Aluminum	Total	2480	ug/L	2500 .	0.80%	pass
D4K190487001D	<del> </del>	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8:51 PM	11/22/04 8:46 PM	Barium	· Total .	2120	ug/L	2070	2.39%	pass
D4K190487001D		KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/23/04 9:22 PM	11/23/04 9:17 PM	Calcium	Total	293000	ug/L NC MSI	292000 NC MSB	0.34%	pass



Table E-7. Data Quality Assessment Evaluation of Laboratory Duplicate Samples

MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST   MIST	B. WATER	5 ID T	Samp	le iD	Loi	10 1	Ana	lyzed	<del></del>				Result (ug	/L)			
Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description								T	Anayte	Analyte Type					ıs	RPD (%)	Acceptance Criteria
Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary   Decisionary	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8:51 PM	11/22/04 8:46 PM	Chromium	Total	191	ug/L		189		1.05%	pass
CAX.1986.07010   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.1986.07015   CAX.	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8,51 PM	11/22/04 8:46 PM	Cobalt	Total	471	ug/L		466	-	1.07%	pass
DATE INSTRUMENTION   DATE INSTRUMENTION   DATE INSTRUMENTION   DATE INSTRUMENTION   DATE INSTRUMENTION   DATE INSTRUMENTION   DATE INSTRUMENTION   DATE INSTRUMENTION   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE INSTRUMENTIAL   DATE IN	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8.51 PM	11/22/04 8:46 PM	Copper	Total	266	ug/L		260	•	2.28%	pass
Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest 1994/2010   Dest	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/23/04 9:22 PM	11/23/04 9:17 PM	Iran	Total	1310	ug/L	!	1330		1,52%	pass
DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/POTED   DAKTIGNET/	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8:51 PM	11/22/04 8.46 PM	Lead	Total	496	ug/L		485 ·		2.24%	. pass
DAKT 1904/2010   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT 1904/2015   DAKT	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/23/04 9:22 PM	11/23/04 9:17 PM	Magnesium	Total	94000	ug/L	<u>;                                      </u>	94300		0.32%	pass
DKT:00470010   DKT:00470015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015   DKT:0047015	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8:51 PM	11/22/04 8:46 PM	Manganese	Fotal	1020	ug/L		989		3.09%	pass
DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/2010   DAK 1904/201			KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/30/04 12:55 PM	11/30/04 12:53 PM	Mercury	Total	5,02	ug/L		5.14		2.36%	pass
Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt 1996/2010   Delt	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8:51 PM	11/22/04 8.46 PM	Nickel	Total	· 481	ug/L		475		1.26%	pass
DAK1904670015   DAK1904670015   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   KP-GW-16-111904   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX190487   MX1904	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/23/04 9:22 PM	11/23/04 9:17 PM	Potassium	Total	63900	ug/L		64400		0.78%	pass
Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delts   Delt	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K 190487	11/22/04 8:51 PM	11/22/04 8:46 PM	Selenium	Total	2080	ug/L		2020		2.93%	pass
DAK1904F7001D   DAK1904F7001S   RP-GW-16-111904   RP-GW-16-111904   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F701S   RP-GW-16-111904   RP-GW-16-111904   DAK1904F7   DAK1904F7001S   RP-GW-16-111904   RP-GW-16-111904   DAK1904F7   DAK1904F7   DAK1904F700ED   DAK1904F700ES   RP-GW-16-111904   RP-GW-16-111904   DAK1904F7   DAK1904F7   DAK1904F700ED   DAK1904F700ES   RP-GW-16-111904   RP-GW-16-111904   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F700ED   DAK1904F700ES   RP-GW-16-111904   RP-GW-16-111904   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F70ES   DAK1904F700ES   RP-GW-16-111904   RP-GW-16-111904   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK1904F7   DAK190	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K 190487	D4K190487	11/22/04 8:51 PM	11/22/04 8:46 PM	Silver	Total	53	ug/L		52.3		1.33%	pass
DK19047006D   DK19047006D   DK19047006S   RP-GW-46-111904A   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK19047   DK1	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K 190487	11/23/04 9:22 PM	11/23/04 9:17 PM	Sodium	Total	319000	ug/L	NC MSB	318000	NC MSB	0.31%	pass
Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8:51 PM	11/22/04 8:46 PM	Vanadium	Total	494	ug/L		487		1.43%	pass
DKK190487006D DKK190487006S PF-GW-46-111904A PF-GW-46-111904A DKK190487 DKK190487 DKK190487 DKK19048706B DKK190487006S PF-GW-46-111904A PF-GW-46-111904A DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK190487 DKK	D4K190487001D	D4K190487001S	KP-GW-16-111904	KP-GW-16-111904	D4K190487	D4K190487	11/22/04 8:51 PM	11/22/04 8:46 PM	Zinc	Total	600	ug/L	1	595		0.84%	pass
DK1590487006D DK199487006S KP-GW-46-111904A KP-GW-46-111904A DK190487 DK190487 12/104 9:11 PM 12/104 9:07 PM Cadmium Total 63.3 ug/L 63.3 0.48% pass DK190487006S KP-GW-46-111904A KP-GW-46-111904A DK190487 DK190487 0K190487 12/104 9:11 PM 12/104 9:07 PM Cadmium Total 63.3 ug/L 63.3 0.48% pass DK280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DK190487 0K190487 0K190487 0K190487 12/104 9:11 PM 12/104 9:07 PM Thallium Total 42.8 ug/L 41.9 2.13% pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S SC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224001S DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC2	D4K190487006D	D4K190487006S	KP-GW-46-111904A	KP-GW-46-111904A	D4K190487	D4K190487	12/1/04 9:11 PM	12/1/04 9:07 PM	Antimony	Total	44.2	ug/L	N	44.6	N	0.90%	pass
DK1904870060 D4x1904870065 KP-GW-46-111904A KP-GW-46-111904A D4x190487 D4x190487 D2x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x190487 D4x19	D4K190487006D	D4K190487006S	KP-GW-46-111904A	KP-GW-46-111904A	D4K190487	D4K190487	12/1/04 9:11 PM	12/1/04 9:07 PM	Arsenic	Total	44.5	ug/L	N	44.2		0.68%	pass
DKK190487006D DKK190487006S NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-032805 NP-SW-1-	D4K190487006D	D4K190487006S	KP-GW-46-111904A	KP-GW-46-111904A	D4K190487	D4K190487	12/1/04 9:11 PM	12/1/04 9:07 PM	Beryllium	Total '	50	ug/L	N	48	N	4.08%	pass
DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 J30005 4:3 PM Barium Total 2080 ug/L 2110 1.43¼ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 J30005 4:3 PM Barium Total 2080 ug/L 2080 0.48¼ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 J30005 4:3 PM Galcium Total 123000 ug/L 123000 0.60½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 J30005 4:3 PM J3105 12:6 kM Galcium Total 2080 ug/L 2050 0.49¼ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 J30005 4:3 PM J3105 4:3 PM Galcium Total 500 ug/L 498 0.40½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 J30005 4:3 PM J3105 4:3 PM Galcium Total 500 ug/L 498 0.40½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 J30005 4:3 PM J3105 12:6 kM Iron Total 1110 ug/L 1120 0.90½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 J30005 4:3 PM J3105 12:6 kM Iron Total 1110 ug/L 1120 0.90½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 J30005 4:3 PM J3105 12:6 kM Iron Total 1110 ug/L 1120 0.90½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC28024 J30005 4:3 PM J3105 12:6 kM Iron Total 1110 ug/L 497 0.00½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC28024 J30005 4:3 PM J3105 12:6 kM Iron Total 500 ug/L 500 0.53½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 J30005 4:3 PM J3105 12:6 kM Iron Manganese Total 500 ug/L 500 0.53½ pass DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 J30005 4:3 PM J3105 12:6 kM J3105 12:6 kM J3105 12:6 kM J3105 12:6 kM J3105 12:6 kM J3105 12:6 kM J3105 12:6 kM J3105 12:6 kM J31005 12:6 kM J31005 12:6 kM J31005 12:6 kM J31005 12:6 kM J31005 12:6 kM J31005 12:6 kM J31005 12:6 kM J31005 12:6 kM J31005 12:6	D4K190487006D	D4K190487006S	KP-GW-46-111904A	KP-GW-46-111904A	D4K190487	D4K190487	12/1/04 9:11 PM	12/1/04 9:07 PM	Cadmium	Total	63,3	ug/L	İ	63		0.48%	pass
DSC280224001D   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J30/05 4:37 PM   J3/0/05 4:31 PM   Barlum   Total   2090   ug/L   2080   0.48%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Chromium   Total   Total   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Chromium   Total   Total   DSC280224   Ug/L   205   0.49%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Chromium   Total   S05   ug/L   205   0.49%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Coball   Total   S05   ug/L   255   0.79%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Coball   Total   S05   ug/L   255   0.79%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Coball   Total   S05   ug/L   255   0.79%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Lead   Total   S05   ug/L   S07   0.09%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Lead   Total   S07   ug/L   S07   0.09%   pass   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Lead   Total   S07   ug/L   S07   0.09%   pass   DSC280224001S   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Nickel   Total   S07   ug/L   S07   0.09%   pass   DSC280224001S   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/0/05 4:31 PM   Nickel   Total   S07   ug/L   S07   0.09%   pass   DSC280224001S   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/0/05 4:37 PM   J3/	D4K190487006D	D4K190487006S	KP-GW-46-111904A	KP-GW-46-111904A	D4K190487	D4K190487	12/1/04 9:11 PM	12/1/04 9:07 PM	Thallium	Total	42.8	ug/L		419		2.13%	pass
DSC280224001D   DSC280224001S   KP-SW-1-032805   KP-SW-1-032805   DSC280224   DSC280224   J3/3/05 12:51 AM   J3/3/05 12:46 AM   Calcium   Total   123000   Ug/L   123000   0.00%   pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/31/05 12;51 AM	3/31/05 12:46 AM	Aluminum	Total	2080	ug/L	ļ	2110		1.43%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4/37 PM 3/30/05 4/31 PM Cobalt Total 205 Ug/L 205 0.49% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4/37 PM 3/30/05 4/31 PM Cobalt Total 500 Ug/L 498 0.40% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4/37 PM 3/30/05 4/31 PM Copper Total 254 Ug/L 252 0.79% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 12/51 AM 3/31/05 12/51 AM 1/30/05 4/31 PM Lead Total 1110 Ug/L 1120 0.99% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 3/30/05 14/37 PM 3/30/05 4/31 PM Lead Total 497 Ug/L 497 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM 3/30/05 4/31 PM Lead Total 497 Ug/L 497 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM 3/30/05 4/31 PM Lead Total 497 Ug/L 497 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM 3/30/05 4/31 PM Magnesium Total 502 Ug/L 500 0.040% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM 3/30/05 4/31 PM Nickel Total 502 Ug/L 500 0.040% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM J3/30/05 14/31 PM Nickel Total 502 Ug/L 500 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM J3/30/05 14/31 PM Selenium Total 506 Ug/L 500 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM J3/30/05 14/31 PM Selenium Total 5150 Ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM J3/30/05 14/31 PM Selenium Total 516 Ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 14/37 PM J3/30/05 14/31 PM Selenium Total 516 Ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Barium	Total	2090	ug/L	i	2080		0.48%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 4:37 PM J3/3/0/5 4:31 PM Cobell Total 500 ug/L 498 0.40% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Iron Total 1110 ug/L 1120 0.90% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Iron Total 1110 ug/L 497 ug/L 497 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Magnesium Total 62800 ug/L 63200 0.63% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Magnesium Total 62800 ug/L 63200 0.63% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 4:37 PM J3/3/0/5 4:31 PM Magnesium Total 502 ug/L 500 0.40% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 4:37 PM J3/3/0/5 4:31 PM Nickel Total 502 ug/L 500 0.40% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Potasium Total 502 ug/L 500 0.40% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Potasium Total 502 ug/L 500 0.40% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Potasium Total 504 ug/L 52000 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Potasium Total 504 ug/L 52000 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Sodium Total 504 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/3/0/5 12:51 AM J3/3/0/5 12:46 AM Sodium Total 504 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/3/0/5 12:51 AM J3/3			KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/31/05 12:51 AM	3/31/05 12:46 AM	Calcium	Total	123000	ug/L		123000		0.00%	pass
D5C280224001D   D5C280224001S   KP-SW-1-032805   KP-SW-1-032805   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224   D5C280224	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Chromium	Total	206	ug/L		205		0.49%	pass
DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DSC280224 DS			KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Coball	Total	500	ug/L		498		0.40%	pass
DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Lead Total 497 ug/L 497 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/31/05 12:51 AM 3/31/05 12:46 AM Magnesium Total 62800 ug/L 63200 0.63% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Nickel Total 502 ug/L 500 0.40% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Nickel Total 504 ug/L 501 0.60% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J731/05 12:51 AM 3/31/05 12:46 AM Potassium Total 51500 ug/L 52000 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J731/05 12:51 AM 3/31/05 12:46 AM Potassium Total 51500 ug/L 52000 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J731/05 12:51 AM 3/30/05 4:31 PM Selenium Total 2060 ug/L 2060 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J731/05 12:51 AM 3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J731/05 12:51 AM J731/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J730/05 4:37 PM J730/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J730/05 4:37 PM J730/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J730/05 4:37 PM J730/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J730/05 4:37 PM J730/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J730/05 4:37 PM J730/05 4:37 PM J730/05 4:31 PM Antimory Total 42.1 ug/L 41.6 1.19% D5C2	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Copper	Total	254	ug/L		252		0.79%	pass
DSC280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 1:37 PM 3/30/05 4:31 PM Manganese Total 502 ug/L 500 0.63% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Nickel Total 502 ug/L 500 0.63% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 1:37 PM 3/30/05 4:31 PM Nickel Total 504 ug/L 500 0.69% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/31/05 12:51 AM 3/31/05 12:46 AM Potassium Total 51500 ug/L 52000 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 1:37 PM 3/30/05 4:31 PM Selenium Total 2060 ug/L 2060 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 1:37 PM 3/30/05 4:31 PM Selenium Total 2060 ug/L 2060 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM 3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 1:37 PM 3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 1:37 PM 3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM 3/30/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 1:37 PM J3/30/05 1:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 J3/30/05 1:37 PM J3/30/05 1:31 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/31/05 12:51 AM	3/31/05 12:46 AM	Iron	Total	1110 -	ug/L		1120		0.90%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Manganese Total 502 ug/L 500 0.40% pass D5C280224001D D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Nickel Total 510 ug/L 501 0.60% pass D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Selenium Total 5150 ug/L 52000 0.97% pass D5C280224001D D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Selenium Total 2060 ug/L 2060 0.00% pass D5C280224001D D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 25000 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Venadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-1-032805 KP-SW-2-032805 D5C280224 J5C280224 J3/30/05 10:28 PM J3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Lead .	Total	497	ug/L		497		0.00%	pass
DSC280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Potassium Total 5150 ug/L 5200 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Potassium Total 2060 ug/L 2060 0.90% pass D5C280224001D D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Selenium Total 2060 ug/L 2060 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Venadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J5C280224 J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/05 1:37 PM J3/30/0	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/31/05 12:51 AM	3/31/05 12:46 AM	Magnesium	Total	62800	ug/L		63200		0,63%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Potassium Total 51500 ug/L 52000 0.97% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Selenium Total 2060 ug/L 2060 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Venadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 J5C280224 J3/30/05 10:28 PM J3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Manganese	Total	502	ug/L		500		0.40%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Selenium Total 2060 ug/L 2060 0.00% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/31/05 12:51 AM 3/31/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 KP-SW-1-032805 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Zinc Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 3/30/05 10:28 PM 3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Nickel	. Total	504	ug/L	1	501		0.60%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Silver Total 53.6 ug/L 53.2 0.75% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/31/05 12:51 AM J3/31/05 12:46 AM Sodium Total 250.0 ug/L 224000 0.45% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 J3/30/05 10:28 PM J3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/31/05 12:51 AM	3/31/05 12:46 AM	Potassium	Total	51500	ug/L	-	52000		0.97%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/31/05 12:51 AM 3/31/05 12:46 AM Sodium Total 225000 ug/L 224000 0.45% pass D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224001D D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C280224 D5C28024 D5C280224 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5C28024 D5	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4.31 PM	Selenium	Total	2060	ug/L	ļ	2060		0.00%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Vanadium Total 519 ug/L 516 0.58% pass D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 J3/30/05 4:37 PM J3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 J3/30/05 10:28 PM J3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	. Silver	Total	53,6	ug/L		53.2		0.75%	pass
DSC280224001D DSC280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D DSC280224002D DSC280224002D DSC280224002D KP-SW-2-032805 KP-SW-2-032805 D5C280224 D5C280224 3/30/05 10:28 PM 3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/31/05 12:51 AM	3/31/05 12:46 AM	Sodium	Total	225000	ug/L	1	224000		0.45%	pass
D5C280224001D D5C280224001S KP-SW-1-032805 KP-SW-1-032805 D5C280224 D5C280224 3/30/05 4:37 PM 3/30/05 4:31 PM Zinc Total 516 ug/L 512 0.78% pass D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 D5C280224 3/30/05 10:28 PM 3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Vanadium	Total	519	ug/L		516		0.58%	pass
D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 D5C280224 3/30/05 10:28 PM 3/30/05 10:24 PM Antimony Total 42.1 ug/L 41.6 1.19% pass	D5C280224001D	D5C280224001S	KP-SW-1-032805	KP-SW-1-032805	D5C280224	D5C280224	3/30/05 4:37 PM	3/30/05 4:31 PM	Zinc	Total	516	ug/L		512		0.78%	pass
╽╩╌╴╶╴┧┈┈┈╶┧╸┈┈┈┧┈┈┈┧╌┈┧┈┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┼╴┈┼┼╴┈┼┼╴┈┼┼╴┈			KP-SW-2-032805	KP-SW-2-032805	D5C280224	D5C280224	3/30/05 10;28 PM	3/30/05 10:24 PM	Antimony	Total	42.1	ug/L	} }	41.6		1.19%	pass
D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 KP-SW-2-032805 D5C280224 D5C280224 3/30/05 10:28 PM 3/30/05 10:24 PM Arsenic Total 42.4 ug/L 41.5 2.15% pass	D5C280224002D	D5C280224002S	KP-SW-2-032805	KP-SW-2-032805	D5C280224	D5C280224	3/30/05 10:28 PM	3/30/05 10:24 PM	Arsenic	Total	42.4	ug/L	<u> </u>	41,5		2.15%	pass
D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 D5C280224 3/30/05 10:28 PM 3/30/05 10:24 PM Beryllium Total 41.1 ug/L 40.5 1.47% pass			KP-SW-2-032805	KP-SW-2-032805	D5C280224	D5C280224	3/30/05 10:28 PM	3/30/05 10:24 PM	Beryllium	Total	41.1	ug/L	1	40.5		1.47%	pass
D5C280224002D D5C280224002S KP-SW-2-032805 KP-SW-2-032805 D5C280224 D5C280224 3/30/05 10:28 PM 3/30/05 10:24 PM Cadmium Total 46.7 ug/L 45.1 3.49% pass			KP-SW-2-032805	KP-SW-2-032805	D5C280224	D5C280224	3/30/05 10:28 PM	3/30/05 10:24 PM	Cadmium	Total	46.7	ug/L	Ī	45,1		3.49%	. pass

La	ьID	Samp	le ID	Lot	ID.	Anal	yzed			· Result (u	g/L)		QC
MSD	- Ms	MSD	мѕ	MSD	MS	MSD	MS	Anayte	Analyte Type	MSD	MS	RPD (%)	Acceptance Criteria
D5C280224002D	D5C280224002S	KP-SW-2-032805	KP-SW-2-032805	D5C280224	D5C280224	3/30/05 10:28 PM	3/30/05 10 24 PM	Thallium	Total	41.8 ug/L	40.8	2.42%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 10:20 PM	5/6/05 10:15 PM -	Aluminum	Dissolved	2290 ug/L	2310	0,87%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/9/05 10 56 PM	5/9/05 10:52 PM	Antimony	Dissolved	42.4 ug/L	42.2	0.47%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/9/05 10.56 PM	5/9/05 10:52 PM	Arsenic	Dissolved	-41.4 ug/L	40.8	1.46%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 1:11 PM	5/6/05 1.06 PM	Barium	Dissolved	2130 ug/L	2160	1,40%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	. 5/9/05 10:56 PM	5/9/05 10:52 PM	Beryllium	Dissolved	42,1 ug/L	42.1	0.00%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	_ 5/9/05 10.56 PM	5/9/05 10:52 PM	Cadmium	Dissolved	39.7 ug/L -	38.9	2.04%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 10.20 PM	5/6/05 10:15 PM	Calcium	Dissolved	114000 ug/L	115000	0.87%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 1:11 PM	5/6/05 1:06 PM	Chromium	Dissolved	200 ug/L	202	1:00%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS_1-050205	D5E020222	D5E020222	.5/6/05 1:11 PM	5/6/05 1:06 PM	Cobalt	Dissolved	501 ug/L	506	0.99%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	. 5/6/05 1:11 PM	5/6/05 1:06 PM	Copper	Dissolved	254 ug/L	257	1.17%	pass
D5E020222008D	D6E020222008S	PS-1:050205	PS-1-050205	D5E020222	D5E020222	.5/6/05 10 20 PM	5/6/05 10:15 PM	tron	Dissolved	1160   ug/L	1170	0.86%	pass
D5E020222008D	D5E0202220085	PS-1-050205	. PS-1-050205	D5E020222	D5E020222	5/6/05 1:11 PM	5/6/05 1:06 PM	Lead	Dissolved	500 ug/L	506	1,19%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 10:20 PM	5/6/05 10.15 PM	Magnesium	Dissolved	63000 ug/L	63700	1,10%	pass
D5E020222008D	D5E020222008S	.PS-1-050205	PS-1-050205	D5E020222	D5E020222	.5/6/05 1:11 PM	5/6/05 1:06 PM	Manganese	Dissolved	837 ug/L	844	0.83%	pass
D5E020222008D	D5E020222008S	.PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/9/05 5:47 PM	5/9/05 5:46 PM	Mercury	Dissolved	5.16 ug/L	5.16	0.00%	pass
D5E020222008D	D5E020222008S	. PS-1-050205	PS-1-050205	D5E020222,	D5E020222	5/6/05 1:11 PM	5/6/05 1:06 PM	Nickel	Dissolved	499 ug/L	504	1.00%	pass
D5E020222008D	D5E020222008S	PS-1-050205	. PS-1-050205	D5E020222	D5E020222	5/6/05 10,20 PM .	5/6/05 10:15 PM	Potassium	Dissolved	61100 ug/L	61600	0.81%	pass .
D5E020222008D	D5E020222008S	. PS-1-050205	. PS-1-050205	D5E020222	D5E020222	5/6/05 1:11 PM	5/6/05 1:06·PM	Setenium	Dissolved	2050 ug/L	2090	1,93%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 1·11 PM	5/6/05 1:06 PM	Silver	Dissolved	54.5 ug/L	54.9	0.73%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 10:20 PM	5/6/05 10:15 PM	Sodium	Dissolved	375000 ug/L NC MSI	376000 NC MSB	0.27%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/9/05 10.56 PM	5/9/05 10:52 PM	Thallium	Dissolved	40.6 ug/L	40.2	0.99%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 1:11 PM	5/6/05 1:06 PM	Vanadium	Dissolved	498 ug/L	504	1.20%	. pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	_ 5/6/05 1:11 PM	5/6/05 1:06 PM	Zinc	Dissolved	489 ug/L .	493	0.81%	pass
D5E020222008D	D5E020222008S	PS-1-050205 .	PS-1-050205	D5E020222	D5E020222	5/6/05 8:11 PM	5/6/05 8:06 PM	'Aluminum	Total .	148000 ug/L NC MSI	152000 NC MSB	2.67%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/10/05 12:01 AM	5/9/05 11:58 PM	Antimony	Total	8.3 ug/L N	9.18 N	10.07%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	. 5/10/05 12:01 AM	5/9/05 11:58 PM	Arsenic	Total	60.4 ug/L N	60.1 N	0,50%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM .	5/6/05 4:12 PM	Barium	Total	3290 ug/L	3290	0,00%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/10/05 12:01 AM	5/9/05 11:58 PM	Beryllium	Total	33.9 ug/L N	33.7. N	0.59%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/10/05 12:01 AM	5/9/05 11:58 PM	Cadmium	Total	39.3 ug/L	39.8	1.26%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 8:11 PM	5/6/05 8:06 PM	Calcium	Total	149000 ug/L	148000	0.67%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205 ,	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Chromium	Total	363 ug/L	366	0.82%	pass
D5E020222008D	D5E020222008S	. PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Cobalt	Total	517 ug/L	516	0.19%	pass
D5E020222008D		PS-1-050205	PS-1-050205	.D5E020222	D5E020222	. 5/6/05 4:17 PM	5/6/05 4:12 PM	Copper	Total	340 ug/L	. 339	0.29%	pass
D5E020222008D		PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 8:11 PM	5/6/05 8:06 PM	Iron	Total	179000 ug/L NC MS6	177000 NC MSB	1,12%	pass
D5E020222008D	1	PS-,1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Lead	· Total	· 568 .: ug/L.	568	0,00%	pass
D5E020222008D		PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 8:11 PM	5/6/05 8.06 PM	Magnesium	Total	84700 ug/L	84400	0.35%	pass
D5E020222008D		.PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Manganese	. Total .	6110 ug/L . NC MS	6100. NC MSB	0.16%	pass
D5E020222008D		PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/9/05 6:16 PM	5/9/05 6;14 PM	Mercury	Total	5.22 ug/l.	5.14	1.54%	pass
D5E020222008D		PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Nickel	Total	539 ug/L	541	0.37%	pass
	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 8:11 PM	5/6/05 8:06 PM	Potassium	Total	69900 ug/L	69800	0.14%	. pass .



Lab ID		Sample ID		I,ot ID		Analyzed		· ·		Result (ug/L)				· · ·	QC	
MSD .	MS	MSD	MS .	MSD	MS.	MSD	MS	Anayte	Analyte Type	MSD		MS		RPD (%)	Acceptance Criteria	
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Selenium	Total	1890	ug/L	<u> </u>	1890		0.00%	pass
D5E02022200BD	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Silver	Total	51.7	ug/L	j	52.3	1	1.15%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 8:11 PM	5/6/05 8:06 PM	Sodium	Total	345000	ug/L	NC MSB	342000	NC MSB	0.87%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/10/05 12:01 AM	5/9/05 11:58 PM	Thaflium	Total	37.1	ug/L	i	37		0.27%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 4:17 PM	5/6/05 4:12 PM	Vanadium	Total	735	ug/L		743		1.08%	pass
D5E020222008D	D5E020222008S	PS-1-050205	PS-1-050205	D5E020222	D5E020222	5/6/05 8:11 PM	5/6/05 8:06 PM	Zinc	Total	883	ug/L	!	868		1.71%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5l190220	9/27/2005 17:47	9/27/2005 17:43	Aluminum	Dissolved	2400	ug/L		2320		3.39%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D51190220	9/26/2005 21:21	9/26/2005 21:16	Aluminum	Total	56700	ug/L	NC MSB	55100	NC MSB	2.86%	pass
D5I190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5 190220	9/29/2005 2:49	9/29/2005 2:45	Antimony	Dissolved	40.2	ug/L		40.7		1.24%	pass
D5I190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5 190220	D51190220	9/27/2005 20:10	9/27/2005 20.06	Antimony	Total	18.2	i ug/L	N	21,5	N	16.62%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5I190220	9/29/2005 2:49	9/29/2005 2:45	Arsenic	Dissolved	40.8	ug/L		40.5		0.74%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5[190220	9/27/2005 20:10	9/27/2005 20:06	Arsenic	Total	49.2	ug/L		47.8	<del></del> -	2.89%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5I190220	9/28/2005 3:20	9/28/2005 3:15	Barium	Dissolved	2320	ug/L		2230	<u> </u>	3.96%	pass
D51190220002D	D5I190220002S	KP-PS-18-091905 .	KP-PS-18-091905	D5I190220	D5I190220	9/28/2005 8:28	9/28/2005 8:23	Barium	Total	2640	ug/L	Ţ	2660	i .	0.75%	pass
D5I190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5 190220	D51190220	9/29/2005 2:49	9/29/2005 2:45	Beryllium	Dissolved	42.8	ug/L	1	43.2		0.93%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/27/2005 20:10	9/27/2005 20:06	Beryflium	Total	37.3	ug/L		35.6	N	4.66%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D51190220	9/29/2005 2:49	9/29/2005 2:45	Cadmium	Dissolved	40.6	ug/L	<del></del>	41	<u> </u>	0.98%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5l190220	9/27/2005 20:10	9/27/2005 20:06	Cadmium	Total	53.1	ug/L	1 .	52.5	<del> </del> -	1.14%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5 190220	9/27/2005 17:47	9/27/2005 17:43	Calcium	Dissolved	168000	ug/L		161000	<del>                                     </del>	4.26%	pass
D51190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D51190220	9/26/2005 21:21	9/26/2005 21:16	Calcium	Total	158000	ug/L		158000	!	0.00%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5 190220	D51190220	9/28/2005 3:20	9/28/2005 3:15	Chromium	Dissolved	201	ug/L	1	194	i	3.54%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5I190220	9/28/2005 8:28	9/28/2005 8:23	Chromium	Total	256	ug/L	1	259	<del> </del>	1.17%	pass
D5I190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5 190220	9/28/2005 3:20	9/28/2005 3:15	Cobalt	Dissolved	513	ug/L	†	494	<del>                                     </del>	3.77%	pass
D5I190220002D		KP-PS-18-091905	KP-PS-18-091905	D51190220	D5I190220	9/28/2005 8:28	9/28/2005 8:23	Cobalt	Total	506	ug/L	<del>:</del>	511	i –	0.98%	pass
D5[190220002D	D5l190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5I190220	9/28/2005 3:20	9/28/2005 3.15	Copper	Dissolved	287	ug/L	1	268		6.85%	pass
D5I190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5 190220	9/28/2005 8.28	9/28/2005 8:23	Copper	Total	327	ug/L	i	328	<del></del>	0.31%	pass
D51190220002D		KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5 190220	9/27/2005 17:47	9/27/2005 17.43	Iron	Dissolved	1310	ug/L	<del></del>	1240	<del> </del>	5,49%	pass
D51190220002D		KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5I190220	9/26/2005 21:21	9/26/2005 21:16	tron	Total	55500		NC MSB	54700	NC MSB	1.45%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5I190220	9/28/2005 3:20	9/28/2005 3:15	Lead	Dissolved	516	ug/L	<del></del>	497	1	3,75%	pass
D5 190220002D	D511902200025	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5l190220	9/28/2005 8:28	9/28/2005 8:23	Lead	Total	530	ug/L	<del> </del> -	533	1	0.56%	pass
D51190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5 190220	9/27/2005 17:47	9/27/2005 17:43	Magnesium	Dissolved	75800	ug/L	-	73300		3,35%	pass
D51190220002D	D5/190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5I190220	9/26/2005 21:21	9/26/2005 21:16	Magnesium	Total	78500	ug/L	†	78700	<del></del>	0.25%	pass
D51190220002D	D511902200025	KP-PS-18-091905 ,	KP-PS-18-091905	D5I190220	D51190220	9/28/2005 3:20	9/28/2005 3:15	Manganese	Dissolved	-3480	ug/L	NC MSB	3320	NC MSB	4.71%	pass
D51190220002D		KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5I190220	9/28/2005 8:28	9/28/2005 8.23	Manganese	Total	7350	ug/L	NC MSB	7290	NC MSB	0.82%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/26/2005 18:07	9/26/2005 18:05	Mercury	Dissolved	4.96	ug/L		5,09		2.59%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/26/2005 17:33	9/26/2005 17:31	Mercury	Total	4.5	ug/L	-	4.48	<del>                                     </del>	0.45%	pass
		KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/28/2005 3:20	9/28/2005 3:15	Nickel	Dissolved	510	ug/L	ī	492	<del> </del>	3,59%	pass
D51190220002D	D511902200025	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/28/2005 8:28	9/28/2005 8:23	Nickel	Total	514	ug/L	<del></del>	521	<del> </del> -	1.35%	pass
D51190220002D	D5I1902200025	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/27/2005 17:47	9/27/2005 17:43	Polassium	Dissolved	83000	ug/L	<del> </del> -	80400	<del> </del>	3,18%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/26/2005 21:21	9/26/2005 21:16	Potassium	Total	88100	ug/L	<del> </del>	87800	1	0.34%	<del> </del>
D51190220002D		KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/28/2005 3:20	9/28/2005 3:15	<del> </del>	Dissolved	2190	+	<del> </del>	2110	!	3,72%	pass
D5I190220002D	D51190220002S	VI12-10-021802	V2-52-10-021802	D21190220	D51190220	9/28/2005 3:20	8/28/2005 3:15	Selenium	Dissolved	7180	ug/L	1	2110	<u> </u>	3,72%	pass

#### Table E-7. Data Quality Assessment **Evaluation of Laboratory Duplicate Samples**

#### B. WATER

Lal	b ID	- Samp	le ID	Lot	Lot ID		Analyzed				Resul	t (ug/L)		QC
MSD	MS	MSD	MS	MSD	MS	MSD	MS	Anayte	Analyte Typo		MSD	MS	RPD (%)	Acceptance Critoria
D5I190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5l190220	D51190220	9/28/2005 8.28	9/28/2005 8:23	Selenium	Total	2010	ug/L	2030	0.99%	pass
D5[190220002D	D51190220002S	KP-PS-18-091905,	KP-PS-18-091905	D5I190220	D5I190220	9/28/2005 3:20	9/28/2005 3:15	Silver	Dissolved	55.8	ug/L	53.8	3.65%	pass
D51190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/28/2005 8.28	9/28/2005 8:23	Silver	Total	51.6	ug/L	51.8	0.39%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/27/2005 17 47	9/27/2005 17:43	Sodium	Dissolved	242000	ug/L	234000	3,36%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D51190220	9/26/2005 21.21	9/26/2005 21:16	Sodium	Total	226000	trg/L ,	222000	1.79%	pass
D51190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D51190220	9/29/2005 2,49	9/29/2005 2:45	Thallium	Dissolved	42.6	ug/L	42.5	0.24%	pass
D5I190220002D	D51190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5l190220	9/27/2005 20.10	9/27/2005 20:06	Thallium	Total	41.2	ug/L	41.1	0.24%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5I190220	D5l190220	9/28/2005 3:20	9/28/2005 3:15	Vanadium	Dissolved	513	ug/L	495 ,	3,57%	pass
D5I190220002D	D5I1902200025	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5I190220	9/28/2005 8.28	9/28/2005 8:23	Vanadium	Total	579	ug/L	582	0.52%	pass
D5I190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D51190220	D5I190220	9/28/2005 3:20	9/28/2005 3:15	Zinc	Dissolved	508	ug/L.	486	4.43%	pass
D51190220002D	D5I190220002S	KP-PS-18-091905	KP-PS-18-091905	D5 190220	D51190220	9/28/2005 8.28	9/28/2005 8:23	Zinc	Total	933	ug/L	931	0.21%	pass

N = Spiked recovery outside QC control limits.

NC MSB = Not calcutated. Parent cample concentrations greater than four times the calcutated. NA = QC acceptance criteria not evoluted. Percent recovery not available for analyte.

Pass = Relative Percent Difference (RPD) is within QC acceptance criteria (RPD<20%).

QC = Quality Control

Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (mg/kg)	QC Acceptance Criteria Evaluation
D3L110000319B	D3L100414	12/18/2003 15:22	Mercury	· Total	ND	pass
D3L110000321B	D3L100414	12/18/2003 16:13	Mercury	Total	ND	pass
D3L110000608B	D3L100414	12/29/2003 19:01	Aluminum	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Antimony	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Arsenic	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Barium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Beryllium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Cadmium ·	Total	ND .	pass
D3L110000608B	D3L100414	12/29/2003 19:01	Calcium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Chromium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Cobalt	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Copper	Total	ND	pass
D3L110000608B	D3L100414	12/29/2003 19:01	Iron	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Lead	Total	ND	pass
D3L110000608B	D3L100414	12/29/2003 19:01	Magnesium	Total	. ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Manganese	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Nickel	Total	ND	pass
D3L110000608B	D3L100414	12/29/2003 19:01	Potassium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Selenium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Silver	Total	ND	pass
D3L110000608B	D3L100414	12/29/2003 19:01	Sodium	Total	CN	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Thallium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Vanadium	Total	ND	pass
D3L110000608B	D3L100414	12/19/2003 11:14	Zinc	Total	ND	pass
D3L120000434B	D3L110408	12/17/2003 17:30	Mercury	Total	ND	. pass
D3L120000435B	D3L110408	12/18/2003 16:38	Mercury	Total	ND	. pass
D3L130000135B	D3L110408	12/28/2003 19:19	Aluminum	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Antimony	Total	ND.	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Arsenic	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Barium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Beryllium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Cadmium	Total	ND	pass
D3L130000135B	D3L110408	12/28/2003 19:19	Calcium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Chromium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Cobalt	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Copper.	Total	ND	pass
D3L130000135B	D3L110408	12/28/2003 19:19	Iron	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Lead	Total	ND	pass
D3L130000135B	D3L110408	12/28/2003 19:19	Magnesium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Manganese	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Nickel	Total	ND	pass
D3L130000135B	D3L110408	12/28/2003 19:19	Potassium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Selenium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Silver	Total	ND	pass

Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (mg/kg)	QC Acceptance Criteria Evaluation
D3L130000135B	D3L110408	12/28/2003 19:19	Sodium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Thallium	Total	ND	pass ·
D3L130000135B	D3L110408	12/19/2003 17:20	Vanadium	Total	ND	pass
D3L130000135B	D3L110408	12/19/2003 17:20	Zinc	Total	ND	pass
D3L190000594B	D3L190390	12/30/2003 0:01	Aluminum	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Antimony	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Arsenic	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Barium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Beryllium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Cadmium	Total	ND	pass
D3L190000594B	D3L190390	12/30/2003 0:01	Calcium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Chromium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Cobalt	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Copper	Total	ND	pass
D3L190000594B	D3L190390	12/30/2003 0:01	Iron	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Lead	Total	ND	pass
D3L190000594B	D3L190390	12/30/2003 0:01	Magnesium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Manganese	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Nickel	Total	ND	pass
D3L190000594B	D3L190390	12/30/2003 0:01	Potassium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Selenium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Silver	Total	ND	pass
D3L190000594B	D3L190390	12/30/2003 0:01	Sodium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Thallium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Vanadium	Total	ND	pass
D3L190000594B	D3L190390	12/22/2003 23:39	Zinc	Total	ND	pass
D3L190000678B	D3L190405	12/30/2003 3:03	Aluminum	Total	ND	pass.
D3L190000678B	D3L190405	12/23/2003 19:09	Antimony	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Arsenic	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Barium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Beryllium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Cadmium	Total	ND ·	pass
D3L190000678B	D3L190405	12/30/2003 3:03	Calcium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Chromium	Total	ND .	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Cobalt	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Copper	Total	ND	pass
D3L190000678B	D3L190405	12/30/2003 3:03	Iron	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Lead	Total	ND	pass
D3L190000678B	D3L190405 .	12/30/2003 3:03	Magnesium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Manganese	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Nickel	Total	ND	pass
D3L190000678B	D3L190405	12/30/2003 3:03	Potassium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Selenium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Silver	Total	ND	pass

Sample ID	. Lot ID	Analyzed	Anayte	Analyte Type	Result (mg/kg)	QC Acceptance Criteria Evaluation
D3L190000678B	D3L190405	12/30/2003 3:03	Sodium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Thallium	· Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Vanadium	Total	ND	pass
D3L190000678B	D3L190405	12/23/2003 19:09	Zinc	Total	ND	pass
D3L220000296B	D3L190390	12/23/2003 14:38	Mercury	Total	ND	pass
D3L220000299B	D3L190390	12/27/2003 21:19	Mercury	Total	ND	pass
D3L220000299B	D3L190405	12/27/2003 21:19	Mercury	Total	ND	pass
D3L220000300B	D3L190405	12/23/2003 16:18	Mercury	Total	ND	pass .
D3L220000301B	D3L190419	12/31/2003 12:13	Mercury	Total	ND	pass
D3L220000302B	D3L190461	12/31/2003 13:40	Mercury	Total	ND	pass
D3L220000303B	D3L190464	12/31/2003 14:20	Mercury	Total	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Aluminum	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Antimony	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Arsenic	Total	ND	pass
D3L230000647B	D3L190464	· 1/4/2004 2:08	Barium	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Beryllium	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Cadmium	Total	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Calcium	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Chromium	Total	. ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Cobalt	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Copper	Total	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Iron	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Lead	Total	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Magnesium	Total	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Manganese	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Nickel	Total ·	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Potassium	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Selenium	Total	ND	pass .
D3L230000647B	D3L190464	1/4/2004 2:08	Silver	Total	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Sodium	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Thallium	Total	ND	pass
D3L230000647B	D3L190464	1/4/2004 2:08	Vanadium	Total	ND	pass
D3L230000647B	D3L190464	1/5/2004 4:04	Zinc	Total	ND	pass
D3L230000648B	D3L190419	1/5/2004 0.58	Aluminum	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Antimony	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Arsenic	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Barium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Beryllium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Cadmium	Total	ND	pass
D3L230000648B	D3L190419	1/5/2004 0:58	Calcium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Chromium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Cobalt	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Copper	Total	ND	pass
D3L230000648B	D3L190419	1/5/2004 0:58	Iron	Total	ND	pass

Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (mg/kg)	QC Acceptance Criteria Evaluation
D3L230000648B	D3L190419	12/30/2003 18:05	Lead	Total	ND	pass:
D3L230000648B	D3L190419	1/5/2004 0:58	Magnesium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Manganese	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Nickel	Total	ND	pass
D3L230000648B	D3L190419	1/5/2004 0:58	Potassium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Selenium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Silver	Total	ND	pass
D3L230000648B	D3L190419	1/5/2004 0:58	Sodium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Thallium	Total	ND	pass
D3L230000648B	D3L190419	12/30/2003 18:05	Vanadium	Total	ND	pass
D3L230000648B	D3L190419	1/5/2004 0:58	Zinc	Total	ND	pass
D3L230000649B	D3L190461	1/5/2004 6:22	Aluminum	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Antimony	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Arsenic	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Barium	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Beryllium	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Cadmium	Total	ND	pass
D3L230000649B	D3L190461	1/5/2004 6:22	Calcium	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Chromium	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Cobalt	Total	ND.	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Copper	Total	ND	pass
D3L230000649B	D3L190461	1/5/2004 6:22	Iron	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Lead	Total	ND	pass
D3L230000649B	D3L190461	1/5/2004 6:22	Magnesium	Total	ND .	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Manganese	Total	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Nicke)	Total	ND	pass
D3L230000649B	D3L190461	1/5/2004 6:22	Potassium	Total	ND.	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Selenium '	Total	ND	. pass
D3L230000649B	· D3L190461	12/31/2003 21:15	Silver	Total	ND	pass
D3L230000649B	D3L190461	1/5/2004 6:22	Sodium	Total :	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Thallium	Total '	ND	pass
D3L230000649B	D3L190461	12/31/2003 21:15	Vanadium	Total	ND	pass
D3L230000649B	D3L190461	. 1/5/2004 6:22	Zinc .	Total	ND	pass

Fail = Does not meet QC acceptance criteria (chemical detected above detection limit).

ND = Concentration not detected at concentrations above the reporting limit.

Pass = Results are within QC acceptance criteria (below detection limit).

QC = Quality Control

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
D3L110000334B	D3L100414	12/15/2003 18:42	Mercury	Total	ND	pass
D3L120000442B	D3L110408	12/15/2003 17:18	Mercury	Total	ND	pass
D3L130000128B	D3L110408	12/19/2003 2:53	Antimony	Total	ND	pass
D3L130000128B	D3L110408	12/19/2003 2:53	Arsenic	Total	ND	pass
D3L130000128B	D3L110408	12/19/2003 2:53	Beryllium	Total	ND	pass
D3L130000128B	D3L110408	12/19/2003 2:53	Cadmium	Total	ND	pass
D3L130000128B	D3L110408	12/19/2003 2:53	Thallium	Total	ND	pass
D3L130000167B	D3L110408	12/22/2003 14:36	Aluminum	. Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Barium	Total	ND	pass
D3L130000167B	D3L110408	12/22/2003 14:36	Calcium	Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Chromium	Total	ND	pass ·
D3L130000167B	D3L110408	12/16/2003 11:06	Cobalt	- Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Copper	Total	ND	pass
D3L130000167B	D3L110408	12/22/2003 14:36	Iron	Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Lead	Total	. ND	pass
D3L130000167B	D3L110408	12/22/2003 14:36	Magnesium	Total ,	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Manganese	Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Nickel	Total	ND	pass
D3L130000167B	D3L110408	12/22/2003 14:36	Potassium	Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Selenium	Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Silver	Total	ND	. pass
D3L130000167B	D3L110408	12/22/2003 14:36	Sodium	Total	ND	pass
D3L130000167B	D3L110408	12/16/2003 11:06	Vanadium	Total	ND	pass .
D3L130000167B	D3L110408	12/16/2003 11:06	Zinc	Total	ND	pass
D3L160000478B	D3L100414	12/29/2003 9:15	. Aluminum	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Barium	Total	ND	pass
D3L160000478B	D3L100414	12/29/2003 9:15	Calcium	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Chromium	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Cobalt	Total	ΝĎ	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Copper	Total	ND	pass
D3L160000478B	D3L100414	12/29/2003 9:15	Iron	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Lead	Total	ND	pass
D3L160000478B	D3L100414	12/29/2003 9:15	Magnesium	Total.	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Manganese	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Nickel	Total	ND	pass
D3L160000478B	D3L100414	12/29/2003 9:15	Potassium	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Selenium	Total	ND	pass.
D3L160000478B	D3L100414	12/19/2003 13:35	Silver	Total	ND	pass
D3L160000478B	D3L100414	12/29/2003 9:15	Sodium	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	. Vanadium	Total	ND	pass
D3L160000478B	D3L100414	12/19/2003 13:35	Zinc	Total	ND	pass
D3L170000625B	D3L100414	12/24/2003 7:17	Antimony	Total	ND	çass
D3L170000625B	D3L100414	12/24/2003 7:17	Arsenic	Total	ND	pass
D3L170000625B	D3L100414	12/24/2003 7:17	Beryllium	Total	ND	pass

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
D3L170000625B	D3L100414	12/24/2003 7:17	Cadmium	Total	ND	pass
D3L170000625B	D3L100414	12/24/2003 7:17	Thallium	Total	ND	pass
D3L210000117B	D3L190390	12/24/2003 6:15	Antimony	Total	ND	pass
D3L210000117B	D3L190390	12/24/2003 6:15	Arsenic	Total	ND	pass
D3L210000117B	D3L190390	12/24/2003 6:15	Beryllium	Total	ND	pass ,
D3L210000117B	D3L190390	12/24/2003 6:15	Cadmium	Total	ND	pass
D3L210000117B	D3L190390	12/24/2003 6:15	Thállium	Total	ND	pass
D3L210000118B	D3L190390	12/29/2003 7:26	Aluminum	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Barium	Total	ND	pass
D3L210000118B	D3L190390	12/29/2003 7:26	Calcium	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Chromium	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Cobalt	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Copper	Total	ND	pass
D3L210000118B	D3L190390	12/29/2003 7:26	Iron	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Lead	Total	ND .	pass .
D3L210000118B	D3L190390	12/29/2003 7:26	Magnesium	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Manganese	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Nickel	Total	ND	pass.
D3L210000118B	D3L190390	12/29/2003 7:26	Potassium	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Selenium	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Silver .	Total	ND	pass
D3L210000118B	D3L190390	12/29/2003 7:26	Sodium	. Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Vanadium	Total	ND	pass
D3L210000118B	D3L190390	12/23/2003 17:10	Zinc	Total	ND	pass
D3L220000305B	D3L190390	12/22/2003 18:55	Mercury	Total	ND	pass
D3L220000306B	D3L190419	12/30/2003 17:31	Mercury	Total	ND	pass
D3L220000307B	D3L190461	12/30/2003 18:46	Mercury	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 18:12	Aluminum	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Barium	Total	ND	- pass
D3L300000671B	D3L190419	1/7/2004 18:12	Calcium	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Chromium	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Cobalt	Total	ND.	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Copper	Total	ND .	pass
D3L300000671B	D3L190419	1/7/2004 18:12	Iron	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Lead	Total	, ND	pass
D3L300000671B	D3L190419	1/7/2004 18:12	Magnesium	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Manganese	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Nickel	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 18:12	Potassium	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Selenium	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Silver	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 18:12	Sodium	Total	. ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Vanadium	Total	ND	pass
D3L300000671B	D3L190419	1/7/2004 14:48	Zinc	Total	ND	pass

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
D3L300000671B	D3L190461	1/7/2004 18:12	Aluminum	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14.48	Barium	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 18:12	Calcium	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Chromium	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Cobalt	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Copper	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 18:12	Iron	Total	ND	pass
D3L300000671B	· D3L190461	1/7/2004 14:48	Lead	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 18:12	Magnesium	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Manganese	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Nickel	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 18:12	Potassium	Total	ND.	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Selenium	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Silver	Total .	ND	pass
D3L300000671B	D3L190461	1/7/2004 18:12	Sodium	Total	ND	· pass
D3L300000671B	D3L190461	1/7/2004 14:48	Vanadium	Total	ND	pass
D3L300000671B	D3L190461	1/7/2004 14:48	Zinc	Total	ND	pass
D3L300000672B	D3L190419	1/7/2004 17:54	Antimony	Total	ND	pass
D3L300000672B	D3L190419	1/7/2004 17:54	Arsenic	Total	ND	pass
D3L300000672B	D3L190419	1/7/2004 17:54	Beryllium	Total	ND	pass
D3L300000672B	D3L190419	1/7/2004 17:54	Cadmium	Total	ND	pass
D3L300000672B	D3L190419	1/7/2004 17:54	Thallium	Total	ND	pass
D3L300000672B	D3L190461	1/7/2004 17:54	Antimony	Total	ND	pass
D3L300000672B	D3L190461	1/7/2004 17:54	Arsenic	Total	ND	pass
D3L300000672B	D3L190461	1/7/2004 17:54	Beryllium	Total	ND	pass
D3L300000672B	D3L190461	1/7/2004 17:54	Cadmium	Total	ND	pass
D3L300000672B	D3L190461	1/7/2004 17:54	Thallium	Total	ND	pass
	D4E040112	5/10/2004 3:18:00 PM	Mercury	Total	ND	pass
	D4E040112	5/13/2004 10:49:00 AM	Mercury	Dissolved	ND ·	pass
	D4E040112	5/14/2004 10:07:00 PM	Barium	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Chromium	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Cobalt	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Copper	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Lead	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Manganese	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Nickel	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Selenium	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Silver	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Vanadium	Total	ND	pass
	D4E040112	5/14/2004 10:07:00 PM	Zinc	Total	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Barium	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Chromium	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Cobalt	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Copper	Dissolved	ND	

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptanc Criteria Evaluation
	D4E040112	5/15/2004 2:45:00 AM	Lead	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Manganese	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Nickel	Dissolved	ДN	pass
	D4E040112	5/15/2004 2:45:00 AM	Selenium	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Silver	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Vanadium	Dissolved	ND	pass
	D4E040112	5/15/2004 2:45:00 AM	Zinc	Dissolved	ND	pass
	D4E040112	5/15/2004 8:27:00 AM	Aluminum	Total	Ŋ	pass
	D4E040112	5/15/2004 8:27:00 AM	Calcium	Total	ND	pass
	D4E040112	5/15/2004 8:27:00 AM	Iron	Total	ND	pass
	D4E040112	5/15/2004 8:27:00 AM	Magnesium	Total	2	pass
	D4E040112	5/15/2004 8:27:00 AM	Potassium	Total	ND	pass
	D4E040112	5/15/2004 8:27:00 AM	Sodium	Total	ND	pass
	D4E040112	5/17/2004 12:13:00 AM	Aluminum	Dissolved	ND	pass
	D4E040112	5/17/2004 12:13:00 AM	Calcium	Dissolved	ND	pass
	D4E040112	5/17/2004 12:13:00 AM	Iron	Dissolved	ND	. pass
	D4E040112	5/17/2004 12:13:00 AM	Magnesium	Dissolved	ND	pass
	D4E040112	5/17/2004 12:13:00 AM	Potassium	Dissolved	D	pass
	D4E040112	5/17/2004 12:13:00 AM	Sodium	Dissolved	ND	pass
	D4E040112	5/17/2004 8:23:00 PM	Antimony	Dissolved	ND	pass ·
	D4E040112	5/17/2004 8:23:00 PM	Arsenic	Dissolved	ND	pass
•	D4E040112	5/17/2004 8:23:00 PM	Beryllium	Dissolved	ND	pass
	D4E040112	5/17/2004 8:23:00 PM	Cadmium	Dissolved	ND	pass
	D4E040112	5/17/2004 8:23:00 PM	Thallium .	Dissolved	ND	pass
	D4E040112	5/18/2004 8:06:00 PM	Antimony	Total	ND	pass
	D4E040112	5/18/2004 8:06:00 PM	Arsenic	Total	ND	pass
	D4E040112	5/18/2004 8:06:00 PM	Beryllium	Total	ND	pass
	D4E040112	5/18/2004 8:06:00 PM	Cadmium	Total	ND	pass
	D4E040112	5/18/2004 8:06:00 PM	Thallium	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Barium	Total	ND	pass
<del></del>	D4E260121	6/1/2004 7:38:00 PM	Chromium	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Cobatt	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Copper	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Lead	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Manganese	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Nickel	Total	ND	pass
<del></del>	D4E260121	6/1/2004 7:38:00 PM	Selenium	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Silver	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Vanadium	Total	ND	pass
	D4E260121	6/1/2004 7:38:00 PM	Zinc	Total	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Barium	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Chromium	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Cobalt	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Copper	Dissolved	ND	pass

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
	D4E260121	6/1/2004 8:25:00 PM	Lead	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Manganese	Dissolved	ND .	pass
	D4E260121	6/1/2004 8:25:00 PM	Nickel	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Selenium	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Silver	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Vanadium	Dissolved	ND	pass
	D4E260121	6/1/2004 8:25:00 PM	Zinc	Dissolved	, ND	pass
	D4E260121	6/19/2004 12:58:00 PM	Antimony	Total	ND	pass
	D4E260121	6/19/2004 12:58:00 PM	Arsenic	Total	ND	pass
	D4E260121	6/19/2004 12:58:00 PM	Beryllium	Total	ND	pass
	D4E260121	6/19/2004 12:58:00 PM	Cadmium	Total	ND	pass
· · · · · · · · · · · · · · · · · · ·	D4E260121	6/19/2004 12:58:00 PM	Thallium	Total	.ND	pass
	D4E260121	6/19/2004 8:04:00 PM	Antimony	Dissolved	ND	pass
	D4E260121	6/19/2004 8:04:00 PM	Arsenic	Dissolved	ND.	pass
	D4E260121	6/19/2004 8:04:00 PM	Beryllium	Dissolved	ND	pass
	D4E260121	6/19/2004 8:04:00 PM	. Cadmium	Dissolved	ND	pass
	D4E260121	6/19/2004 8:04:00 PM	Thallium	Dissolved	ND	pass
	D4E260121	6/4/2004 1:27:00 AM	Aluminum	Total	ND	pass
	D4E260121	6/4/2004 1:27:00 AM	Calcium	Total	· ND	pass
	D4E260121	6/4/2004 1:27:00 AM	Iron	Total	ND	pass
	D4E260121	6/4/2004 1:27:00 AM	Magnesium	Total	ND	pass
	D4E260121	6/4/2004 1;27;00 AM	Potassium	Total	ND	pass
	D4E260121	6/4/2004 1:27:00 AM	Sodium	Total	ND	pass
	D4E260121	6/4/2004 2:13:00 AM	Aluminum	Dissolved	ND	pass
	D4E260121	6/4/2004 2:13:00 AM	Calcium	Dissolved	ND	pass
	D4E260121	6/4/2004 2:13:00 AM	Iron	Dissolved	ND	pass
	D4E260121	6/4/2004 2:13:00 AM	Magnesium	Dissolved	ND	pass
	D4E260121	6/4/2004 2:13:00 AM	Potassium	Dissolved	ND	pass
	D4E260121	6/4/2004 2:13:00 AM	Sodium	Dissolved	ND	pass
	D4E260121	6/6/2004 12:35:00 PM	Mercury	Dissolved	ND	pass
	D4E260121	6/6/2004 2:03:00 PM	Mercury	Total	ND	pass
	D4G010356	7/12/2004 7:41:00 PM	Antimony	Dissolved	ND	pass
	D4G010356	7/12/2004 7:41:00 PM	Arsenic	Dissolved	ND	pass
	D4G010356	7/12/2004 7:41:00 PM	Beryllium	Dissolved	ND	pass
	D4G010356	7/12/2004 7:41:00 PM	Cadmium	Dissolved	ND	pass
	D4G010356	7/12/2004 7:41:00 PM	Thallium	Dissolved	ND	pass
	D4G010356	7/12/2004 8:26:00 PM	Antimony	Total	ND	pass
	D4G010356	7/12/2004 8:26:00 PM	Arsenic	Total	ND	pass
	D4G010356	7/12/2004 8:26:00 PM	Beryllium	Total	ND	pass
	D4G010356	7/12/2004 8:26:00 PM	Cadmium	Total	ND	pass
· · · · · · · · · · · · · · · · · · ·	D4G010356	7/12/2004 8:26:00 PM	Thallium	Total	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Barium	Total	ОN	pass
	D4G010356	7/13/2004 2:40:00 AM	Chromium	Total	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Cobalt	Total	ND	pass

Lab Sample ID	Lot ID	Analyzed	Anayte .	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
	D4G010356	7/13/2004 2:40:00 AM	Copper	Total [*]	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Lead	Total	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Manganese	Total	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Nickel	Total	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Selenium	Total	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Silver	Total	ND	pass
	D4G010356	7/13/2004 2:40:00 AM	Vanadium	Total.	ŃD	pass
	D4G010356	7/13/2004 3:41:00 AM	Barium	Dissolved	ND	pass
	D4G010356	7/13/2004 3:41:00 AM	Chromium	Dissolved	ND	pass
· · · · · · · · · · · · · · · · · · ·	D4G010356	7/13/2004 3:41:00 AM	Cobalt	Dissolved	ND	pass
	D4G010356	7/13/2004 3:41:00 AM	Copper	Dissolved	ND	pass
	D4G010356	7/13/2004 3:41:00 AM	Lead	Dissolved	ИĎ	pass
<u>-</u> -	D4G010356	7/13/2004 3:41:00 AM	Manganese	Dissolved	ND	pass
	D4G010356	7/13/2004 3:41:00 AM	Nickel	Dissolved	ND	pass
	D4G010356	7/13/2004 3:41:00 AM	Selenium	Dissolved	ND	pass
	D4G010356	7/13/2004 3:41:00 AM	Silver	Dissolved	, ND	pass
	D4G010356	7/13/2004 3:41:00 AM	Vanadium	Dissolved	ND	pass
	D4G010356	7/14/2004 10:32:00 PM	Mercury	Total	ND	pass
	D4G010356	7/14/2004 11:13:00 PM	Mercury	Dissolved	ND	pass
	D4G010356	7/22/2004 1:47:00 AM	Aluminum	Total	ND	pass
	D4G010356	7/22/2004 1:47:00 AM	Calcium	Total	ND	pass
	D4G010356	7/22/2004 1:47:00 AM	Iron	Total	ND	pass
	D4G010356	7/22/2004 1:47:00 AM	Magnesium	Total	ND	pass
	D4G010356	7/22/2004 1:47:00 AM	Potassium	Total .	ND	pass
	D4G010356	7/22/2004 1:47:00 AM	Sodium	Total	ND .	pass
	D4G010356	7/22/2004 1:47:00 AM	Zinc	Total	ND	pass .
	D4G010356	7/22/2004 2:44:00 AM	Aluminum	Dissolved	ND	pass
	D4G010356	7/22/2004 2:44:00 AM	Calcium	Dissolved	ND.	pass
	D4G010356	7/22/2004 2:44:00 AM	Iron	Dissolved	ND	pass
	D4G010356	7/22/2004 2:44:00 AM	Magnesium	Dissolved	· ND	pass
	D4G010356	7/22/2004 2:44:00 AM	Potassium	Dissolved	ND	pass
···	D4G010356	7/22/2004 2:44:00 AM	Sodium	Dissolved	ND	pass
	D4G010356	7/22/2004 2:44:00 AM	Zinc	Dissolved	ND	pass
	D4G280388	8/12/2004 12:39:00 PM	Mercury	Dissolved	ND	pass
	D4G280388	8/12/2004 9:56:00 PM	Antimony	Dissolved	ND.	pass
	D4G280388	8/12/2004 9:56:00 PM	Arsenic	Dissolved	ND	pass
	D4G280388	8/12/2004 9:56:00 PM	Beryllium	Dissolved	. ND	pass
	D4G280388	8/12/2004 9:56:00 PM	Cadmium	Dissolved .	ND	pass
	D4G280388	8/12/2004 9:56:00 PM	Thallium	Dissolved	ND	pass
	D4G280388	8/13/2004 3:08:00 PM	Mercury	Total	ND	pass
	D4G280388	8/4/2004 9:48:00 AM	Barium	Total	ND	pass
· · ·	D4G280388	8/4/2004 9:48:00 AM	Chromium	Total	ND	pass
	D4G280388	8/4/2004 9:48:00 AM	Cobalt	Total	ND	pass

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result	QC Acceptant Criteria Evaluation
	D4G280388	8/4/2004 9:48:00 AM	Lead	Total	ND	pass
	D4G280388	8/4/2004 9:48:00 AM	Manganese	Total	ND	pass
	D4G280388	8/4/2004 9:48:00 AM	Nickel	Total	ND	pass
	D4G280388	8/4/2004 9:48:00 AM	Selenium	Total	ND	pass
	D4G280388	8/4/2004 9:48:00 AM	Silver	` Total	ND	pass
	D4G280388	8/4/2004 9:48:00 AM	Vanadium	Total	ND	pass
	D4G280388	8/6/2004 3:17:00 AM	Aluminum	Total	ND	pass
	D4G280388	8/6/2004 3:17:00 AM	Calcium	Total	ND	pass
	D4G280388	8/6/2004 3:17:00 AM	· Iron	Total	ND	pass
	,D4G280388	8/6/2004 3:17:00 AM	Magnesium	Total	ND	pass
	D4G280388	8/6/2004 3:17:00 AM	Potassium	Total	ND	pass
	D4G280388	8/6/2004 3:17:00 AM	Sodium	Total	ND	pass
	D4G280388	8/6/2004 3;17:00 AM	Zinc	Total	ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Barium	Dissolved	ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Chromium	Dissolved	ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Cobalt	Dissolved	. ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Copper	Dissolved	ND	pass
·	D4G280388	8/6/2004 7:37:00 PM	Lead	Dissolved	ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Manganese	Dissolved	ND	pass
· · · · · ·	D4G280388	8/6/2004 7:37:00 PM	Nickel	Dissolved	ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Selenium	Dissolved	ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Silver	Dissolved	ND.	pass
	D4G280388	8/6/2004 7:37:00 PM	Vanadium	Dissolved	ND	pass
	D4G280388	8/6/2004 7:37:00 PM	Zinc	Dissolved	ND	pass
	D4G280388	8/7/2004 5:18:00 AM	Aluminum	Dissolved	ND	pass
	D4G280388	8/7/2004 5:18:00 AM	Calcium	Dissolved	ND	pass
	D4G280388	8/7/2004 5:18:00 AM	Iron	Dissolved	ND -	pass
	D4G280388	8/7/2004 5:18:00 AM	Magnesium	Dissolved	ND	pass
	D4G280388	8/7/2004 5:18:00 AM	Potassium	Dissolved	ND	pass
	D4G280388	. 8/7/2004 5:18:00 AM	Sodium	Dissolved	ND	pass
	D4G280388	8/9/2004 5:34:00 PM	Antimony	Total	ND	pass
	D4G280388	8/9/2004 5:34:00 PM	Arsenic	Total	ND	pass
	D4G280388	8/9/2004 5:34:00 PM	Beryllium	Total	ND	pass
	D4G280388	8/9/2004 5:34:00 PM	Cadmium	Total	ND	pass
	D4G280388	8/9/2004 5:34:00 PM	Thallium	Total	ND	pass
4K190000595B	D4K190487	11/23/2004 20:44	Aluminum	Total	ND	pass
4K290000241B	D4K190487	12/1/2004 20:48	Antimony	Total	ND	pass
4K290000241B	D4K190487	12/1/2004 20:48	Arsenic	Total	ND	pass
4K190000595B	D4K190487	11/22/2004 19:31	Barium	· Total	ND	pass
4K290000241B	D4K190487	12/1/2004 20:48	Beryllium	Total	ND	pass
4K290000241B	D4K190487	12/1/2004 20:48	Cadmium	Total	ND	pass
4K190000595B	D4K190487	11/23/2004 20:44	Calcium	Total	ND	pass
4K190000595B	D4K190487		Chromium	. Total	ND	pass
4K190000595B	D4K190487	11/22/2004 19:31 11/22/2004 19:31	Cobalt	Total	ND	pass

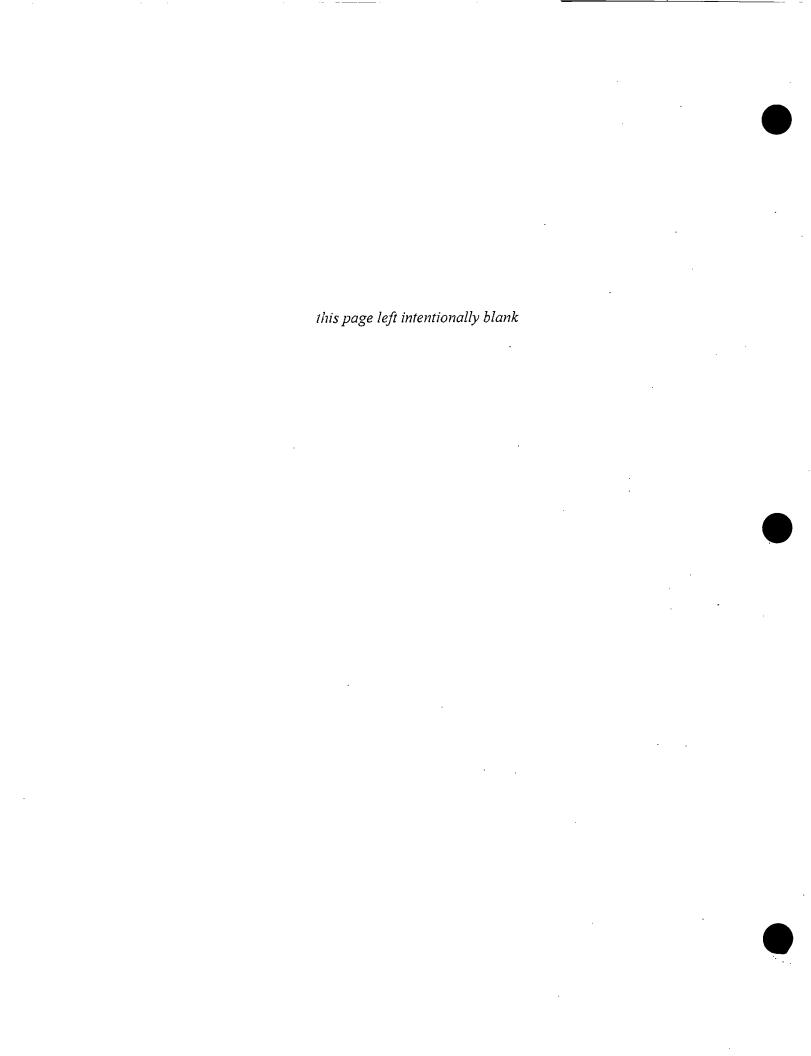
Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
D4K190000595B	D4K190487	11/22/2004 19:31	Copper	Total	ND	pass
D4K190000595B	D4K190487	11/23/2004 20:44	Iron	Total	ND	pass
D4K190000595B	D4K190487	11/22/2004 19:31	Lead	Total	ND	pass
D4K190000595B	D4K190487	11/23/2004_20:44	Magnesium	Total	ND	pass ·
D4K190000595B	D4K190487	11/22/2004 19:31	Manganese	Total	ND	pass
D4K240000531B	D4K190487	11/30/2004 12:45	Mercury	Total	ND	pass
D4K190000595B	D4K190487	11/22/2004 19:31	Nickel	Total	ND	pass
D4K190000595B	D4K190487	11/23/2004 20:44	Potassium	Total	ND	pass
D4K190000595B	D4K190487	11/22/2004 19:31	Selenium	Total	ND	pass
D4K190000595B	D4K190487	11/22/2004 19:31	Silver	Total	ND	pass
D4K190000595B	D4K190487	11/23/2004 20:44	Sodium	Total	ND ·	pass
D4K290000241B	D4K190487	12/1/2004 20:48	Thallium	Total	ND	pass
D4K190000595B	D4K190487	11/22/2004 19:31	Vanadium	Total	ND	pass
D4K190000595B	D4K190487	11/22/2004 19:31	Zinc	Total	ND	. pass
D4K190000614B	D4K190487	11/25/2004 11:48	Aluminum	Dissolved	ND	pass
D4K190000616B	D4K190487	12/1/2004 17:49	Antimony	Dissolved	ND	pass
D4K190000616B	D4K190487	12/1/2004 17:49	Arsenic	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Barium	Dissolved	ND	pass
D4K190000616B	D4K190487	12/1/2004 17:49	Beryllium	Dissolved	ND	pass
D4K190000616B	D4K190487	12/1/2004 17:49	Cadmium	Dissolved	ND	pass
D4K190000614B	D4K190487	11/25/2004 11:48	Calcium	Dissolved	· ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Chromium	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Cobalt	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Copper	Dissolved	ND	pass
D4K190000614B	D4K190487	11/25/2004 11:48	iron	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Lead	Dissolved ·	ND	pass
D4K190000614B	D4K190487	11/25/2004 11:48	Magnesium	Dissolved	· ND	pass
D4K190000614B	D4K190487	11/25/2004 11:48	Manganese	Dissolved	ND	pass
D4K240000537B	D4K190487	12/2/2004 17:46	Mercury	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Nickel	Dissolved	ND	pass
D4K190000614B	D4K190487	11/25/2004 11:48	Potassium ·	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Selenium	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Silver	Dissolved	ND	pass
D4K190000614B	D4K190487	11/25/2004 11:48	Sodium	Dissolved	ND	pass
D4K190000616B	D4K190487	12/1/2004 17:49	Thallium	Dissolved	ND	pass
D4K190000614B	D4K190487	11/29/2004 13:22	Vanadium	Dissolved	ND	pass
D4K190000614B	D4K190487	11/25/2004 11:48	Zinc	Dissolved	ND	pass
D5C290000583B	D5C280224	3/31/2005 0:25	Aluminum	Total	ND	pass
D5C290000584B	D5C280224	3/30/2005 023	Antimony	Total	ND	pass
	D5C280224	3/30/2005 22:02	Arsenic	Total	·ND	pass
D5C290000584B	<del></del>		Barium	Total	ND	pass
D5C290000584B	D5C280224	I 3/30/2005 16·11				
D5C290000583B		3/30/2005 16:11		Total	ND	pass
	D5C280224 D5C280224 D5C280224	3/30/2005 16:11 3/30/2005 22:02 3/30/2005 22:02	Beryllium Cadmium	Total .	ND ND	pass pass

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
D5C290000583B	D5C280224	3/30/2005 16:11	Chromium	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Cobalt	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Copper	Total	ND	pass
D5C290000583B	D5C280224	3/31/2005 0:25	Iron .	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Lead	Total	ND	pass
D5C290000583B	D5C280224	3/31/2005 0:25	Magnesium	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Manganese	Total	ND	pass
D5C290000109B	D5C280224	3/29/2005 17:51	Mercury	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Nickel	Total	ND	pass
D5C290000583B	D5C280224	3/31/2005 0:25	Potassium	Total	ND	pass
D5C29000C583B	D5C280224	3/30/2005 16:11	Selenium	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Silver	Total	ND	pass
D5C290000583B	D5C280224	3/31/2005 0:25	Sodium	Total	ND	pass
D5C290000584B	D5C280224	3/30/2005 22:02	Thallium	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Vanadium	Total	ND	pass
D5C290000583B	D5C280224	3/30/2005 16:11	Zinc	Total	ND	pass
D5E040000197B	D5E020222	5/6/2005 21:54	Aluminum	Dissolved	ND	pass
D5E040000643B	D5E020222	5/9/2005 22:08	Antimony	Dissolved	ND.	pass
D5E040000643B	D5E020222	5/9/2005 22:08	Arsenic	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 12:12	Barium	Dissolved	ND	pass
D5E040000643B	D5E020222	5/9/2005 22:08	Beryllium	Dissolved	ND	pass
D5E040000643B	D5E020222	5/9/2005 22:08	Cadmium	Dissolved	ND	pass
D5E040000197B	D5E020222		Calcium	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 21:54 5/6/2005 12:12	Chromium	Dissolved	ND	pass
D5E040000197B	D5E020222		Cobalt	Dissolved	ND	pass
D5E040000197B	D5E020222	. 5/6/2005 12:12	Copper	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 12:12	Iron	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 21:54 5/6/2005 12:12	Lead	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 21:54	Magnesium	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 12:12	Manganese	Dissolved	ND	pass
D5E090000238B	D5E020222	5/9/2005 17:25	Mercury	Dissolved	ND	. pass
D5E040000197B	D5E020222	5/6/2005 12:12	Nickel	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 21:54	Potassium	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 12:12	Selenium	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 12:12	Silver	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 21:54	Sodium	Dissolved	ND	pass
D5E040000643B	D5E020222	5/9/2005 22:08	Thallium	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 12:12	Vanadium	Dissolved	ND	pass
D5E040000197B	D5E020222	5/6/2005 12:12	Zinc	Dissolved	ND	pass
D5E040000223B	D5E020222	5/6/2005 19:46	Aluminum	Total	ND	pass
D5E040000644B	D5E020222	5/9/2005 23:07	Antimony	Total	ND	pass
D5E040000644B	D5E020222		Arsenic	Total	ND	pass
D5E040000223B	D5E020222	5/9/2005 23:07	Barium	Total	ND	pass
D5E040000644B	D5E020222	5/6/2005 15:03	Beryllium	Total	ND	
D3E040000044B	D3E020222	5/9/2005 23:07	l per Alliqui	l lorgi	שאו	pass

Lab Sample ID	Lot ID	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
D5E040000644B	D5E020222	5/9/2005 23:07	Cadmium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 19:46	Catcium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Chromium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Cobalt	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Copper	Total	DN	pass
D5E040000223B	D5E020222	5/6/2005 19:46	Iroń	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Lead	. Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 19:46	Magnesium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Manganese	Total	ND	pass
D5E090000233B	D5E020222	5/9/2005 17:49	. Mercury	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Nickel	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 19:46	Potassium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Selenium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Silver	Total	ИD	pass
D5E040000223B	D5E020222	5/6/2005 19:46	Sodium	Total	ND	pass
D5E040000644B	D5E020222	5/9/2005 23:07	Thallium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 15:03	Vanadium	Total	ND	pass
D5E040000223B	D5E020222	5/6/2005 19:46	Zinc	Total	ND	pass
D5I220000492B	D51190220	9/27/2005 17:25	Aluminum	Dissolved	ND .	pass
D5I220000237B	D5I190220	9/26/2005 20:58	Aluminum	Total	ND	pass
D51220000527B	D5I190220	9/29/2005 2:23	Antimony	Dissolved	ND	pass
D5l220000193B	D5l190220	9/27/2005 19:44	Antimony	Total	ND	pass
D5l220000527B	D5l190220	9/29/2005 2:23	Arsenic Dissolve		ND	pass
D5l220000193B	D5l190220	9/27/2005 19:44	Arsenic	Total	ND	pass
D5l220000492B	D5I190220	9/28/2005 2:50	Barium	Dissolved	ND	pass
D5l220000237B	D51190220	9/28/2005 7:59	Barium	Total	ND	pass
D5I220000527B	D5I190220	9/29/2005 2:23	Beryllium	Dissolved	ND	pass
D5l220000193B	D5I190220	9/27/2005 19:44	Beryllium	Total	ND	pass
D51220000527B	D5I190220	9/29/2005 2:23	Cadmium	Dissolved	ND	pass
D5I220000193B	D51190220	9/27/2005 19:44	Cadmium	Total	, ND	pass
D51220000492B	D5I190220	9/27/2005 17:25	Calcium	Dissolved	ND	pass
D51220000237B	D5I190220	9/26/2005 20:58	Calcium	Total	ND	. pass
D5l220000492B	D5l190220	9/28/2005 2:50	Chromium	Dissolved	ND	pass
D5I220000237B	D5I190220	9/28/2005 7:59	Chromium	Total	ND	pass
D51220000492B	D51190220	9/28/2005 2:50	Cobalt	Dissolved	ND	pass
D51220000237B	D5I190220	9/28/2005 7:59	Cobalt	Total	ND	pass
D5l220000492B	D5l190220	9/28/2005 2:50	Copper	Dissolved	ND	pass
D5I220000237B	D51190220	9/28/2005 7:59	Copper	Total	ND	pass
D5I220000492B	D5I190220	9/27/2005 17:25	iron · ·	Dissolved	ND	pass
D5I220000237B	D5l190220	9/26/2005 20:58	Iron	Total	ND	pass
D51220000492B	D5l190220	9/28/2005 2:50	Lead	Dissolved	ND	pass
D51220000237B	D5I190220	9/28/2005 7:59	Lead	Total	ND	pass
D5l220000492B	D5l190220	9/27/2005 17:25	Magnesium	Dissolved	ND	pass
D5!220000237B	D5I190220	9/26/2005 20:58	Magnesium	Total	ND	pass

Lab Sample ID	Lot ID _	Analyzed	Anayte	Analyte Type	Result (ug/L)	QC Acceptance Criteria Evaluation
D51220000492B	D5I190220	9/28/2005 2:50	Manganese	Dissolved	ND	pass
D5I220000237B	D5I190220	9/28/2005 7:59	Manganese	Total	ND	pass
D5I220000500B	D5I190220	9/23/2005 17:39	Mercury	Dissolved	ND	pass
D5I260000235B	D5I190220	9/26/2005 17:50	Mercury	Dissolved	ND	pass
D5I260000218B	D5l190220	9/26/2005 17:13	Mercury	Total	ND	pass
D5I220000522B	D5I190220	9/23/2005 18:48	Mercury	Total	ND	pass
D5I220000492B	D5l190220	9/28/2005 2:50	Nickel	Dissolved	ND	pass
D5I220000237B	D5I190220	9/28/2005 7:59	Nickel	Total	ND	pass
D5I220000492B	D5I190220	9/27/2005 17:25	Potassium	Dissolved	ND	pass
D5I220000237B	D5l190220	9/26/2005 20:58	Potassium	Total	ND	pass
D5l220000492B	D51190220	9/28/2005 2:50	Selenium	Dissolved	ND	pass
D5i220000237B	D5l190220	9/28/2005 7:59	Selenium	Total	ND	pass
D51220000492B	D5I190220	9/28/2005 2:50	Silver	Dissolved	ND	pass
D5I220000237B	D5I190220	9/28/2005 7:59	Silver	Total	ND	pass
D5l220000492B	D5l190220	9/27/2005 17:25	Sodium	Dissolved	ND	pass
D51220000237B	D5I190220	9/26/2005 20:58	Sodium	Total	ND	pass
D51220000527B	D5I190220	9/29/2005 2:23	Thallium	Dissolved	ND	pass
D5I220000193B	D5I190220	9/27/2005 19:44	Thallium	Total	ND	pass
D5l220000492B	D5l190220	9/28/2005 2:50	Vanadium	Dissolved	ND	pass
D51220000237B	D5l190220	9/28/2005 7:59	Vanadium	Total	ND	pass
D51220000492B	D51190220	9/28/2005 2:50	Zinc	Dissolved	ND	pass
D5I220000237B	D5l190220	9/28/2005 7:59	Zinc	Total	ND	pass

Fail = Does not meet QC acceptance criteria (chemical detected above detection limit).


 $[\]label{eq:ND} \mbox{ND = Concentration not detected at concentrations above the reporting limit.}$ 

Pass = Results are within QC acceptance criteria (below detection limit).

QC = Quality Control

### APPENDIX F

NATURE AND EXTENT OF SOIL CONTAMINATION



# USGS Background Concentrations of Metals in Soil and Derivation of the $99^{\text{th}}$ Percentile Background Concentration

				·
			,	
			•	
	this page left in	tentionally blank		
•				
				•
				·

Table F-1. Raw Background Data from Schacklette and Boerngen (1984) (Arapahoe, Clear Creek, Douglas, Elbert, Jefferson, Park and Weld Counties in Colorado)

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Unils	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Aluminum	%	7		70000	70000
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Aluminum	%	10	G	100000	100000
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Aluminum	%	10	G	100000	100000
GC170050	Douglas	39.25	104.8833	01-May-64	Aluminum	%	10	G	100000	100000
GC085050	Elbert	39.55	104.4	01-Jun-75	Aluminum	%	5		50000	50000
GC085150	Elbert	39.1333	104.15	01-Jun-75	Aluminum	%	3	<b></b>	30000	30000
GC016950	Jefferson	39.3667	105.25	01-May-62	Aluminum	%	7		70000	70000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Aluminum	%	7		70000	70000
GC033350	Park	40.4	106.6333	01-Aug-65	Aluminum	%	10	G	100000	100000
GC155050	Park	39.45	105.7	01-Jul-63	Aluminum	%	3		30000	30000
GC181450	Park	39.2167	106	01-Jul-64	Aluminum	%	7 .		70000	70000
GC263250	Weld	40.8833	104.7833	01-Aug-68	Aluminum	%	5		50000	50000
GC268750	Weld	40.9833	103.7	01-Aug-68	Aluminum	%	1.5		15000	15000
GC268850	Weld	40.6333	104.0833	01-Aug-68	Aluminum	%	10 .		100000	100000
GC085050	Elbert	39.55	104.4	01-Jun-75	Antimony	PPM	1	L	1	1
GC085150	Elbert	39.1333	104.15	01-Jun-75	Anlimony	PPM	1	L	1	1
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Arsenic	PPM	7.5		7.5	7.5
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Arsenic	PPM	6,6		6.6	6.6
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Arsenic	PPM	3.2		3.2	3.2
GC170050	Douglas	39.25	104.8833	01-May-64	Arsenic	PPM	3.2		3.2	3.2
GC085050	Elbert	39.55	104.4	01-Jun-75	Arsenic	PPM	4.73		4.73	4.73
GC085150	Elbert	39.1333	104.15	01-Jun-75	Arsenic	PPM	4.145		4.145	4.145
GC155150	Jefferson	39.65	105.2	01-Jul-63	Arsenic	PPM	10		10	. 10
GC033350	Park	40.4	106.6333	01-Aug-65	Arsenic	PPM	3.3		3.3	3.3
GC155050	Park	39.45	105.7	01-Jul-63	Arsenic	PPM	4		4	44
GC263250	Weld	40.8833	104.7833	01-Aug-68	Arsenic	PPM	9.1		.9.1	9.1
GC268750	Weld	40.9833	103.7	01-Aug-68	Arsenic	PPM	5		5	5
GC268850	Weld	40.6333	104.0833	01-Aug-68	Arsenic	PPM	4.5		4.5	4.5

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Barium	PPM	700		700	700
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Barium	PPM	700		700	700
GC033250	Clear Creck	40.05	106.15	01-Aug-65	Barium	PPM	700		700	700
GC170050	Douglas	39.25	104.8833	01-May-64	Barium	PPM	2000		2000	2000
GC085050	Elbert	39.55	104.4	01-Jun-75	Barium	PPM	700		700	700
GC085150	Elbert	39.1333	104.15	01-Jun-75	Barium	PPM	700		700	700
GC016950	Jefferson	39.3667	105.25	01-May-62	Barium	PPM	1000		1000	1000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Barium	PPM	700		700	700
GC033350	Park	40.4	106.6333	01-Λug-65	Barium	PPM	700		700	700
GC155050	Park	39.45	105.7	01-Jul-63	Barium	PPM	500		500	500
GC181450	Park	39.2167	106	01-Jul-64	Barium	PPM	500		500	500
GC263250	Weld	40.8833	104.7833	01-Aug-68	Barium	PPM	700		. 700	700
GC268750	Weld	40.9833	103.7	01-Aug-68	Barium	PPM	700		700	700
GC268850	Weld	40.6333	104.0833	01-Aug-68	Barium	PPM	300		300	300
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Beryllium	PPM	1.5		1.5	1.5
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Beryllium	PPM	5.		5	5
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Beryllium	PPM	1	N	1	0.5
GC170050	Douglas	39.25	104.8833	01-May-64	Beryllium	PPM	3		3	3
GC085050	Elbert	39.55	104.4	01-Jun-75	Beryllium	PPM	1	<del></del>	1	1
GC085150	Elbert	39.1333	104.15	01-Jun-75	Beryllium	PPM	1	N	1	0.5
GC016950	Jefferson	39.3667	105.25	01-May-62	Beryllium	PPM	5		5	5
GC155150	Jefferson	39.65	105.2	01-Jul-63	Beryllium	PPM	2 .		2	2
GC033350	Park	40.4	106.6333	01-Aug-65	Beryllium	PPM	1	N	1	0.5
GC155050	Park	39.45	105.7	01-Jul-63	Beryllium	PPM	1	N	1	0.5
GC181450	Park	39.2167	106	01-Jul-64	Beryllium	PPM	1	N	1 ·	0.5
GC263250	Weld	40.8833	104.7833	01-Aug-68	Beryllium	PPM	1	N	1	0.5
GC268750	Weld	40.9833	103.7	01-Aug-68	Beryllium	PPM	1	N	1	0.5
GC268850	Weld	40.6333	104.0833	01-Aug-68	Beryllium	PPM	1.5	-	1.5	1.5

CObkg_7counties.xls: Table F-1

Table F-1. Raw Background Data from Schacklette and Boerngen (1984) (Arapahoe, Clear Creek, Douglas, Elbert, Jefferson, Park and Weld Counties in Colorado)

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Calcium	%	0.76		7600	7600
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Calcium	%	0.7		7000	7000
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Calcium	%	0.9		9000	9000
GC170050	Douglas	39.25	104.8833	01-May-64	Calcium	%	0.72		7200	7200
GC085050	Elbert	39.55	104.4	01-Jun-75	Calcium	%	0.463		4630	4630
GC085150	Elbert	39.1333	104.15	01-Jun-75	Calcium	-%	1.7617		17617	17617
GC016950	Jefferson	39.3667	105.25	01-May-62	Calcium	%	1.1		11000	11000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Calcium	%	1.1		11000	11000
GC033350	Park	40.4	106.6333	01-Aug-65	Calcium	%	1.2		12000	12000
GC155050	Park	39.45	105.7	01-Jul-63	Calcium	%	1.5		15000	15000
GC181450	Park	39.2167	106	01-Jul-64	Calcium	%	1.1		11000	11000
GC263250	Weld	40.8833	104.7833	01-Aug-68	Calcium	%	0.55		5500	5500
GC268750	Weld	40.9833	103.7	01-Aug-68	Calcium	%	32		320000	320000
GC268850	Weld	40.6333	104.0833	01-Aug-68	Calcium	%	4.9		49000	49000
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Chromium	PPM	50		50	50
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Chromium	PPM	50		50	50
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Chromium	PPM	30		30	30
GC170050	Douglas	39.25	104.8833	01-May-64	Chromium	PPM	20		20	20
GC085050	Elbert	39.55	104.4	01-Jun-75	Chromium	PPM	20		20	20
GC085150	Elbert	39.1333	104.15	01-Jun-75	Chromium	PPM	50		50	50
GC016950	Jefferson	39.3667	105.25	01-May-62	Chromium	PPM	30		30	30
GC155150	Jefferson	39.65	105.2	01-Jul-63	Chromium	PPM	50		50	50
GC033350	Park	40.4	106.6333	01-Aug-65	Chromium	PPM	50		50	50
GC155050	Park	39.45	105.7	01-Jul-63	Chromium	PPM	50		50	50
GC181450	Park	39.2167	106	01-Jul-64	Chromium	PPM	50		50	50
GC263250	Weld	40.8833	104.7833	01-Aug-68	Chromium	PPM	20		20	20
GC268750	Weld	40.9833	103.7	01-Aug-68	Chromium	PPM	10		10	10
GC268850	Weld	40.6333	104.0833	01-Aug-68	Chromium	PPM	30		30	30

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Cobalt	PPM	7		7	7
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Cobalt	PPM	15	~	15	15
GC033250	Cloar Creek	40.05	106.15	01-Λug-65	Cobalt	PPM	10		10	10
GC170050	Douglas	39.25	104.8833	01-May 64	Cobalt	PPM	5		5	5
GC085050	Elbert	39.55	104.4	01-Jun-75	Cobalt	PPM	7		7	7
GC085150	Elbert	39.1333	104.15	01-Jun-75	Cobalt	PPM	5		5	5
GC016950	Jefferson	39.3667	105.25	01-May-62	Cobalt	PPM	10		10	10
GC155150	Jefferson	39.65	105.2	01-Jul-63	Cobalt	PPM	7		7	7
GC033350	Park	40.4	106.6333	01-Aug-65	Cobalt	PPM	15		15	15
GC155050	Park	39.45	105.7	01-Jul-63	Cobalt	PPM	3	N	3	1.5
GC181450	Park	39.2167	106	01-Jul-64	Cobalt	PPM	7		7	7
GC263250	Weld	40.8833	104.7833	01-Aug-68	Cobalt	PPM	3		3	3
GC268750	Weld	40.9833	103.7	01-Aug-68	Cobalt	PPM	3		3	3
GC268850	Weld	40.6333	104.0833	01-Aug-68	Cobalt	PPM	3		3	3
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Copper	PPM	20		20	20
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Copper	PPM	30		30	30
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Copper	PPM	15		15	15
GC170050	Douglas	39.25	104.8833	01-May-64	Copper	PPM	15		15	15
GC085050	Elbert	39.55	104.4	01-Jun-75	Copper	PPM	15		15	15
GC085150	Elbert	39.1333	104.15	01-Jun-75	Copper	PPM	7		7	7
GC016950	Jefferson	39.3667	105.25	01-May-62	Copper	PPM	50		50	·50
GC155150	Jefferson	39.65	105.2	01-Jul-63	Copper	PPM	50		50	50
GC033350	Park	40.4	106.6333	01-Aug-65	Copper	PPM	30	٠	30	30
GC155050	Park	39.45	105.7	01-Jul-63	Copper	PPM	30		30	30 -
GC181450	Park	39.2167	106	01-Jul-64	Copper	PPM	10		10	10
GC263250	Weld	40.8833	104.7833	01-Aug-68	Copper	PPM	15		15	15
GC268750	Weld	40.9833	103.7	01-Aug-68	Copper	PPM	15 .		15	15
GC268850	Weld	40.6333	104.0833	01-Aug-68	Copper	PPM	15		15	15

Table F-1. Raw Background Data from Schacklette and Boerngen (1984) (Arapahoe, Clear Creek, Douglas, Elbert, Jefferson, Park and Weld Counties in Colorado)

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Iron	%	3		30000	30000
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	lron	%	2		20000	20000
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Iron	%	2		20000	20000
GC170050	Douglas	39.25	104.8833	01-May-64	Iron	%	1.5		15000	15000
GC085050	Elbert	39.55	104.4	01-Jun-75	Iron	%	1		10000	10000
GC085150	Elbert	39.1333	104.15	01-Jun-75	Iron	%	1		10000	10000
GC016950	Jefferson	39.3667	105.25	01-May-62	Iron	%	7		70000	70000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Iron	%	3		30000	30000
GC033350	Park	40.4	106.6333	01-Aug-65	Iron	%	3		30000	30000
GC155050	Park	39.45	105.7	01-Jul-63	Iron	%	1.5		15000	15000
GC181450	Park	39.2167	106	01-Jul-64	· Iron	%	2		20000	20000
GC263250	Weld	40.8833	104.7833	01-Aug-68	lron	%	2		20000	20000
GC268750	Weld	40.9833	103.7	01-Aug-68	Iron	%	0.7		7000	7000
GC268850	Weld	40.6333	104.0833	01-Aug-68	Iron	%	2		20000	20000
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Lead	PPM	30		30	30
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Lead	PPM	50		50	50
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Lead	PPM	50		50	50
GC170050	Douglas	39.25	104.8833	01-May-64	Lead	PPM	50		50	50
GC085050	Elbert	39.55	104.4	01-Jun-75	Lead	PPM	30		30	30
GC085150	Elbert	39.1333	104.15	01-Jun-75	Lead	PPM	15		15	15
GC016950	Jefferson	39.3667	105.25	01-May-62	Lead	PPM	100		100	100
GC155150	Jefferson	39.65	105.2	01-Jul-63	Lead	PPM	70		70	70
GC033350	Park	40.4	106.6333	01-Aug-65	Lead	PPM	50	<b>-</b> -	50	50
GC155050	Park	39.45	105.7	01-Jul-63	Lead	PPM	30		30	30
GC181450	Park	39.2167	106	01-Jul-64	Lead	PPM	70		70	70
GC263250	Weld	40.8833	104.7833	01-Aug-68	Lead	PPM	20		20	20
GC268750	Weld	40.9833	103.7	01-Aug-68	Lead	PPM	10		10	10
GC268850	Weld	40.6333	104.0833	01-Aug-68	Lead	PPM	15		15	15

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Magnesium	%	0.7		7000	7000
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Magnesium	%	0.7		7000	7000
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Magnesium	%	0.5		5000	5000
GC170050	Douglas	39.25	104.8833	01-May-64	Magnesium	%	0.3		3000	3000
GC085050	Elbert	39.55	104.4	01-Jun-75	Magnesium	%	0.3		3000	3000
GC085150	Elbert	39.1333	104.15	01-Jun-75	Magnesium	%	0.5		5000	5000
GC016950	Jefferson	39.3667	105.25	01-May-62	Magnesium	%	1		10000	10000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Magnesium	%	0.7		7000	7000
GC033350	Park	40.4	106.6333	01-Aug-65	Magnesium	%	1		10000	10000
GC155050	Park	39.45	105.7	01-Jul-63	Magnesium	%	0.5		5000	5000
GC181450	Park	39.2167	106	01-Jul-64	Magnesium	%	0.5		5000	5000
GC263250	Weld	40.8833	104.7833	01-Aug-68	Magnesium	%	0.3		3000	3000
GC268750	Weld	40.9833	103.7	01-Aug-68	Magnesium	%	0.7		7000	7000
GC268850	Weld	40.6333	104.0833	01-Aug-68	Magnesium	%	1.5		15000	15000
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Manganese	PPM	300		300	300
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Manganese	PPM	700		700	700
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Manganese	PPM	500		500	500
GC170050	Douglas	39.25	104.8833	01-May-64	Manganese	PPM	200		200	200
GC085050	Elbert	39.55	104.4	01-Jun-75	Manganese	PPM	300		300	300
GC085150	Elbert	39.1333	104.15	01-Jun-75	Manganese	PPM	150		150	150
GC016950	Jefferson	39.3667	105.25	01-May-62	Manganese	PPM	1000		1000	1000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Manganese	PPM	500		500	500_
GC033350	Park	40.4	106.6333	01-Aug-65	Manganese	PРМ	500		500	500
GC155050	Park	39.45	105.7	01-Jul-63	Manganese	PPM	300		300	300
GC181450	Park	39.2167	106	01-Jul-64	Manganese	PPM	300		300	300
GC263250	Weld	40.8833	104.7833	01-Aug-68	Manganese	PPM	300	<u></u>	300	300
GC268750	Weld	40.9833	103.7	01-Aug-68	Manganese	PPM	70		70	70
GC268850	Weld	40.6333	104.0833	01-Aug-68	Manganese	PPM	300		300	300

CObkg_7counties.xls: Table F-1

Table F-1. Raw Background Data from Schacklette and Boerngen (1984)
(Arapahoe, Clear Creek, Douglas, Elbert, Jefferson, Park and Weld Counties in Colorado)

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Mercury	PPM	0.04		0.04	0.04
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Mercury	PPM	0.06		0.06	0.06
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Mercury	PPM	0.03		0.03	0.03
GC170050	Douglas	39.25	104.8833	01-May-64	Mercury	PPM	0.1		0.1	0.1
GC085050	Elbert	39.55	104.4	01-Jun-75	Мегсигу	PPM	0.04		0.04	0.04
GC085150	Elbert	39.1333	104.15	01-Jun-75	Mercury	PPM	0.04		0.04	0.04
GC155150	Jefferson	39.65	105.2	01-Jul-63	Mercury	PPM	0.18		0.18	0.18
GC033350	Park	40.4	106.6333	01-Aug-65	Mercury	PPM	0.04		0.04	0.04
GC155050	Park	39.45	105.7	01-Jul-63	Mercury	PPM	1.3		1.3	1.3
GC263250	Weld	40.8833	104.7833	01-Aug-68	Mercury	PPM	0.02		0.02	0.02
GC268750	Weld	40.9833	103.7	01-Aug-68	Mercury	PPM	0.03		0.03	0.03
GC268850	Weld	40.6333	104.0833	01-Aug-68	Mercury	PPM	0.01		0.01	0.01
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Nickel	PPM	20		20	20
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Nickel	PPM	15		15	15
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Nickel	PPM	15		15	15
-GC170050	Douglas	39.25	104.8833	01-May-64	Nickel	PPM	15		15	15
GC085050	Elbert	39.55	104.4	01-Jun-75	Nickel	PPM	7		7	7
GC085150	Elbert	39.1333	104.15	01-Jun-75	Nickel	PPM	7		7	7
GC016950	Jefferson	39.3667	105.25	01-May-62	Nickel	PPM	20		20	20
GC155150	Jefferson	39.65	105.2	01-Jul-63	Nickel	PPM	20		20	20
GC033350	Park	40.4	106.6333	01-Aug-65	Nickel	PPM	20		20	20
GC155050	Park	39.45	105.7	01-Jul-63	Nickel	PPM	7		7	7
GC181450	Park	39.2167	106	01-Jul-64	Nickel	PPM	15		15	15
GC263250	Weld	40.8833	104.7833	01-Aug-68	Nickel	PPM	7		7	7
GC268750	Weld	40.9833	103.7	01-Aug-68	Nickel	PPM	7		7	7
GC268850	Weld	40.6333	104.0833	01-Aug-68	Nickel	PPM	10		10	10
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Phosphorus	%	0.044		440	440
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Phosphorus	%	0.016		160	160

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Phosphorus	%	0.016		160	160
GC170050	Douglas	39.25	104.8833	01-May-64	Phosphorus	%	0.02		200	200
GC016950	Jefferson	39.3667	105.25	01-May-62	Phosphorus	%	0.0899		899	899
GC155150	Jefferson	39.65	105.2	01-Jul-63	Phosphorus	%	0.024		240	240
GC033350	Park	40.4	106.6333	01-Aug 65	Phosphorus	%	0.016		160	160
GC155050	Park	39.45	105.7	01-Jul-63	Phosphorus	%	0.1199		1199	1199
GC181450	Park	39.2167	106	01-Jul-64	Phosphorus	%	0.03		300	300
GC263250	Weld	40.8833	104.7833	01-Aug-68	Phosphorus	%	0.016		160	160
GC268750	Weld	40.9833	103.7	01-Aug-68	Phosphorus	%	0.016		160	160
GC268850	Weld	40.6333	104.0833	01-Aug-68	Phosphorus	%	0.024		240	240
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Potassium	%	2.6		26000	26000
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Potassium	%	3.1		31000	31000
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Potassium	%	3		30000	30000
GC170050	Douglas	39.25	104.8833	01-May-64	Potassium	%	6.3		63000	63000
GC085050	Elbert	39.55	104.4	01-Jun-75	Potassium	%	2.6473		26473	26473
GC085150	Elbert	39.1333	104.15	01-Jun-75	Potassium	%	1.828		18280	18280
GC016950	Jefferson	39.3667	105.25	01-May-62	Potassium	%	2.8		28000	28000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Potassium	%	2.7		27000	27000
GC033350	Park	40.4	106.6333	01-Aug-65	Potassium	%	2.5		25000	25000
GC155050	Park	39.45	105.7	01-Jul-63	Potassium	%	2		20000	20000
GC181450	Park	39.2167	106	01-Jul-64	Potassium	%	2.5		25000	25000
GC263250	Weld	40.8833	104.7833	01-Aug-68	Potassium	%	2.9		29000	29000
GC268750	Weld	40.9833	103.7	01-Aug-68	Potassium	%	0.85		8500	8500
GC268850	Weld	40.6333	104.0833	01-Aug-68	Potassium	%	2.5		25000	25000
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Selenium	PPM	0.603		0.603	0.603
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Selenium	PPM	0.3706		0.3706	0.3706
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Selenium	PPM	0.3694		0.3694	0.3694
GC170050	Douglas	39.25	104.8833	01-May-64	Selenium	PPM	0.2602		0.2602	0.2602

Table F-1. Raw Background Data from Schacklette and Boerngen (1984)
(Arapahoe, Clear Creek, Douglas, Elbert, Jefferson, Park and Weld Counties in Colorado)

PRIME_ID	County	Latitude	Longitude	Date_ Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC085050	Elbert	39.55	104.4	01-Jun-75	Selenium	PPM	0.1	L	0.1	0.1
GC085150	Elbert	39.1333	104.15	01-Jun-75	Selenium	PPM	0.1	L	0.1	0.1
GC155150	Jefferson	39.65	105.2	01-Jul-63	Selenium	PPM	0.5365		0.5365	0.5365
GC033350	Park	40.4	106.6333	01-Aug-65	Selenium	PPM	0.1269		0.1269	0.1269
GC155050	Park	39.45	105.7	01-Jul-63	Selenium	PPM	0.5236		0.5236	0.5236
GC263250	Weld	40.8833	104.7833	01-Aug-68	Selenium	PPM	0.1725	] <del>-</del> - ]	0.1725	0.1725
GC268750	Weld	40.9833	103.7	01-Aug-68	Selenium	PPM	0.5135		0.5135	0.5135
GC268850	Weld	40.6333	104.0833	01-Aug-68	Selenium	PPM	0.4412		0.4412	0.4412
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Sodium	%	1.5		15000	15000
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Sodium	%	1.5		15000	15000
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Sodium	%	2		20000	20000
GC170050	Douglas	39.25	104.8833	01-May-64	Sodium	%	1		10000	10000
GC085050	Elbert	39.55	104.4	01-Jun-75	Sodium	%	0.7		7000	7000
GC085150	Elbert	39.1333	104.15	01-Jun-75	Sodium	%	0.7		7000	7000
GC016950	Jefferson	39.3667	105.25	01-May-62	Sodium	%	1.5		15000	15000
GC155150	Jefferson	39.65	105.2	01-Jul-63	Sodium	%	2		20000	20000
GC033350	Park	40.4	106.6333	01-Aug-65	Sodium	%	2		20000	20000
GC155050	Park	39.45	105.7	01-Jul-63	Sodium	%	2		20000	20000
GC181450	Park	39.2167	106	01-Jul-64	Sodium	%	1		10000	10000
GC263250	Weld	40.8833	104.7833	01-Aug-68	Sodium	%	1		10000	10000
GC268750	Weld	40.9833	103.7	01-Aug-68	Sodium	%	0.7		7000	7000
GC268850	Weld	40.6333	104.0833	01-Aug-68	Sodium	%	1		10000	10000
GC085050	Elbert	39.55	104.4	01-Jun-75	Thallium	PPM	14.78		14.78	14.78
GC085150	Elbert	39.1333	104.15	01-Jun-75	Thallium	PPM	13.1		13.1	13.1
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Vanadium	PPM	100		100	100
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Vanadium	PPM	70		70	70
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Vanadium	PPM	50		50	50
GC170050	Douglas	39.25	104.8833	01-May-64	Vanadium	PPM	50		50	50

PRIME_ID	County	Latitude	Longitude	Date Collected	Analyte	Units	Concentration	Qualifier	Concentration (ppm)	Non-detect Adjusted Concentration (ppm)
GC085050	Elbert	39.55	104.4	01-Jun-75	Vanadium	PPM	50		50	50
GC085150	Elbert	39.1333	104.15	01-Jun-75	Vanadium	PPM	50	<u></u>	50	50
GC016950	Jefferson	39.3667	105.25	01-May-62	Vanadium	PPM	100		100	100
GC155150	Jefferson	39.65	105.2	01-Jul 63	Vanadium	PPM	70		70	70
GC033350	Park	40.4	106.6333	01-Aug 65	Vanadium	PPM	70		70	70
GC155050	Park	39.45	105.7	01-Jul-63	Vanadium	PPM	50		50	50
GC181450	Park	39.2167	106	01-Jul-64	. Vanadium	PPM	70		70	70
GC263250	Weld	40.8833	104.7833	01-Aug-68	Vanadium	PPM	50		50	50
GC268750	Weld	40.9833	103.7	01-Aug-68	Vanadium	PPM	20		20	20
GC268850	Weld	40.6333	104.0833	01-Aug-68	Vanadium	PPM	50		50	50
GC157150	Arapahoe	39.6167	104.25	01-Oct-63	Zinc	PPM	50		50	50
GC033150	Clear Creek	39.7833	105.7833	01-Aug-65	Zinc	PPM	70		70	70
GC033250	Clear Creek	40.05	106.15	01-Aug-65	Zinc	PPM	40		40	40
GC170050	Douglas	39.25	104.8833	01-May-64	Zinc	PPM	50		50	50
GC085050	Elbert	39.55	104.4	01-Jun-75	Zinc	PPM	65		65	65
GC085150	Elbert	39.1333	104.15	01-Jun-75	Zinc	PPM	51	<b>-</b>	51	51
GC016950	Jefferson	39.3667	105.25	01-May-62	Zinc	PPM	400		400	400
GC155150	Jefferson	39.65	105.2	01-Jul-63	Zinc	PPM	200		200	200
GC033350	Park	40.4	106.6333	01-Aug-65	Zinc	PPM	60		60	60
GC155050	Park	39.45	105.7	01-Jul-63	Zinc	PPM	250		250	250
GC181450	Park	39.2167	106	01-Jul-64	Zinc	PPM	100		100	100
GC263250	Weld	40.8833	104.7833	01-Aug-68	Zinc	PPM	30	·	30	30
GC268750	Weld	40.9833	103.7	01-Aug-68	Zinc	PPM	20		20	20
GC268850	Weld	40.6333	104.0833	01-Aug-68	Zinc	PPM	35		35	35

N -- not detected at concentrations above the detection limit

CObkg_7counties.xls: Table F-1

G -- measured at a concentration greater than the upper determination limit for the technique

L -- detected by the technique, but at a level below the detection limit

DRAGUN (1988) BACKGROUND DATA RANGES

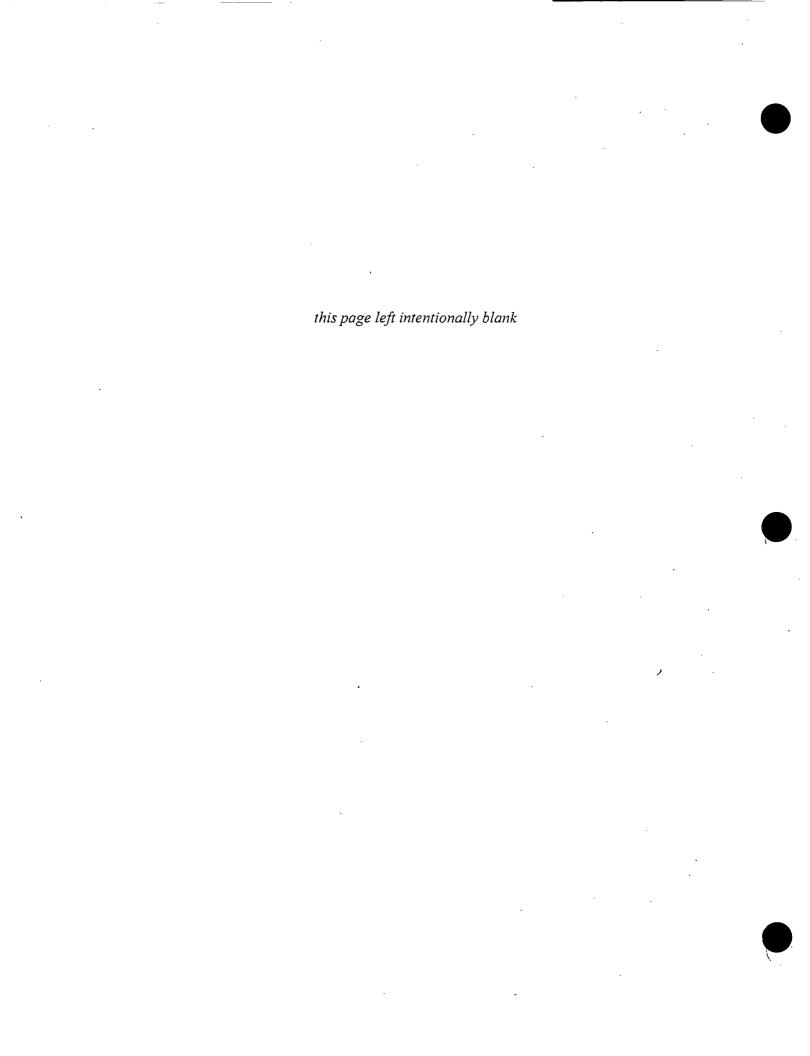



Table F-2. Summary Statistics for Metals in Background Soil (Arapahoe, Clear Creek, Douglas, Elbert, Jefferson, Park and Weld County)

		Geometric	Geometric	99th Percentile	
Chemical	Samples (n)	Mean (GM)	Standard Deviation	Concentration (mg/kg)	
Aluminum	14	60143.7	1.8	230917.7	
Antimony	2	1	1	1	
Arsenic	12	5.0	1.5	12.7	
Barium	14	694.3	1.5	1797.0	
Beryllium	14	1.1	2.5	8.7	
Cadmium	0			<b></b>	
Calcium	14	13366.3	2.9	164986.4	
Chromium	14	32.8	1.7	108.1	
Cobalt	14	5.8	1.9	27.3	
Copper	14	19.4	1.8	73.3	
Iron	14	19240.1	1.8	72972.9	
Lead	14	34.7	2.0	167.8	
Magnesium	14	5892.0	1.6	18098.9	
Manganese	14	322.9	1.9	.1493.7	
Mercury	12	0.1	3.4	1.0	
Nickel	14	12.1	1.6	35.0	
Potassium	14	25254.6	1.5	67031.1	
Selenium	12	0.3	2.0	.1.4	
Silver	0				
Sodium	14	12318.3	1.5	31987.6	
Thallium	2	13.9	1.1	17.0	
Vanadium	14	56.9	1.5	142.3	
Zinc	14	69.3	2.3	496.5	

99th Percentile Concentration = GM * GSD^{2.326}



Table F-3. Typical Range of Native Soil Concentrations of Various Elements

Chemical	Typical Range (mg/kg)
Aluminum	10,000 - 300,000
Antimony	0.6 - 10
Arsenic	1 - 40
Barium	100 - 3500
Beryllium	0.1 - 40
Cadmium	0.01 - 7
Calcium	100 - 400,000
Chromium	5 - 3000
Cobalt	1 - 40
Copper	2 - 100
Iron	7,000 - 550,000
Lead	2 - 200
Magnesium	600 - 6,000
Manganese	100 - 4,000
Mercury	0.01 - 0.08
Nickel	5 - 1,000
Phosphorus	50 - 5,000
Potassium	400 - 30,000
Selenium	0.1 - 2
Silver	0.1 - 5
Sodium	750 - 7,500
Thallium	0.1 - 12
Vanadium	20 - 500
Zinc	10- 300

Source: Dragun (1988). Based on an analysis of Bear et al. (1955), Fairbridge et al. (1979), Polemio et al. (1982), Allaway (1968), Lisk (1972), Page et al. (1979).

this page left intentionally blank

COMPARISON OF CHEMICALS IN SITE SOIL (BY STATION) TO BACKGROUND

this page left intentionally blank

All soil concentrations are shown as mg/kg.

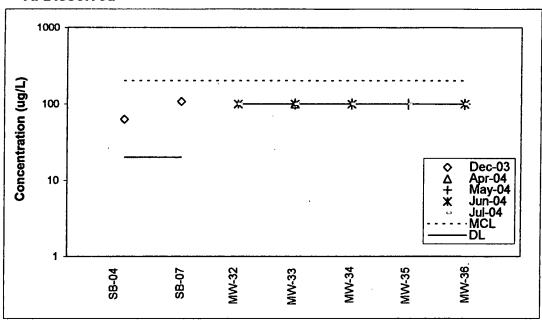
bold above background

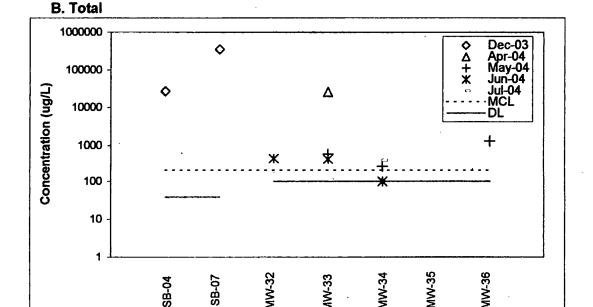
SAMPLE	STATION	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmlum	Cobalt	Copper	Iron	Lead	Viagnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadlum	Zinc
BACKG	ROUND [1]	230,918	10.0	12.7	1797	8.7	7	27.3	73,3	72,973	167.8	18,098.9	1493.7	0.96	35	67,031	1.4	5.0	31,988	12.0	142.0	497
01-VBQU3-SB-0001-B	001	20,000	0.5	4 3	100	0.76	0 25	15	11	18,000	11	4,200	250	0.0165	12	1,700	0.65	0.5	250	0.6	44	58
01-VBOU3-SB-0001-C	100	31,000	0.5	3.8	180	0 95	0.25	15	11	28,000	16	5,100	570	0.0165	15	1,400	0.65	0.5	1,200	0.6	46	69
01-VBOU3-SB 0001-D	001	30.000	0.5	0.5	29	11	0 25	3.6	16	22,000	18	4,100	230	0.0165	7	1,400	0.65	0.5	1,300	0.6	33	50
01-VBOU3-SB-0002-A	002	21,000	0.5	3.7	350 160	0 25	0 25	9.5	3.8 5	15,000	8.9	3,200	340	0.0165	6.5	810	0.65	0.5	660	0.6	38	46
01-VBOU3-SB-0002-B 01-VBOU3-SB-0002-C	002	28,000	0.5	3.7	36	0.25	0 25 0.25	5.2	8.7	18,000 20,000	30	3,600 4,500	330 400	0.0165 0.0165	9.4 8.9	870 1,800	0.65	0.5 0.5	780 1,300	0.6	49 36	54
01-VBOU3-SB-0002-C	0/12	25.000	0.5	6.0	310	0.56	0.25	10	7.7	29,000	71	3,800	350	0.0165	7.6	1,400	0.65	0.5	1,600	0.6	51	71
01-VBOU3-SB-0003-A	003	15,000	0.5	12	320	1.9	0.25	8.3	1300	21,000	270	2.000	550	0.0165	12	950	0.65	13	1,500	0.6	28	80
01-VBOU3-SB-0003-B	003	24,000	0.5	14	500	0 62	0.25	4,4	10	17,000	- 11	4,600	290	0.0165	5.9	1,500	0.65	0.5	1,000	0.6	37	45
01-VBOU3-SB-0003-C	003	24.000	0.5	59	580	0.71	0.25	13	8.6	18,000	10	5,000	310	0.0165	9.5	1,500	0.65	0.5	1,500	0.6	38	53
01-VBOU3-S8-0003-D 01-VBOU3-S8-0004-A	003 004	28.000 7,400	0.5	18	330 160	0 25	0 25 3.2	4.6	200	22.000 10,000	13	5,000 1,600	180	0.0165 0.14	7.7	1,900	0.65 0.65	0.5 2.1	2,200 250	0.6	55 23	210
01-VBOU3-SB-0004-R	004	13.000	0.5	24	74	0 25	0.25	4.9	12	16,000	11	2,400	210	0.0165	8	2,600	0.65	0.5	250	0.6	31	43
01-VBOU3-SB-0004-C	004	17,000	0.5	6	410	0 25	150	7.9	10	16,000	9.4	3,000	150	0.0165	10	1,600	0.65	0.5	1,200	1.2	33	2100
01-VBOU3-SB-0004-D	004	28,000	0.5	2.5	570	0 64	73	61	10	26,000	8.5	3,700	360	0.0165	8	1,300	0.65	0.5	2,200	0.6	51	700
01-VBOU3-SB-0005-A	005	8,100	0.5	- 28	280	0 95	0.73	5.9	710	11,000	160	1,600	230	0.12	8.3	950	0.65	12	940	0.6	20	150
01-VBOU3-SB-0005-B 01-VBOU3-SB 0005 C	005 005	17,000 20,000	0.5	62	720 360	0.25	0.25	7.1 6.5	5.4 4.9	14,000	6.4	2,600 3,900	170 210	0.0165	6.8	940	0.65 0.65	0.5	1,400	0.6 0.6	33 42	<u>44</u> 52
01-VBOU3-SB-0006-A	006	36,000	0.5	11	1800	2.5	0.25	14	4.9	21,000	110	7,400	200	0.0165	19	1,400	4	0.5	10,000	0.6	64	75
01-VBOU3-SB-0006-B	006	22,000	0.5	29	280	0.56	12	4.8	620	21,000	170	3,700	110	13	25	2,500	0.65	2.5	79'1	6.4	39	360
01-VBOU3-SB-0006-C	006	28,000	0.5	3.9	69	0.82	25	9.3	67	25,000	18	3,800	310	0.0165	61	2,200	0.65	0.5	1,300	0.6	37	520
01-VBOU3-SB-0007-A	007	4,300	0.5	11	48	0.25	0.25	3.9	10	9,900	8.9	1,500	120	0.0165	6.5	1,900	0.65	0.5	250	0.6	21	37
01-VBOU3-SB-0007-B 01-VBOU3-SB-0007-C	007	15,000	3.6	24	1100	0.64 0.25	1.25	17	330	140,000	430	2,500 1,800	96	0.0165	96	1,200	0.65	1.2	3,600	0.6	26	500
01-VBOU3-SB-0007-C 01-VBOU3-SB-0007-D	007	16,000	0.5	11	140	0.25	130 510	4.6	3100 83	120,000 19,000	1600 32	3,100	370	1.5 0.046	39 8.9	3.200 2,700	3.5 0.65	1.1	1,100 880	0.6	30	1000 3500
01-VBOU3-SB-0007-E	007	29,000	0.5	47	33	1.2	0.25	7.2	23	19,000	17	4,600	250	0.0165	16	2,700	0.65	0.5	1,100	0.6	48	65
01-VBOU3-SB-0008-A	008	14,000	2.1	9.5	790	0.71	14	6.8	280	16,000	400	2,700	260	0.27	37	1,300	1.3	2.2	1,500	0.6	24	440
01-VBOU3-SB-0008-B	008	18,000	0.5	17	240	0.25	0.25	7.1	190	16,000	160	2,900	270	0.26	7	2,300	0.65	3.7	250	0.6	29	81
01-VBOU3-SB-0008-C	008	29,000	0.5	13	35	1	0.25	5.1	18	20,000	17	3,700	200	0.0165	8.9	1,800	0.65	0.5	690	0.6	34	48
01-VBOU3-SB-0008-D 01-VBOU3-SB-0009-A	008	27,000 12,000	0.5	0.5	230	0.82 0.25	0.25 0.25	6.5	16 60	20,000	100	3,700 3,200	220 240	0.0165 0.079	12	2,200	0.65	0.5 0.5	1,500 250	0.6	38	58 120
01-VBOU3-SB-0009-B	009	20,000	0.5	91	530	0.25	0.25	12	4.5	15,000	11	4,300	250	0.0165	8.7	770	0.65	0.5	1,200	0.6	38	56
01-VBOU3-SB-0009-C	009	30,000	0.5	2	42	1.2	0.25	4.3	22	22,000	18	4,900	500	0.036	9.3	2,300	0.65	0.5	1,600	0.6	54	51
01-VBOU3-SB-0009-D	009	29,000	0.5	6.2	45	1.1	0.25	9.1	18	20,000	17	4,400	190	0.0165	17	3,200	0.65	0.5	1,200	0.6	48	110
01-VBOU3-SB-0010-A	010	25,000	0.5	72	660	0.58	57	16	12	24,000	12	3,300	470	0.0165	17	1,600	0.65	0.5	1,500	0.6	53	1200
01-VBOU3-SB-0010-B 01-VBOU3-SB-0010-C	010 010	21,000 25,000	0.5	2.8 8.7	30	0.77	0.25 0.25	5.9 17	11	15,000 20,000	-12	3,600 3,900	270 380	0.0165	11	1,800	0.65	0.5	1,300	0.6	28 40	48 58
01-VBOU3-SB-0010-D	010	38,000	0.5	1.3	63	0.76	0.25	5.1	20	27,000	18	4,800	500	0.0165	- 8	1,800	0.65	0.5	2,500	0.6	39	58
01-VBOU3-SB-0012-A	012	19,000	0.5	8.7	360	0.73	8.2	9	560	19,000	360	3,200	420	0.073	14	2,200	0 65	4.3	250	0.6	34	300
01-VBOU3-SB-0012-B	012	24,000	0,5	4.1	290	0.94	4,4	8.4	91	21,000	36	3,900	350	0.0165	12	1,800	0.65	0.5	250	0.6	36	130
01-VBOU3-SB-0013-A	013	20,000	0.5	5.1	210	0.71	6.8	7.5	82	000,81	130	3,200	340	0.055	12	1,900	0.65	0.5	250	0.6	34	220
01-VBOU3-SB-0013-B 01-VBOU3-SB-0014-A	013	26,000 22,000	0.5	1.9	97	0.83	0.25 0.25	5.3 7.4	16	19,000	13	4,900	350 400	0.0165	14	2,600	0.65 0.65	0.5	1,600 250	0.6	37	53
01-VBOU3-SB-0014-B	014	29,000	0.5	2.7	120	0.9	0.64	13	14	25,000	11	5,300	560	0.0165	14	1,600	0.65	0.5	1,200	0.6	50 ·	55
01-VBOU3-SB-0014-C	014	27,000	0.5	3.4	160	0.71	0 66	8.8	7.8	28,000	12	4,000	640	0.0165	7.3	1,300	0.65	0.5	1,900	0.6	44	66
01-VBOU3-SB-0015-A	015	12,000	10	3.5	620	0.8	10	7.1	210	18,000	280	2,500	250	0.0165	12	1,800	0.65	0.5	1,500	0.6	28	330
01-VBOU3-SB-0015-B	015	30,000	0.5	2.6	110	0.78	1.4	6.2	140	23,000	24	5,500	490	0.0165	22	3,000	0.65	1.1	250	0.6	32	140
01-VBOU3-SB-0015-C 01-VBOU3-SB-0016-A	015 016	29,000 2,000	0.5	1.2	23	0.25	0.25 1.1	5.8 2.3	19 3600	21,000 3,300	18 5.1	5,100 570	440 190	0.0165	2	2,600 150	0.65	0.5	540 250	0.6	7.5	<u>53</u>
01-VBQU3-SB-0016-B	016	31,000	0.5	22	1500	0.25	0.25	12	15	23,000	10	4,100	380	0.0165	7.3	1,400	0.65	0.5	2,700	0.6	45	54
01-VBOU3-SB-0016-D	016	28,000	0.5	1.1	54	0.78	0.25	7.2	20	20,000	15	4,800	320	0.033	13	3,200	0.65	0.5	1,900	06	45	66
01-VBOU3-SB-0017-A	017	4,400	0.5	2.5	110	0.25	0.25	3	83	4,900	43	550	120	0.13	2	340	0.65		250	0.6	11	30
01-VBOU3-SB-0017-B	017	28,000	0.5	2	1200	0.25	0.77	11	4.8	27,000	7.2	7,400	850	0.0165	4.1	790	0.65	0.5	1,300	0.6	56	55
01-VBOU3-SB-0017-C 01-VBOU3-SB-0017-D	017	33,000	0.5 0.5	0.5	1100	0.74	0.86	1.6	12 5.8	24,000 5,300	16 3.4	5,700	530	0.0165	10	1,900 880	0.65 0.65	0.5	2.000	0.6	54	58 14
01-VBOU3-SB-0017-D	017	7,000	0.5	2.6	16	0.25	0.25	4.8	130	12,000	44	1,800	170	0.0165	6.6	1,900	0.65	0.5	250	0.6	22	36
01-VBOU3-SB-0018-B	018	39,000	0.5	3.6	1200	0.25	1.3	14	9.2	31,000	12	9,300	1900	0.0165	6.8	1,000	0.65	0.5	910	0.6	61	55
01-VBOU3-SB-0018-C	018	37,000	0.5	3	1200	0.25	0.69	13	5.2	30,000	7.8	8,800	1000	0.0165	4.7	790	0.65	0.5	1,300	0.6	59	60
01-VBOU3-SB-0019-A	019	23,000	0.5	1.2	44	0.52	0.25	5.7	14	21,000	11	3,700	410	0.033	15	2,500	0.65	0.5	2,200	0.6	34	45
01-VBOU3-SB-0019-B 01-VBOU3-SB-0020-A	019 020	21,000 33,000	0.5	1.1	340	0.57	0.25 0.64	5.3 9.8	6.7	14,000	7.3	3,700 8,400	440 890	0.0165	13	2,500 720	0.65 0.65	0.5	2,000 840	0.6	31 57	50 56
01-VBOU3-SB-0020-R	020	32,000	0.5	27	940	0.02	1.4	61	13	38,000	18	5,400	1100	0.0165	42	2,100	0.65	0.5	3,300	1.2	59	67
01-VBOU3-SB-0021-A	021	12,000	0.5	23	190	0.25	9.3	5,3	270	14,000	210	3,400	340	1.6	8	2,400	0.65	3	250	0.6	24	470
01-VBOU3-SB-0021-B	021	25,000	0.5	1.9	45	0.65	0.25	4.4	15	16,000	_ 15	3,700	140	0.0165	8.3	2,100	0.65	0.5	250	0.6	41	40
01-VBOU3-SB-0021-C	021	27,000	0.5	0.5	41	0.59	0.25	3.9	15	19,000	13	3,400	190	0.0165	8.1	2,400	0.65	0.5	250	0.6	36	41

All sail concentrations are shown as mg/kg.

bold above background

SAMPLE	STATION	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cohalt	Copper	Iron	Lead	Magnesium	Manganese	Mereury	Nickel	Potassium	Scienium	Silver	Sodium	Thalllum	Vanadium	Zine
B.4CKC	ROUND [I]	230,918	10.0	12.7	1797	8.7	7	27.3	73.3	72,973	167.8	18,098.9	1493.7	0.96	35	67,031	1.4	5.0	31,988	12.0	142.0	497
01 VBOU3-SB-0022-A	022	5,300	2	51	270	0.25	11	3.5	5HQ	7,800	380	4,900	280	0 19	4.7	1,400	0.65	13	250	0,6	19	410
01-VBOU3-SB 0022 B	022	24,030	0.5	15	1200	0.25	18	01	210	19,000	140	5,500	570	0,017	6.B	1,500	0.65	2.5	740	0.6	46	110
01-VBOU3-SB-0022-C	022	28,000	0.5	1.5	50	0.79	0.25	6.7	19	19,000	15	5,300	380	0.033	14	3,300	0.65	0.5	650	0.6	48	72
01-VBOU3-SB-0022-D	022	26,000	0.5	47	38	11	0.25	7.9	34	23.000	16	4,100	110	0.0165	9.4	1,600	0.65	0.5	1,840	0.6	40	110
01-VBOU3-5B 0/23-A	023	17,000	0.5	3.5	83	0.25	0 25	5.6	30	17,000	35	3,000	270	0.0165	9,9	2,000	0 65	0.5	520	0.6	30	93
01-VBOU3-SB 0023-B	023	30,000	0.5	3	61	0.95	0.25	7.7	20	23,000		3,800	410	0.0165	13	2,500	0 65	0.5	1,300	0.6	45	71
01-VBOU3 SB 0023-C	023	28,000	0.5	5.7	32	!	0.25	6.2	18	21,000	15	3,200	120	0.0165	10	1,700	0.65	0.5	1,100	0.6	34	67
01 VBOU3 SB 0024-A	024	27,000	0.5	. 53	700 1100	0.25	0.65	12	18	28,000	10	4,900	700	0.0165	6.5	1,500	0 65	0 5	2,7(17)	0.6	55	80
01-VBOU3-SB 0024-D 01-VBOU3-SB-0025-A	024	32,000 32,000	0.5	13	740	0.83	0.65	14	4.7	34,000	7.6	4,100 8,300	370 820	0.0165	5 2	1,600 720	0.65 0.65	0 5	5,100 3,300	0.6	61	73
01-VBOU3-SB-0025-B	025	27,000	0.5	2	160	0.25	0.7	13	3.2	32,000	6.5	7,300	360D	0.0165	4.9	5C0	0.65	0.5	1,700	0.6	66	68
01-VBOU3-SB-0026-A	025	9,100	0.5	3.4	79	0.25	0.67	5.8	23	14,000	23	3,100	220	0.0165	16	1,800	0.65	0.5	250	0.6	33	69
01-VBOU3-SB-0026 B	026	25,000	0.5	4.1	110	723	0.25	7.1	19	24.000	50	3,700	520	0.039	9.1	2,100	0.65	0.5	790	0.6	35	87
01-VBOU3-SB C027-A	027	24,C00	0.5	4.4	120	0 25	0.25	7.6	20	21,000	19	3,400	300	0.0165	10	3,200	0.65	0.5	660	0.6	41	62
01-VBOU3-SB-0027-B	027	28,000	0.5	10	280	0.75	0.25	12	66	27,000	40	4,800	650	0.077	13	2,300	0 65	1.1	1,000	06	51	130
01-VBOU3-SB-0027 C	027	36,000	0.5	2.9	1100	0.76	0.25	10	12	29,000	9.2	5.500	420	0.0165	4.5	1,800	0 65	0.5	1,800	0.6	60	64
01-VBOU3 SB-0027-D	027	30,C00	0.5	10	1100	0.75	<b>0.25</b>	14	15	27,600	11	4,100	350	0 0165	5.9	1,900	0.65	0.5	2 800	06	73	67
01-VBOU3 SB-0027 E	027	29,000	0.5	19	84	0.84	0.25	5.2	24	21,000	16	4,500	640	0.0165	16	3,800	0.65	0.5	1.100	0.6	50	63
01 VBOU3-SB-0328-A	028	30,000	0.5	2.4	36	U 76	0.25	5.1	1	21,000	12	4,400	320	0.0165	8 4	2,000	0.65	0.5	1,860	0,6	37	49
01-VBOU3-SB-0028-B	028	25,000	0.5	4.9	210	0.25	0.25	11	7.5	33,000	9.1	3,800	490	0 0165	9.8	1,300	0.65	0.5	1,760	0.6	57	65
01-VBOU3-SB-0028-C	028	27,000	0.5	5.3	32	1.1	0.25	4.5		16,000	19	3,300	97	0.039	9.3	2,300	0.65	0.5	1,560	0.6	37	65
01-VBOU3-SB-0028-D	028	27,000	0.5	1.9	38	0.7	0.25	5.6	17	17.000	16	4,000	110	0.0165	13	3,000	0.65	0.5	1,300	0.6	47	58
01-VBOU3-SB-0028-E	028	31,000	0.5	2.3	30	0.6	0.25	4.3	20	19,000	11	3,100	120	0.39	8.8	2,400	0.65	0.5	1,500	0.6	42	52
01-VBOU3-SB-0029-A	029	38,000	0.5	0.5	49	1	0.25	11	11	31,000	15	4,600	290	0.0165	15	2,300	0.65	0.5	1,700	0.6	42	68
01-VBOU3-SB-0029-B 01-VBOU3-SB-0029-C	029 029	32,000 31,000	0.5	0.5	35 35	0.75 1.1	0.25 0.25	7.2 5.9	19	25,000	14 21	3,900	220	0.0165	15	2,500	0.65	0.5	1,400	0.6	44	57
01-VBOU3-SB-0029-D	029	28,000	0.5	1.1	29	0.53	0.25	6	12	20.000	13	3,300	200	0.0165	11	2,000	0.65	0.5	1,300	0.6	32	50
01-VBOU3-SB-0029-E	029	26,000	0.5	1.5	41	0.57	0.25	8.5	24	20,000	27	3,600	430	0.0103	21	2,000	0.65	0.5	1,200	0.6	45	77
01-VBQU3-SB-0030-A	030	23,000	0.5	2.8	86	0.65	0.25	6.3	65	18.000	22	3,900	260	0.0165	10	2,400	0.65	0.5	720	0.6	34	55
01-VBOU3-SB-0030-B	030	33,000	0.5	1.3	51	0.85	0.25	12	13	23.000	15	5,600	370	0.0165	15	3,200	0.65	0.5	2,900	0.6	58	53
01-VBOU3-SB-0030-C	030	21,000	0.5	3.1	1200	0.25	0.25	6.6	4	10,000	6.4	2,000	190	0.0165	5.9	1,300	0.65	0.5	5,500	0.6	29	37
01-VBOU3-SB-0031-A	031	33,000	0.5	1.2	64	1.1	0.78	6.7	26	25,000	17	5,100	310	0.0165	9.8	2,600	0.65	0.5	2,300	0.6	45	56
01-VBQU3-SB-0031-B	031	31,000	0.5	0.5	33	1.1	0.57	5.5	15	21,000	14	4,100	280	0.0165	8.8	1,700	0.65	0.5	2,300	0.6	35	39
01-VBOU3-SB-0031-C	031	35,000	0.5	0.5	25	1	0.74	6.4	12	26,000	10	4,100	270	0 0165	12	2,400	0.65	0.5	2,100	0.6	44	53
01-VBOU3-SB-0032-A	032	25,000	0.5	13	210	0 55	1.1	7.6	150	19,000	110	4,100	330	0.069	11	2,600	0.65	1.4	1,100	0.6	44	130
01-VBOU3-SB-0032-B	032	22,000	0.5	7.7	280	0.25	0.25	6.7	45	32,000	230	4,100	320	0.24	15	2,700	0.65	0.5	1,800	0.6	42	130
01-VBOU3-SB-0032-C	032	32,000	0.5		49	0.78	0.25	7.5	24	22,000	21	4,500	240	0.0165	12	3,000	0.65	0.5	1,800	0.6	54	58
01-VBOU3-SB-0032-D	032	45,000	0.5	0.5	51	1	0.25	7.3	17	32,000	24	4,700	370	0.046	13	2,500	0 65	0.5	2,100	0.6	50	77
01-VBOU3-SB-0032-E	032	31,000	0.5	3.5 5.5	37 200	<u> </u>	0.25	6.5	18	22,000 17,000	18	4,100	150	0.0165	8.5	3,000	0.65	0.5	530	0.6	45	75 65
01-VBOU3-SB-0033-A 01-VBOU3-SB-0033-B	033	20,000 13,000	0.5 0.5	2.9	100	0.51	0.25 0.55	7.5 6.4	8.1	17,000	21	3,500	240 300	0.0165	8.5	1,900	0.65 0.65	0.5	250	0.6	32	55
01-VBOU3-SB-0033-C	033	5,100	0.5	1.8	55	0.25	0.55	4	6	12,000	9.3	1,700	160	0.0165	5.8	1,200	0.65	0.5	250	0.6	23	33
01-VBOU3-SB-0033-D	033	1,400	0.5	0.5	11	0.25	0.23	0.5	7.5	3.300	0.4	330	30	0.0165	2	150	0.65	0.5	250	0.6	4.6	25
01-VBOU3-SB-0033-E	033	23,000	0.5	6.7	36	0.23	0.88	18	14	17,000	18	3,700	160	0.0165	21	1,900	0.65	0.5	720	0.6	29	67
01-VBOU3-SB-0034-A	034	23,000	0.5	8.8	430	0.59	0.25	21	12	18,000	19	3,800	770	0.0165	15	1,300	0.65	0.5	1.000	1.2	40	62
01-VBOU3-SB-0034-B	034	25,000	0.5	9.2	250	0.65	0.25	8.4	8.3	20,000	12	4,500	270	0.0165	7	1,300	0.65	0.5	2,000	06	55	58
01-VBOU3-SB-0034-C	034	8.000	0.5	2.6	73	0.25	0.25	6	7,3	16,000	12	2,400	250	0.0165	8.2	2,100	0.65	0.5	250	0.6	27	41
01-VBOU3-SB-0034-E	034	8,400	0.5	1.2	670	0.25	0.25	2.7	4.1	7,900	4.1	1,300	92	0.0165	2	1,000	0.65	0.5	840	0.6	16	22
01-VBOU3-SB-0034-F	0.14	28,000	0.5	4.8	51	0.88	0.25	7.5	12	24,000	12	4,400	340	0.0165	9.1	1,700	0.65	0.5	910	0.6	29	71
01-VBOU3-SB-0035-A	035	8,300	0.5	2.6	86	0.25	0.25	4.8	9	11,000	11	1,900	190	0.0165	6.4	2,200	0.65	.0 5	250	0.6	22	70
01-VBOU3-SB-0035-B	035	3,300	0.5	i	36	0.25	0.91	2.2	2.8	5,400	3.3	760	150	0.0165	4.9	860	0.65	0.5	250	0.6	8.9	55
01-VBOU3-SB-0035-C	035	18,000	0.5	1.3	23	0.54	0.25	3.7	- 11	13,000	20	2,500	200	0.0165	7.2	1,200	0 65	0.5	250	0.6	25	73
01-VBOU3-SB-0036-A	036	15,000	0.5	5.7	130	0.56	0.25	5.8	24	15,000	21	2,700	240	0.0165	8.1	2,700	0.65	0.5	250	0.6	30	69
01-VBOU3-SB-0036-B	036	13,000	0.5	2.5	97	0.25	10	5.6	10	14,000	13	2,400	290	0.0165	8.8	2.000	0.65	0.5	250	0.6	26	350
01-VBOU3-SB-0036-C	036	24,000	0.5	1.2	33	0.85	0.25	2.4	26	17,000	19	3,300	240	0.066	7.1	2,000	0.65	0.5	250	0.6	30	50
01-VBOU3-SB-0037-A 01-VBOU3-SB-0037-B	037 037	17,000	0.5	2.6	160 56	0.86	2.7	6.8	23	18,000	30	3,300 4,400	150	0.0165 0.1	9.2	2,600	0.65	0.5	250 960	0,6	31	130
01-VBOU3-SB-0037-C	037	23,000 22,000	0.5	2.6	19	0.86	0.59	4.6	4.3	15,000	16	2,600	160	0.0165	7	2,200 910	0.65	0.5	720	0.6	24	41
VI-VBUU3-SB-0037-C	0.17	22,000	U.3	2.9	19	0.53	0.23	4.6	4.3	15.000	12	2,600	160	C010.0		910	U.05	0.3	/20	L 0.0		41


^[1] For most chemicals, background is equal to the value at the 99th percentile of the distribution of the background concentration for a chemical, based on soil samples collected from 7 counties surrounding the Denver Metro Area (Shacklette and Boerngen, 1983). Background concentrations for antimony, endmium, silver and thallium were not available in Shacklette and Boerngen (or the data set was too small to estimate the 99th percentile from), thus background for these chemicals is based on the upper end of the range of background concentrations reported for a chemical in soils in the United Stotes in Dragun, 1988.

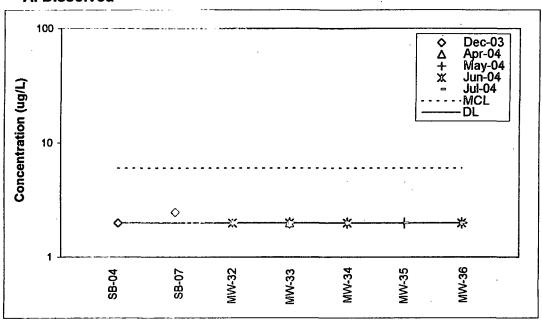

# APPENDIX G

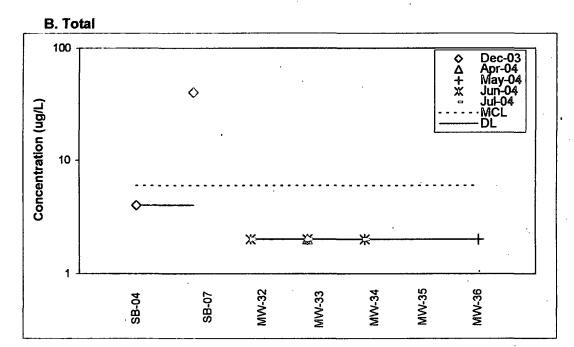
NATURE AND EXTENT OF ON-SITE GROUNDWATER CONTAMINATION

Figure G-1. Spatial and Temporal Distribution of Aluminum in Groundwater







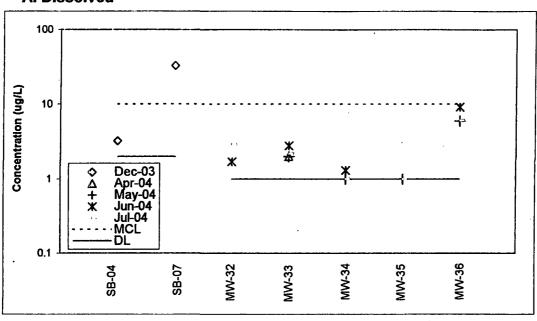


Note: concentrations are plotted on a log scale

MCL = Maximum Contaminant Level

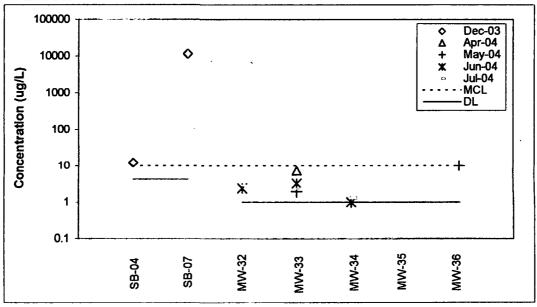
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-2. Spatial and Temporal Distribution of Antimony in Groundwater






Note: concentrations are plotted on a log scale


MCL = Maximum Contaminant Level

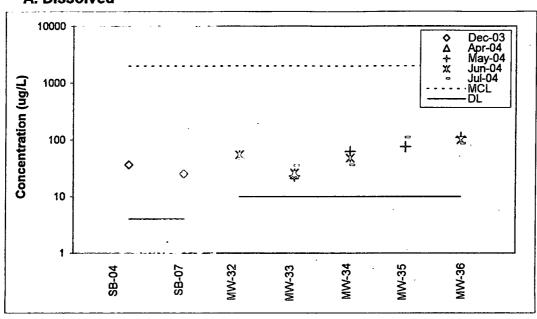
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-3. Spatial and Temporal Distribution of Arsenic in Groundwater








Note: concentrations are plotted on a log scale

MCL = Maximum Contaminant Level

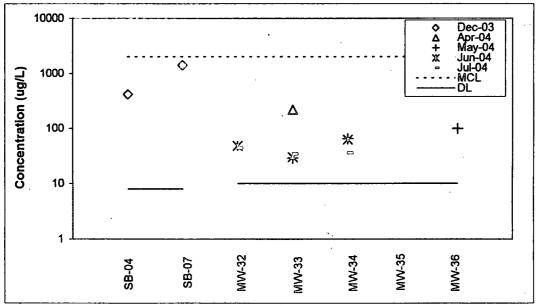

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

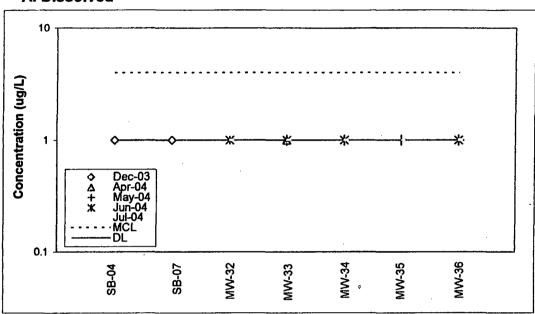
Figure G-4. Spatial and Temporal Distribution of Barium in Groundwater



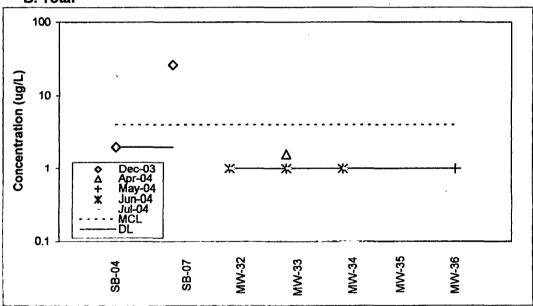







Concentrations are plotted on a log scale

Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

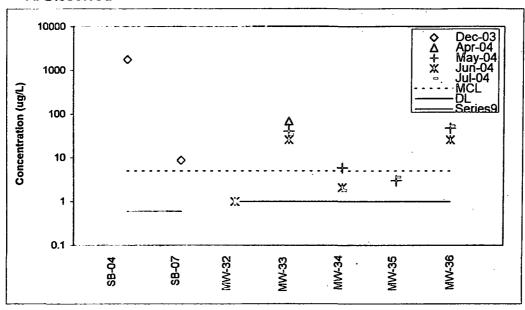
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-5. Spatial and Temporal Distribution of Beryllium in Groundwater

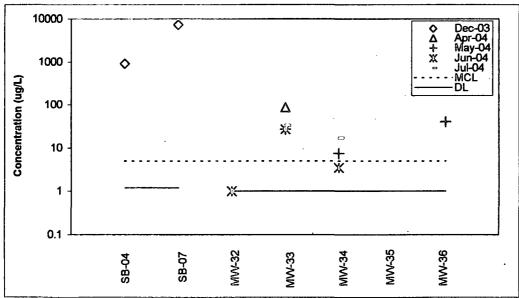







Concentrations are plotted on a log scale

Total metals sample not collected at MW-35

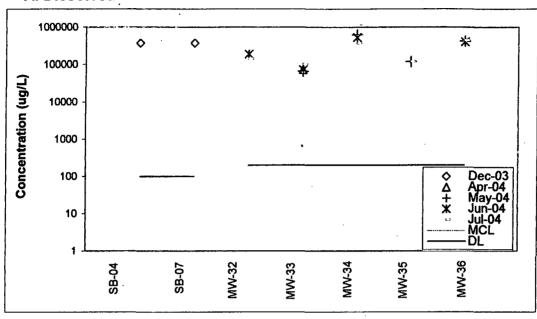

MCL = Maximum Contaminant Level

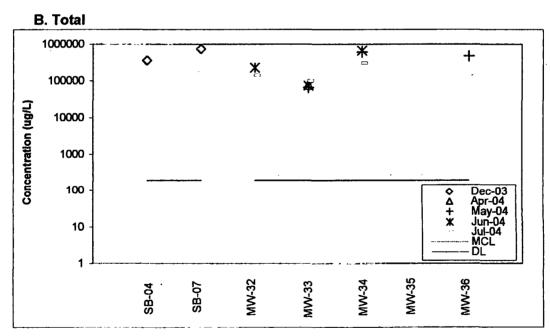
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-6. Spatial and Temporal Distribution of Cadmium in Groundwater









Concentrations are plotted on a log scale

Total metals sample not collected at MW-35

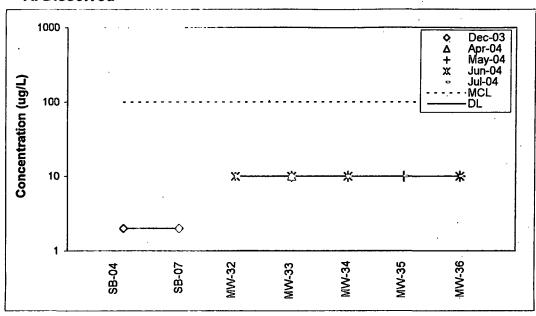
MCL = Maximum Contaminant Level

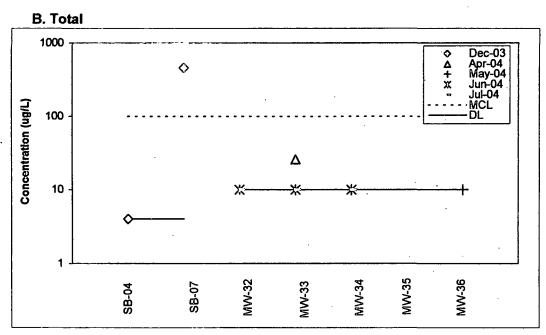
Figure G-7. Spatial and Temporal Distribution of Calcium in Groundwater





Concentrations are plotted on a log scale


Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

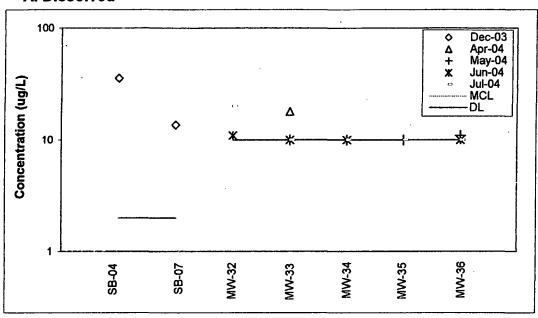
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-8. Spatial and Temporal Distribution of Chromium in Groundwater

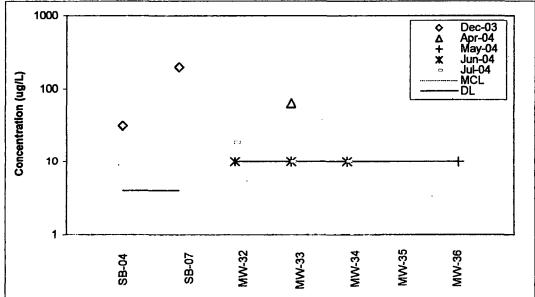







Concentrations are plotted on a log scale

Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

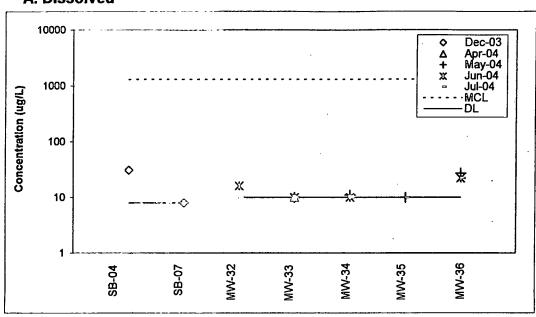
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-9. Spatial and Temporal Distribution of Cobalt in Groundwater

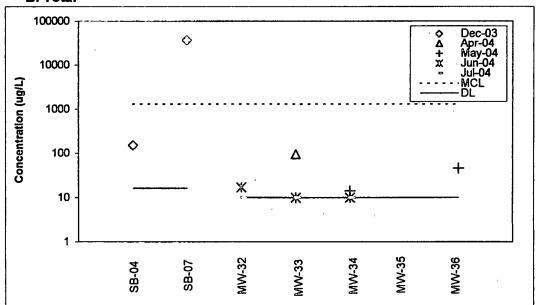







Concentrations are plotted on a log scale

Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

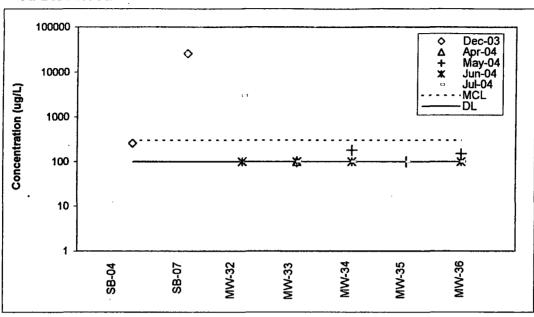
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-10. Spatial and Temporal Distribution of Copper in Groundwater

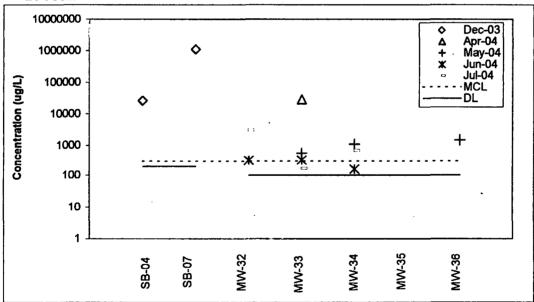







Concentrations are plotted on a log scale

Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

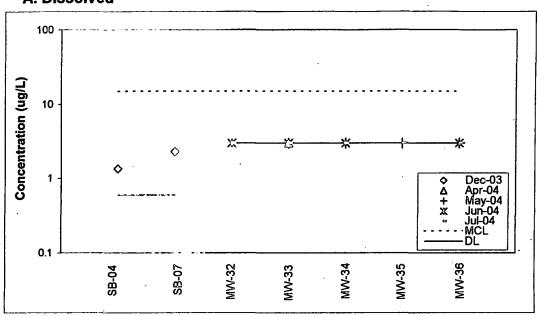
Figure G-11. Spatial and Temporal Distribution of Iron in Groundwater







Concentrations are plotted on a log scale


Total metals sample not collected at MW-35

MCL = Maximum Contaminant Level

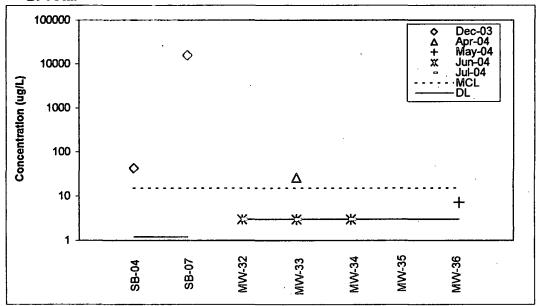

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-12. Spatial and Temporal Distribution of Lead in Groundwater

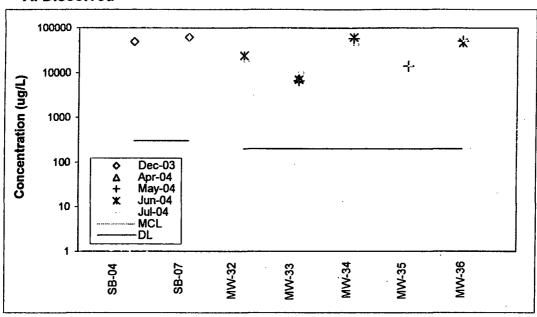


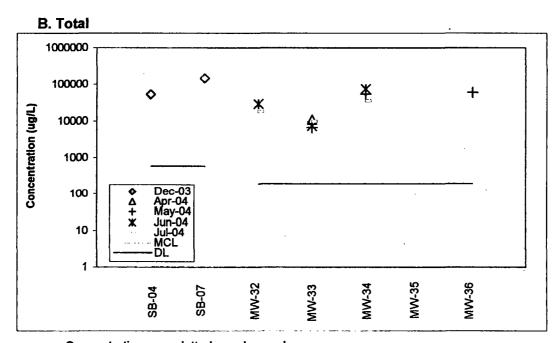






Concentrations are plotted on a log scale


Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

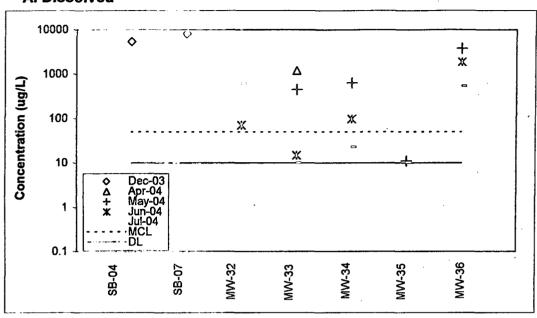
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

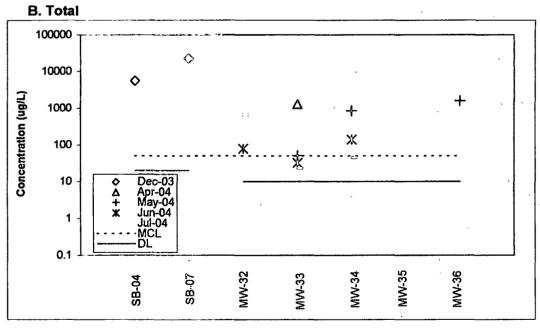
Figure G-13. Spatial and Temporal Distribution of Magnesium in Groundwater








Concentrations are plotted on a log scale


Total metals sample not collected at MW-35

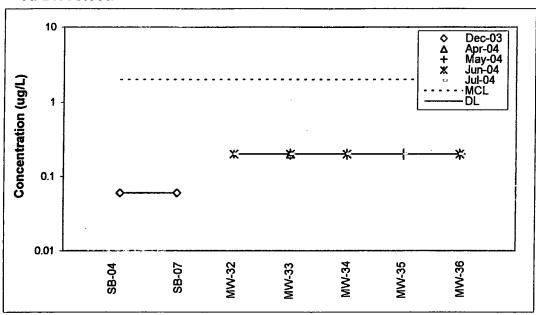
MCL = Maximum Contaminant Level

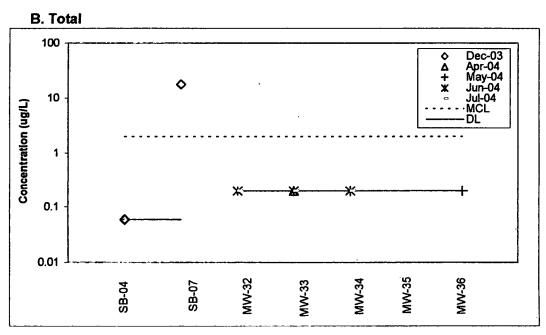
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-14. Spatial and Temporal Distribution of Manganese in Groundwater






Concentrations are plotted on a log scale


Total metals sample not collected at MW-35

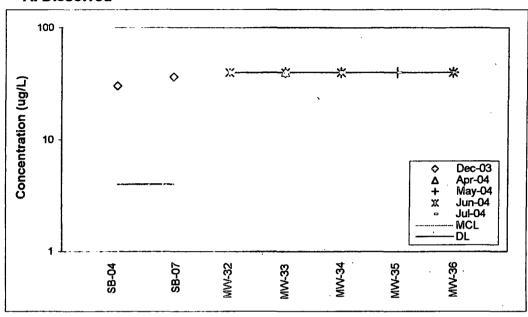
MCL = Maximum Contaminant Level

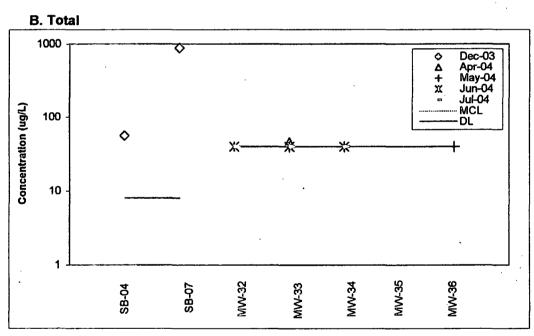
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-15. Spatial and Temporal Distribution of Mercury in Groundwater






Concentrations are plotted on a log scale


Total metals sample not collected at MW-35

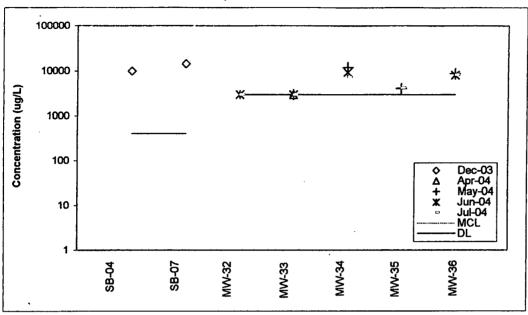
MCL = Maximum Contaminant Level

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-16. Spatial and Temporal Distribution of Nickel in Groundwater






Concentrations are plotted on a log scale

Total metals sample not collected at MW-35

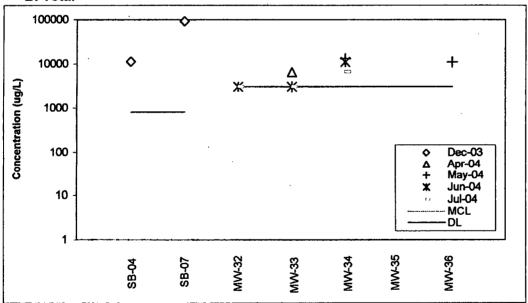
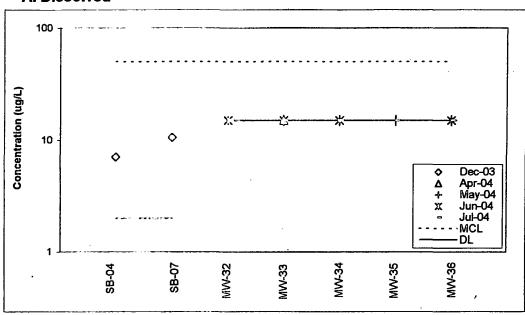

MCL = Maximum Contaminant Level

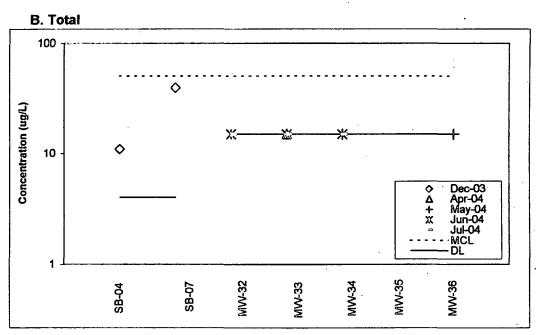
Figure G-17. Spatial and Temporal Distribution of Potassium in Groundwater









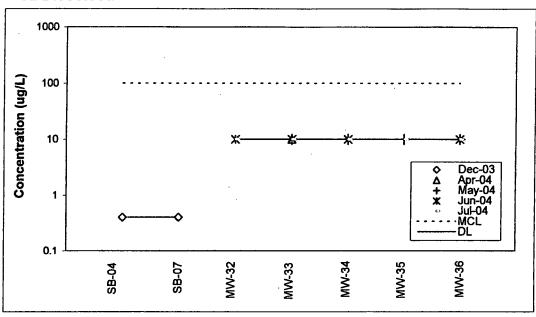


Concentrations are plotted on a log scale

Total metals sample not collected at MW-35

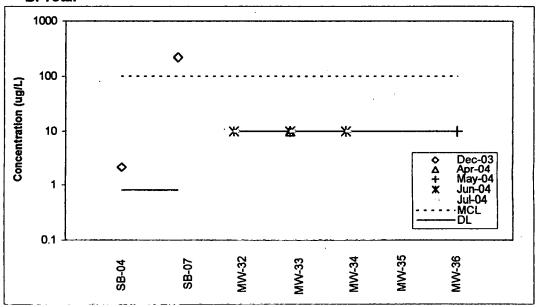
MCL = Maximum Contaminant Level

Figure G-18. Spatial and Temporal Distribution of Selenium in Groundwater






Concentrations are plotted on a log scale


Total metals sample not collected at MW-35

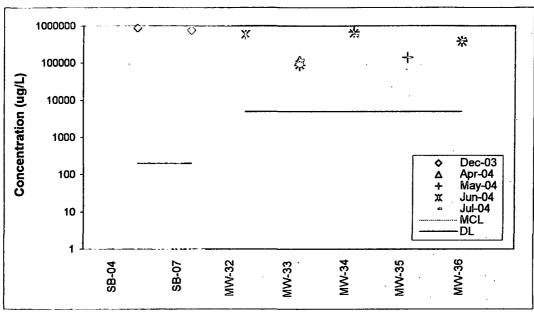
MCL = Maximum Contaminant Level

Figure G-19. Spatial and Temporal Distribution of Silver in Groundwater

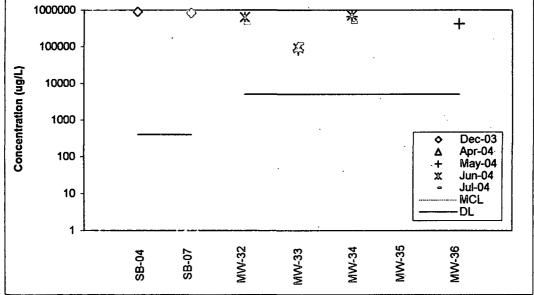







Concentrations are plotted on a log scale

Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

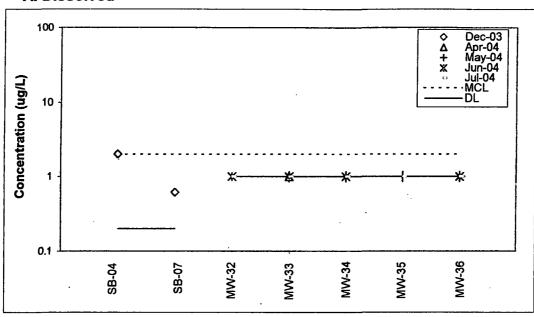
DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-20. Spatial and Temporal Distribution of Sodium in Groundwater

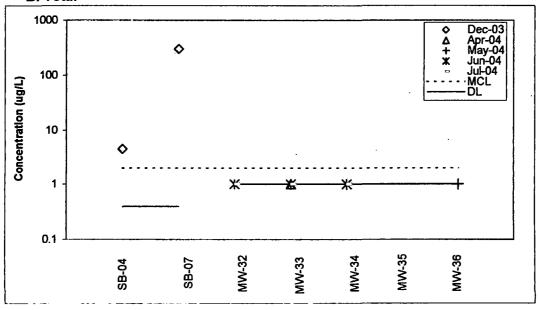







Concentrations are plotted on a log scale

Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

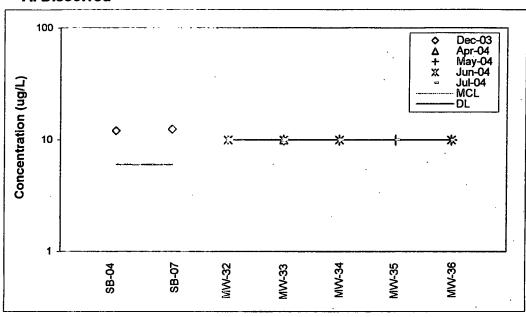
Figure G-21. Spatial and Temporal Distribution of Thallium in Groundwater







Concentrations are plotted on a log scale


Total metals sample not collected at MW-35

MCL = Maximum Contaminant Level

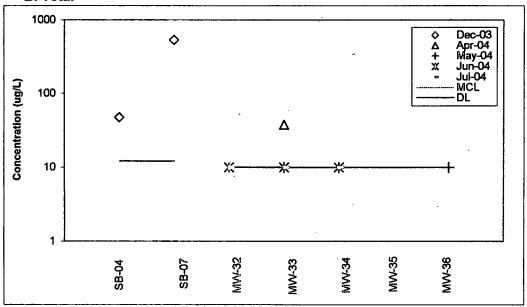
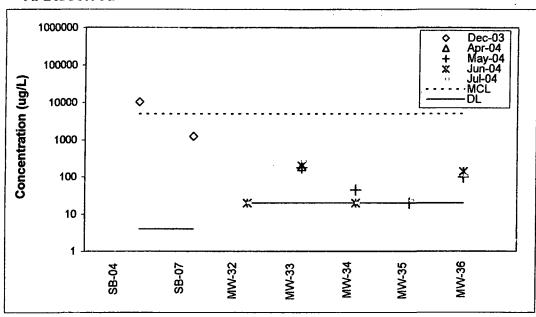

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Figure G-22. Spatial and Temporal Distribution of Vanadium in Groundwater

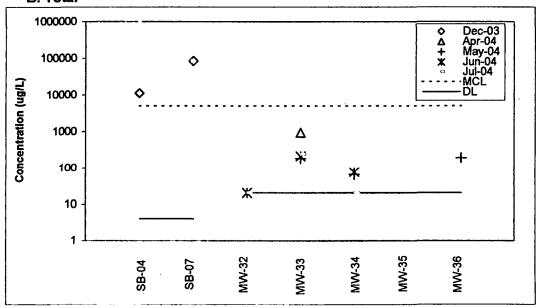









Concentrations are plotted on a log scale


Total metals sample not collected at MW-35

MCL = Maximum Contaminant Level

Figure G-23. Spatial and Temporal Distribution of Zinc in Groundwater

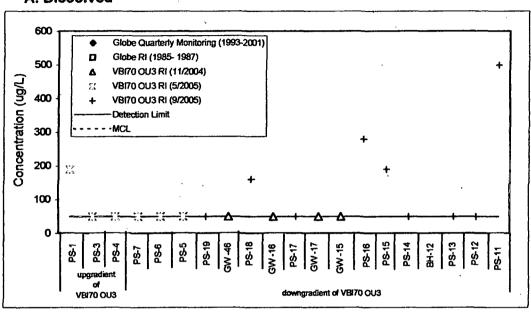


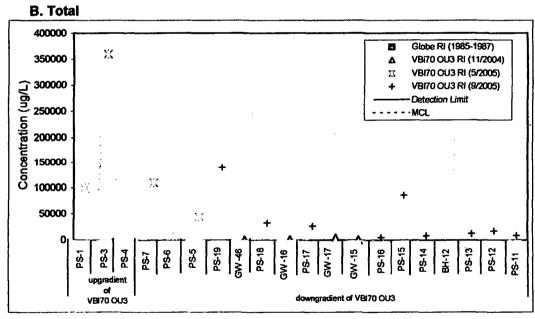




Concentrations are plotted on a log scale

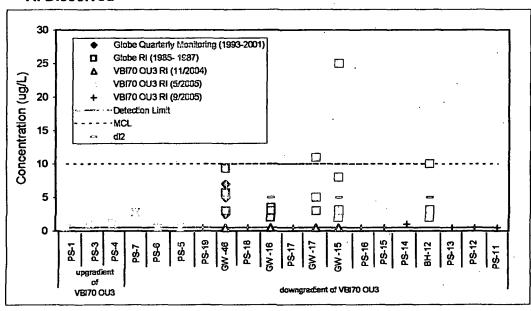
Total metals sample not collected at MW-35


MCL = Maximum Contaminant Level

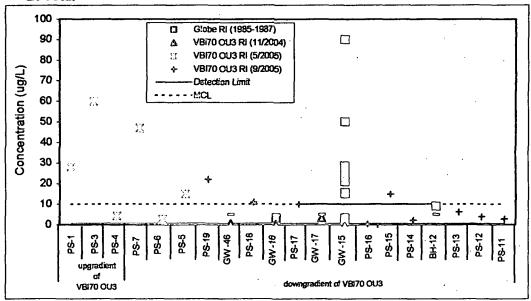

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

# APPENDIX H

NATURE AND EXTENT OF OFF-SITE GROUNDWATER CONTAMINATION

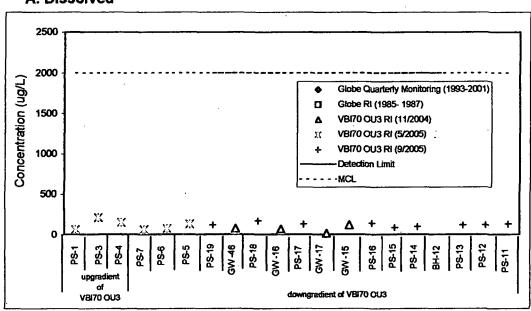

Figure H-1. Spatial and Temporal Distribution of Aluminum in Off-Site Groundwater

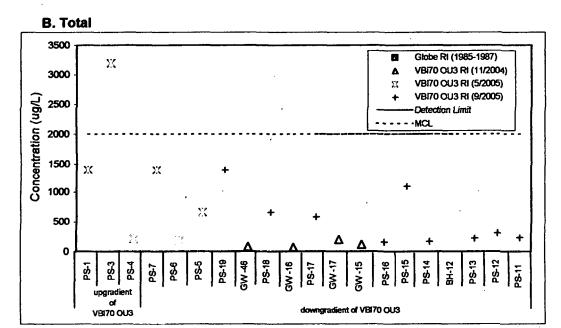





MCL = Maximum Contaminant Level

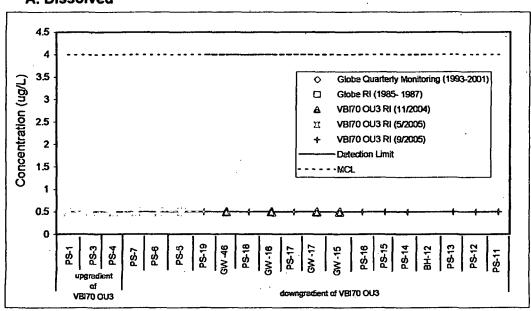
Figure H-3. Spatial and Temporal Distribution of Arsenic in Off-Site Groundwater



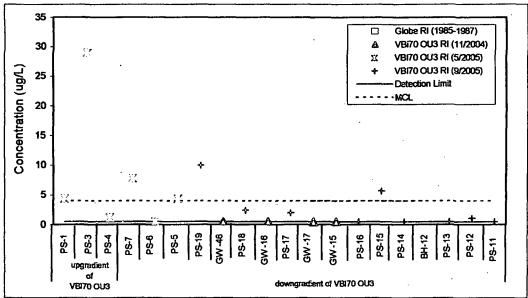






MCL = Maximum Contaminant Level

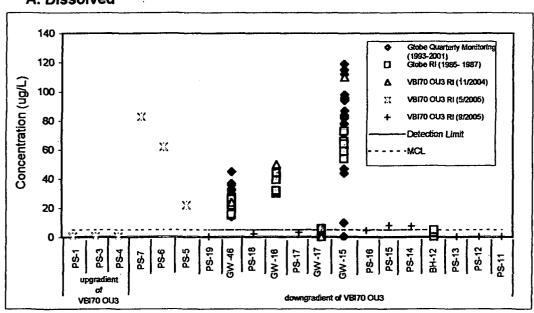

Figure H-4. Spatial and Temporal Distribution of Barium in Off-Site Groundwater



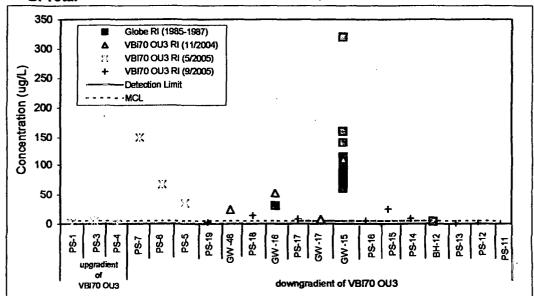



MCL = Maximum Contaminant Level

Figure H-5. Spatial and Temporal Distribution of Beryllium in Off-Site Groundwater

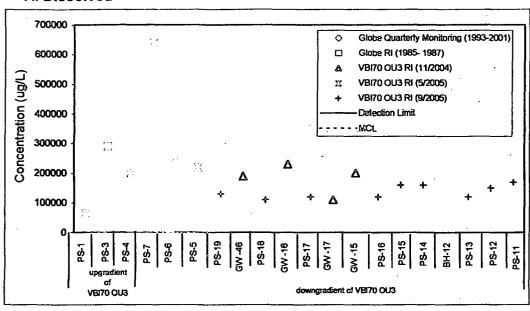




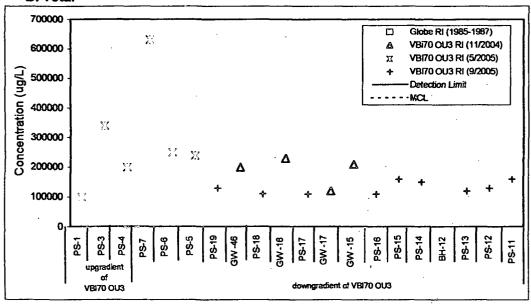




MCL = Maximum Contaminant Level

Figure H-6. Spatial and Temporal Distribution of Cadmium in Off-Site Groundwater

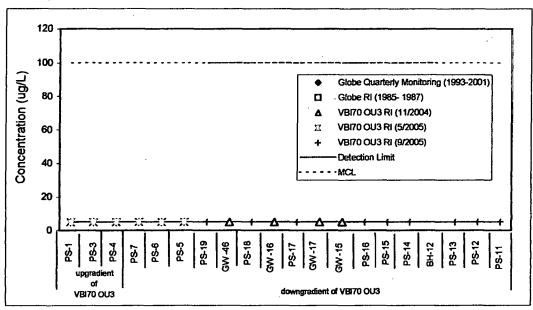




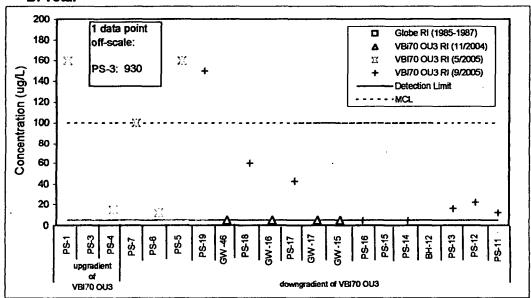




MCL = Maximum Contaminant Level

Figure H-7. Spatial and Temporal Distribution of Calcium in Off-Site Groundwater

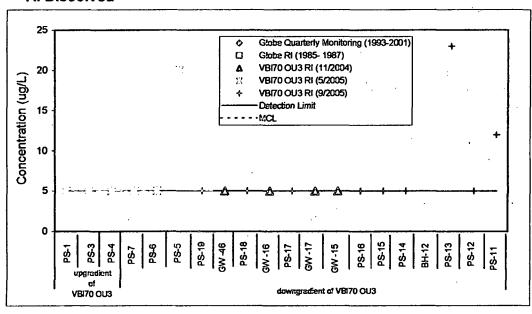




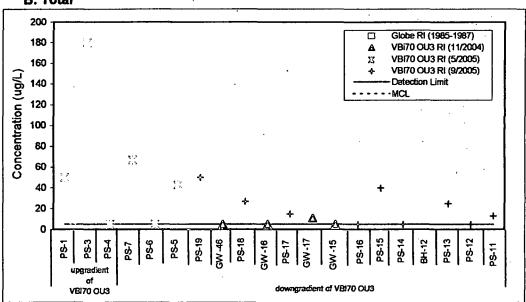




MCL = Maximum Contaminant Level

Figure H-8. Spatial and Temporal Distribution of Chromium in Off-Site Groundwater

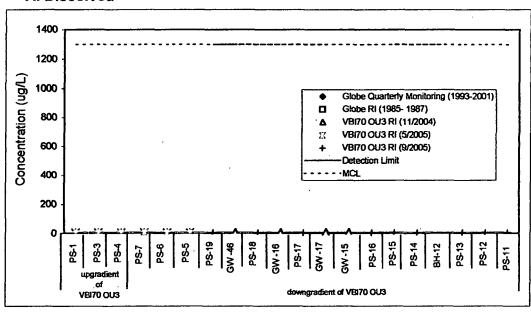




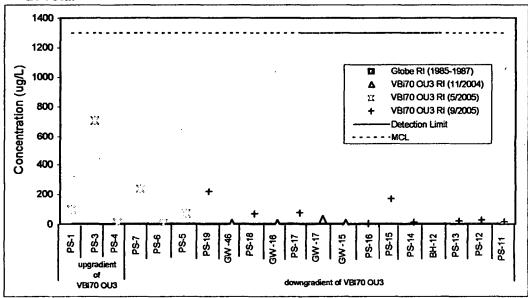




MCL = Maximum Contaminant Level

Figure H-9. Spatial and Temporal Distribution of Cobalt in Off-Site Groundwater

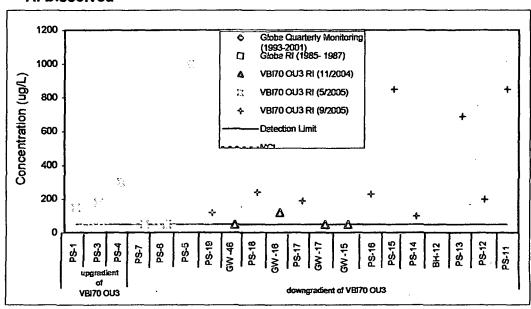





MCL = Maximum Contaminant Level

Figure H-10. Spatial and Temporal Distribution of Copper in Off-Site Groundwater



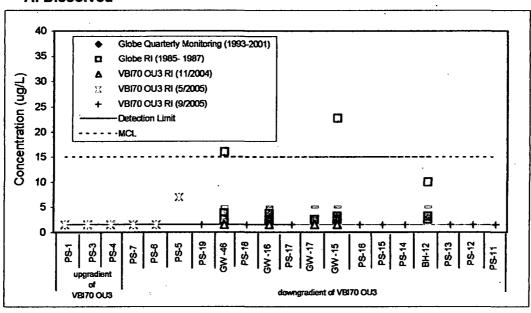




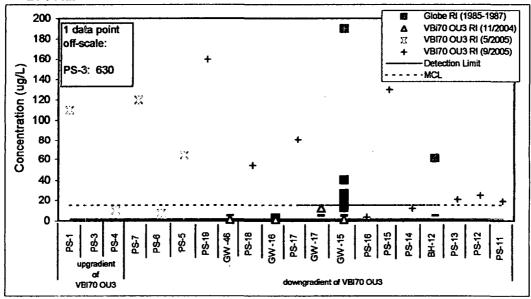


MCL = Maximum Contaminant Level

Figure H-11. Spatial and Temporal Distribution of Iron in Off-Site Groundwater

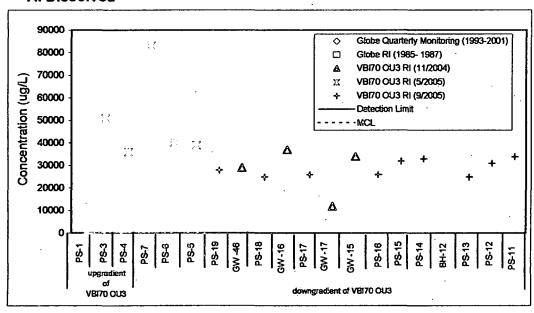




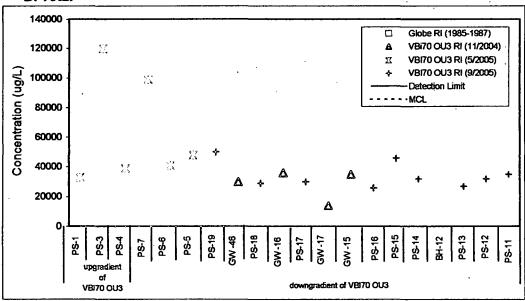




MCL = Maximum Contaminant Level

Figure H-12. Spatial and Temporal Distribution of Lead in Off-Site Groundwater

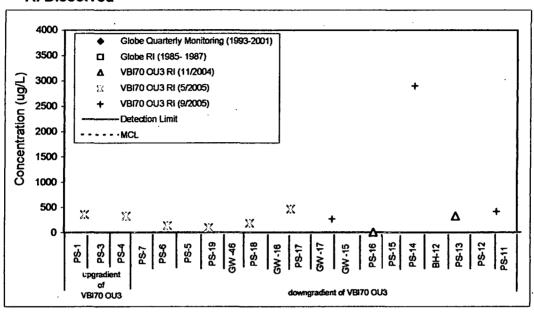




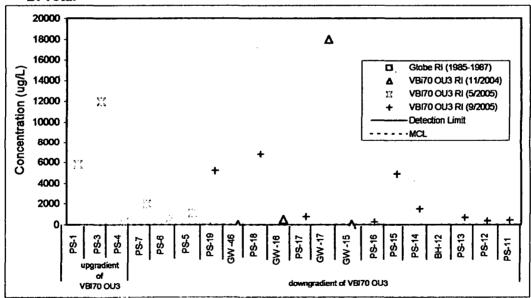




MCL = Maximum Contaminant Level

Figure H-13. Spatial and Temporal Distribution of Magnesium in Off-Site Groundwater

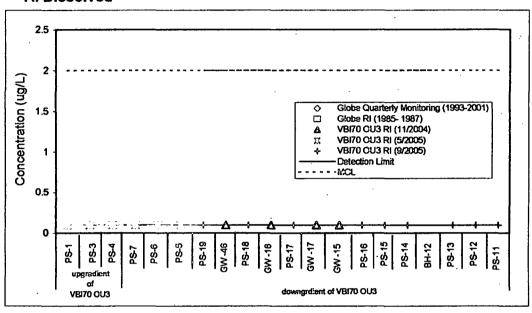




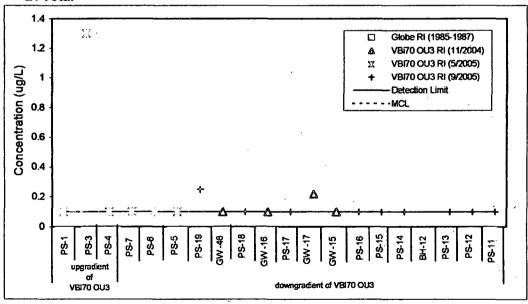




MCL = Maximum Contaminant Level

Figure H-14. Spatial and Temporal Distribution of Manganese in Off-Site Groundwater

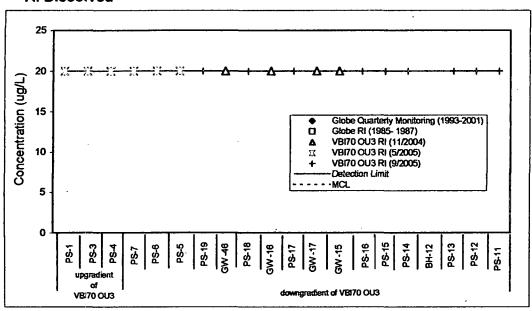




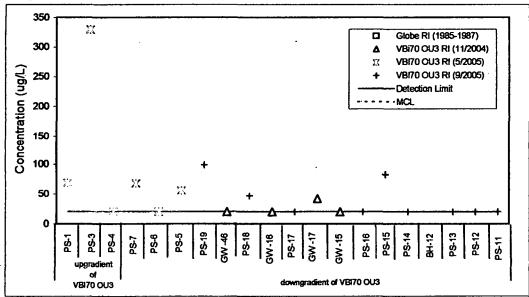




MCL = Maximum Contaminant Level

Figure H-15. Spatial and Temporal Distribution of Mercury in Off-Site Groundwater

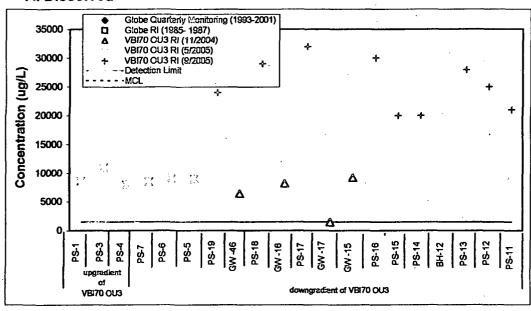


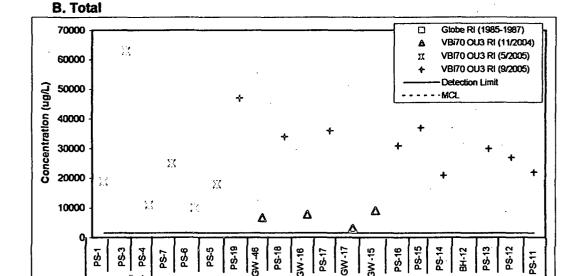



MCL = Maximum Contaminant Level

Figure H-16. Spatial and Temporal Distribution of Nickel in Off-Site Groundwater





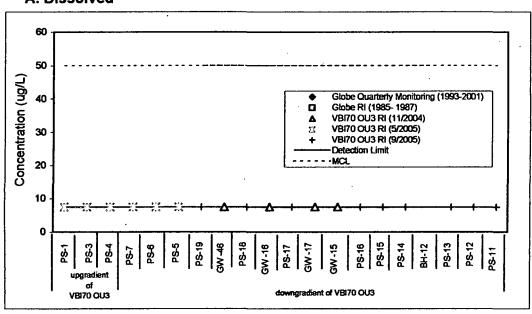

MCL = Maximum Contaminant Level

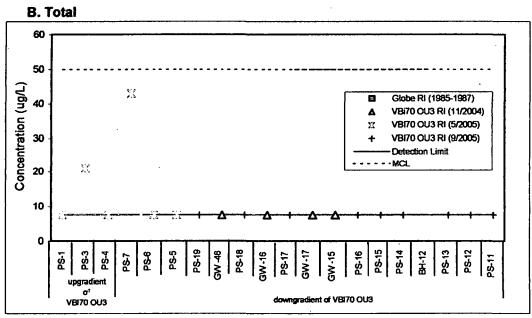
Figure H-17. Spatial and Temporal Distribution of Potassium in Off-Site Groundwater





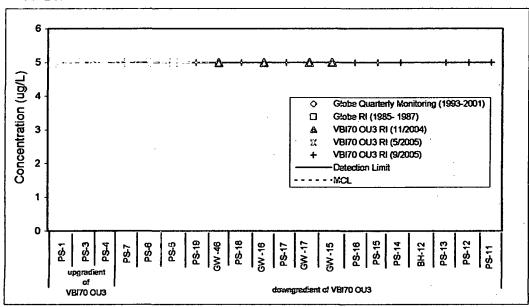
MCL = Maximum Contaminant Level


VB170 OU3

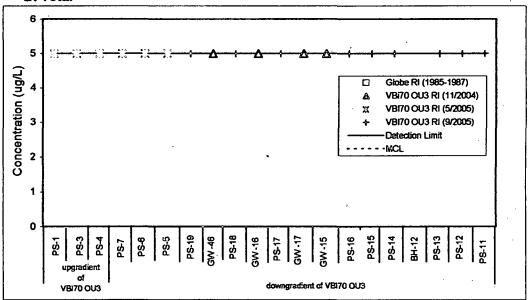

DL = Delection Limit. Concentration values at or below this line are considered non-detect.

Note: different laboratories were used for analysis of Globe Plant Samples and VBI70 OU3 RI Samples, thus detection limits may differ for a chemical.

ngradient of VBI70 OU3


Figure H-18. Spatial and Temporal Distribution of Selenium in Off-Site Groundwater

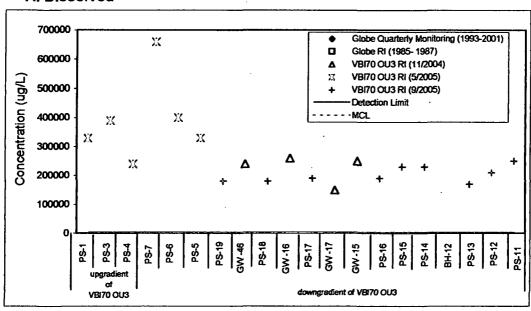


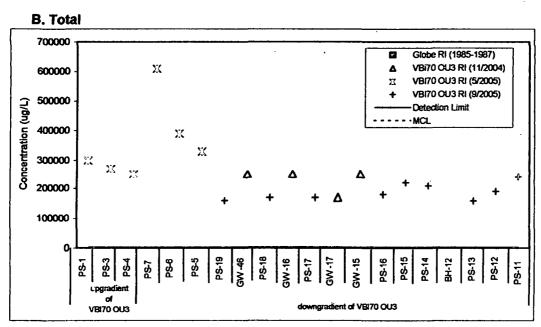



MCL = Maximum Contaminant Level

Figure H-19. Spatial and Temporal Distribution of Silver in Off-Site Groundwater

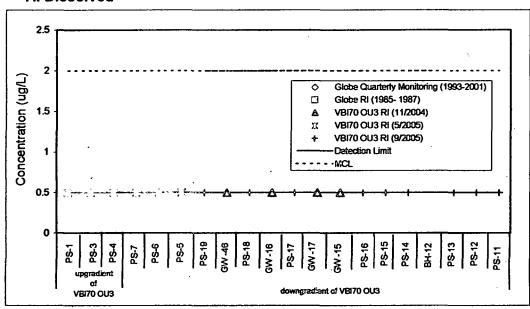





MCL = Maximum Contaminant Level

# Figure H-20. Spatial and Temporal Distribution of Sodium in Off-Site Groundwater

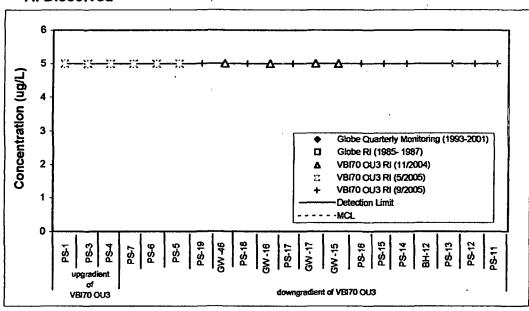

#### A. Dissolved

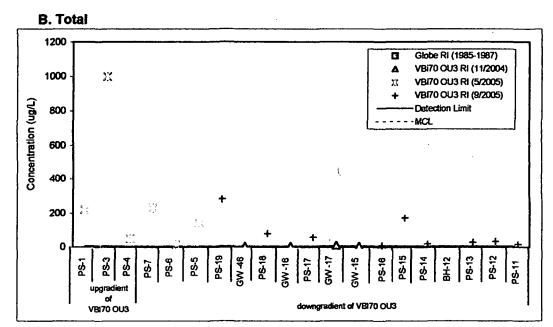




MCL = Maximum Contaminant Level

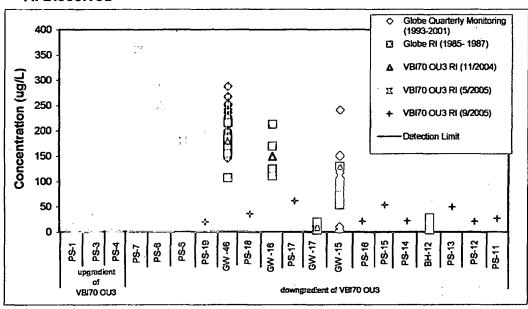
Figure H-21. Spatial and Temporal Distribution of Thallium in Off-Site Groundwater



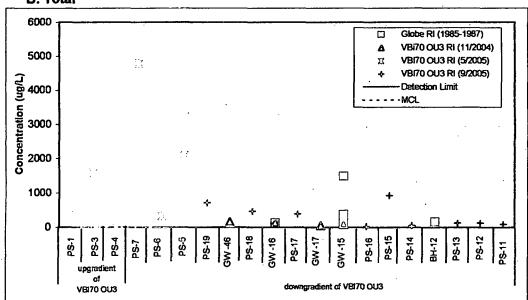






MCL = Maximum Contaminent Level


Figure H-22. Spatial and Temporal Distribution of Vanadium in Off-Site Groundwater






MCL = Maximum Contaminant Level

Figure H-23. Spatial and Temporal Distribution of Zinc in Off-Site Groundwater







MCL = Maximum Contaminant Level

### APPENDIX I

GROUNDWATER MIGRATION

## I1 – Influence of I-25 on Groundwater Flow Towards the South Platte River

2

Argo Smelter File (DV10200124.01) February 24, 2005
Review of As Constructed Drawings in the Vicinity of I-25/I-70
to Assess the Influence of I-25 on Ground-Water Flow Toward the South Platte River

additional geologic and facility information would provide an explanation for the ground-water flow and cadmium concentrations observed in monitoring wells on both sides of the I-25 corridor north of I-70.

The attached Figure 1 shows on-site and off-site ground-water sampling locations for the Argo Smelter site. The attached Figure 4-13 shows the conceptual model of the shallow ground water as we knew it prior to review of the CDOT As Construction drawings.

The area of I-25/I-70 shown on Figure 1 and Figure 4-13 from approximately the center of the Mousetrap north to 48th Avenue has been highly altered due to highway construction since 1964 to present. Footings for overpasses and most likely the retaining walls are founded on the underlying claystone or sandstone bedrock. Review of the above CDOT drawings indicates that retaining walls on both the west and east sides of I-25 at the 48th Avenue underpass are founded on claystone bedrock. This disruption is evident on Figure 4-13, which shows the disconnected geologic section for I-25 due to the retaining walls. Additionally, there is a retaining wall along the west side of I-25 and the ramp from southbound I-25 to westbound I-70 (south and west of MW-34 in Figure 1), which also appears to be a significant barrier. We have not reviewed specific CDOT drawings for this I-25 to I-70 ramp construction. However, the engineers typically found such structures on bedrock if possible. It is also reasonable to assume that the other connection ramps and bridges between I-70 and I-25 on the north half of the Mousetrap also have their footings and retaining walls founded on bedrock.

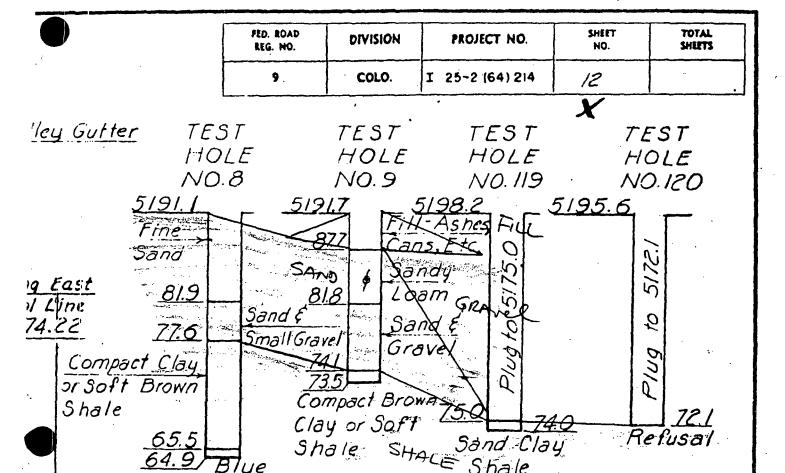
My hypothesis is that flow paths in the alluvium and along the alluvium-claystone bedrock interface have been disrupted by the I-25/I-70 facilities. Because ground-water flow in the alluvium and along the alluvium-claystone bedrock interface is typically from west to east from the Argo Smelter area toward the South Platte River, flow paths in the alluvium and along its interface with the claystone are generally cut off at I-25 due to the retaining walls, especially at and just south of 48th Avenue. The extent to which ground-water flow moves north or south of these cut offs to continue towards the South Platte River is unknown.

The CDOT As Constructed drawings also show water pipelines, sanitary sewers pipelines, and irrigation facilities in the vicinity of the Mousetrap. Some of these facilities also may be potential sources of contamination or may remove water from the ground-water system depending on their specific location relative to the water table, their construction (leaky joints), and the source of their liquid.

The Farmers and Gardeners Ditch passes through the Mousetrap in a 36-inch diameter culvert. This ditch diverts South Platte River water at Confluence Park south of the Mousetrap and delivers it to the Xcel Power Plant just south of 64th Avenue and east of I-25. The ditch culvert exits the Mousetrap beneath the ramp from westbound I-70 to northbound I-25. The CDOT

3

Argo Smelter File (DV10200124.01) February 24, 2005
Review of As Constructed Drawings in the Vicinity of I-25/I-70
to Assess the Influence of I-25 on Ground-Water Flow Toward the South Platte River


drawings did not specify the type of culvert for the ditch. Although the ditch is not currently being used, it could have leaked water into the surrounding soil/rock materials in the past.

A 72-inch sanitary sewer pipeline parallels the Farmers and Gardeners Ditch. As with the ditch culvert, the CDOT drawings are silent on the type of pipeline materials. However, depending on the hydraulics of the pipeline, discharges into or out of this pipeline are possible at joints.

The CDOT plan and profile drawings along I-25 from the Mousetrap to 48th Avenue show numerous crossings beneath I-25 of water pipelines. These pipelines are considered to be unimportant in terms of contaminant sources, but their trenches may form preferential flow paths. The plan and profile drawings also show numerous sanitary sewer pipeline crossings. The pipelines vary from 8-inchs in diameter to 36-inches in diameter. Additionally, large storm sewer pipelines, up to 48-inches in diameter, cross I-25. All these pipeline crossings are from west to east.

The As Constructed drawings at 48th Avenue show storm and sanitary sewer pipelines parallel to I-25, at least on the west side of the interstate highway. We presume that similar facilities also are present on the east side of the highway. All these facilities, depending on their location and source of fluid, may add or subtract water from the surrounding soil materials through their joints. The trenches in which these pipelines are installed may also be preferential pathways for ground-water flow.

BH-12 GW-15 GW-17 GW-16 MW-32 MW-34 MW-35 SB-04 SB-07 GW-46 MW-33 MW-35 On-Site and Off-Site Groundwater Sample Locations A V9:70 OUS - Round 1 Groundwater Sample Location ● VB70 OU3 - Round 2 Monitoring Well ASAROD Gobe Plant Wells V9/70 OU3 Site Boundary ASARCO Globe Plant Site Boundary projection: State Plane, Colorado Central Zone horizontal datum: HACR3/92 Adjusted to line HAPPs ventral datum: NAVOB8



## LOG OF TEST HOLES

GENERAL HOTES

ALL WORK SHALL BE DONE ACCORDING TO THE STANDARD SPECIFICATIONS OF THE COLORADO DEPARTMENT OF HIGHWAYS APPLICABLE TO THE PROJECT. ALL CONCRETE SHALL BE CLASS "A".
ALL REINFORCING STREL SHALL BE INTERNEDIATE GRADE STEEL OF A DEFORMED TYPE. EACH BAR SHALL BE TAGGED WITH THE BAR DESIGNATION AND STATION NUMBER OF THE PROJECT.

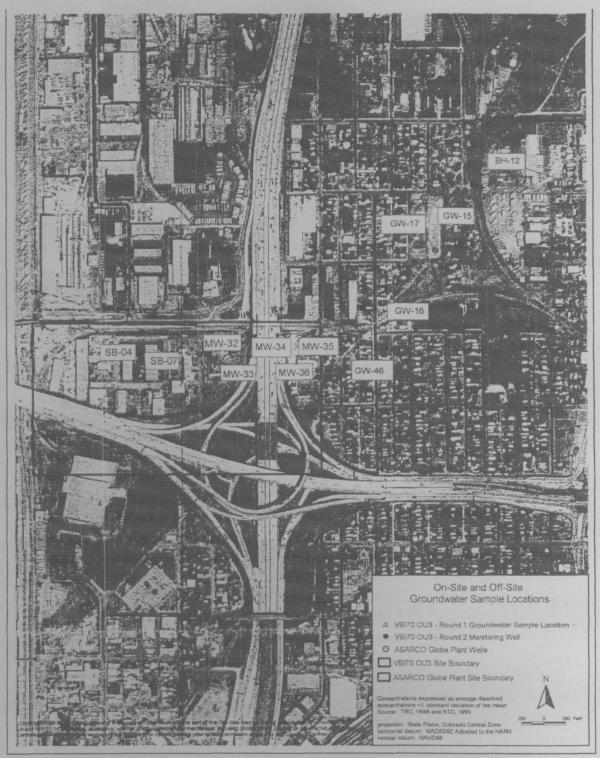
IF BY PERMISSION OF THE ENGINEER PRIMARY BARS ARE SPLICED, THEY SHALL LAP A MUNIMUM OF 28 DIAMETERS FOR BARS NEAR TOPS OF BEAMS HAVING MORE THAN 12 INCRES OF CONCRETE UNDER THE BARS, AND 17 DIAMETERS FOR BARS NEAR BOTTOM OF MEMBERS. SECONDARY BARS WHEN SPLICED SHALL LAP 17 DIAMETERS OF THE BAR.

DIMENSIONS FOR REINFORCING STEEL NOT SHOWN AS CLEAR SHALL BE TO THE CENTERLING OF THE MAR. SOUNDINGS AND DEPTH OF FOOTINGS ARE IN ACCORDANCE WITH THE BEST AVAILABLE DATA, AND WHIM DIFFERENT CONDITIONS ARE ENCOUNTERED THE BRIDGE ENGINEER WILL INSPECT AND DETERMINE IF REDESION IS NECESSARY.

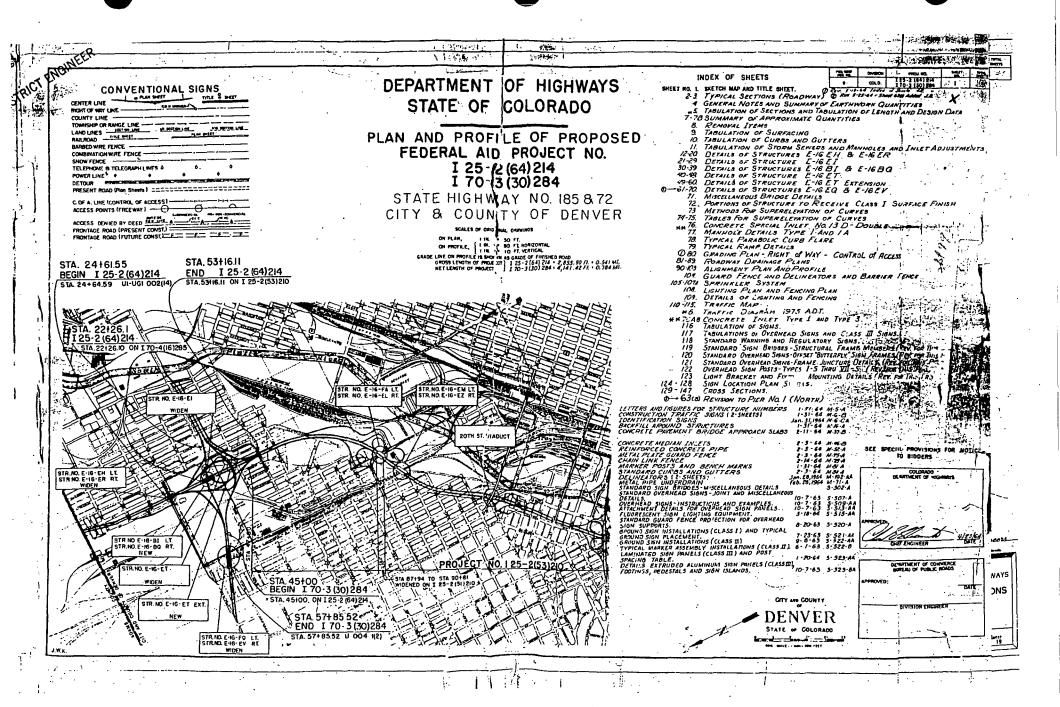
FOOTINGS IN ROCK SHALL BE POURED OUT TO ROCK AND NOT FORMED,

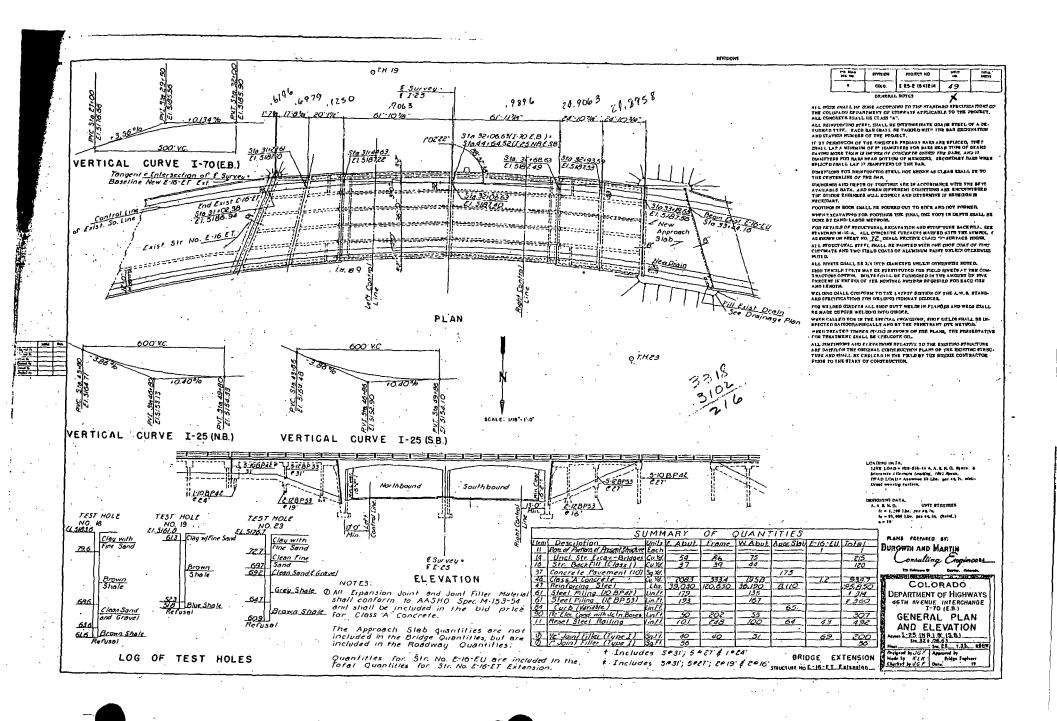
Shale

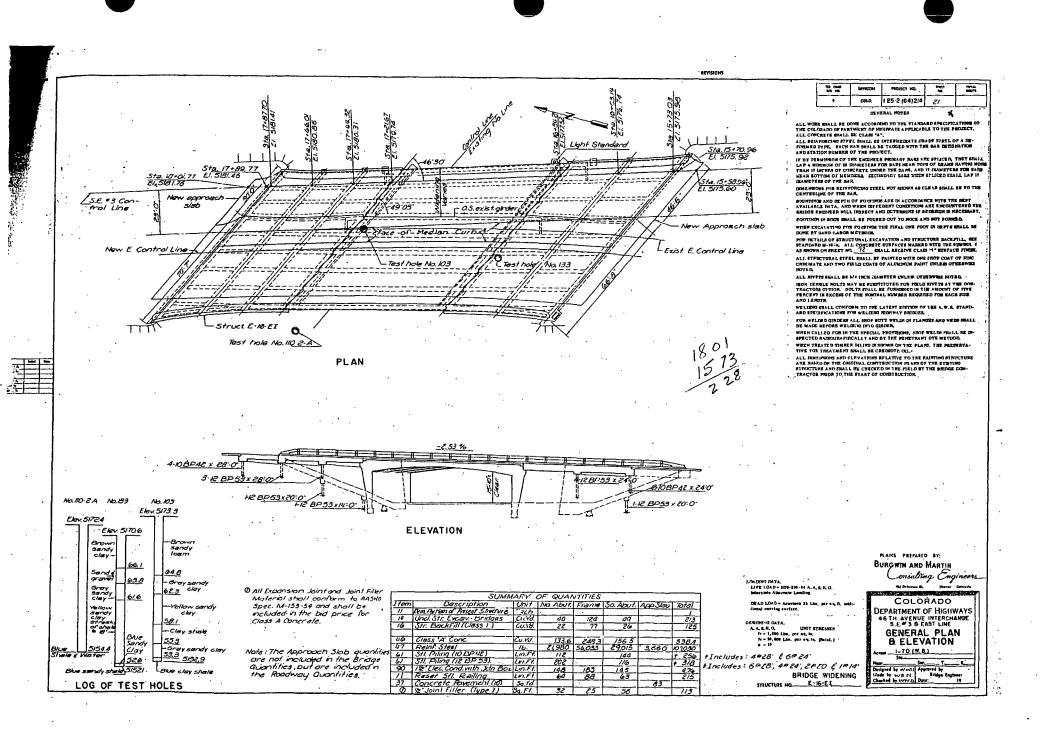
Pot

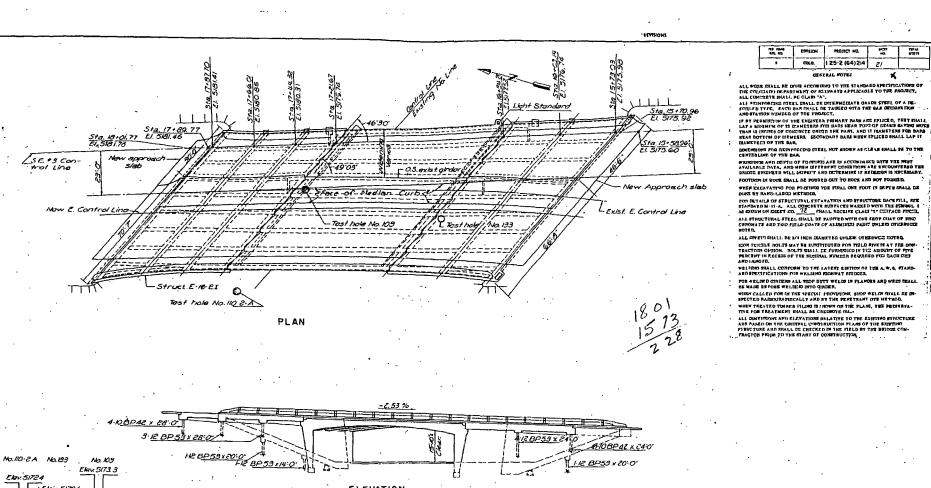

WHEN EXCAVATING FOR POOTINGS THE FINAL ONE FOOT IN DEPTH SHALL BE DONE BY HANDLABOR METHODS.

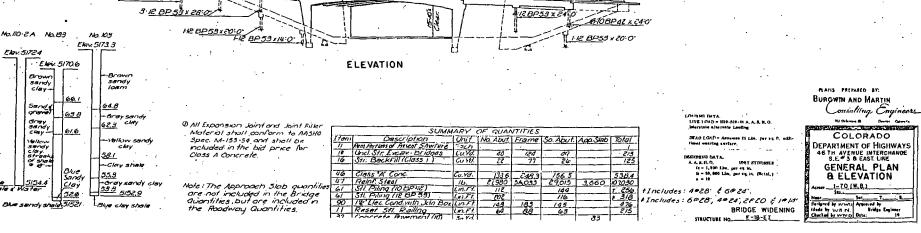
FOR DETAILS OF STRUCTURAL EXCAVATION AND STRUCTURE BACKFILL, SEE STANDARD M-16-A.
WELDING SHALL CONFORM TO THE LATEST EDITION OF THE A.W.S. STANDARD SPECIFICATIONS FOR
WELDING HIGHMAY BRIDGES:

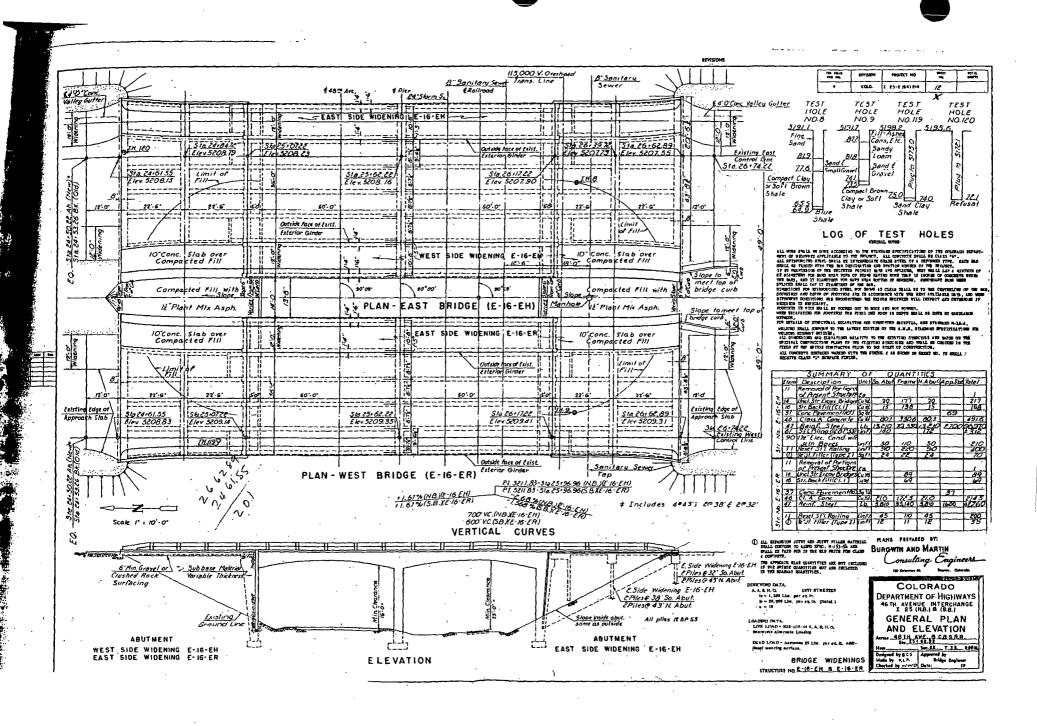

ALL DIMENSIONS AND ELEVATIONS RELATIVE TO THE EXISTING STRUCTURE ARE MASED ON THE ORIGINAL CONSTRUCTION PLANS OF THE EXISTING STRUCTURE AND SHALL BE CHECKED IN THE FIELD BY THE BRIDGE CONTRACTOR PRIOR TO THE START OF CONSTRUCTION.


ALL CONCRETE SURFACES MARKED WITH THE STATIOL 1 AS SHOWN ON SHEET NO. 72 SHALL ?
RPCEIVE CLASS "1" SURFACE FINISH.


E-16-EH/ER





MP 213.62 - 28.74














ee Standard M-100-1 for STANDARD SYMBOLS

## STATE DEPARTMENT OF HIGHWAYS (10. 85.3(101) DIVISION OF HIGHWAYS-STATE OF COLORADO

FEDERAL AID PROJECT NO. IRD(E) 25-2(242)

PEQUECT NO HB(E) 25-2(242)

NO REVISION	S	REVISED (/4/13 VOID			
		REVISIONS			
(R-1)	DCS	1,4,5,6,7,9,37,38,42,53,62,64 7-1	-		

FINAL PLAN AND PROFILE OF PROPOSED AS CONSTRUCTED

DENVER AND ADAMS COUNTIES STATE HIGHWAY NO. 25

SCALES OF ORIGINAL DRAWINGS

ON PROFILE { 11N = 50 FT. HORIZONTAL, 11N = 10 FT. VERTICAL	
2018 R.68 W.	
	10.11
Original Lake	
00	
Description Description	
N. Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con	
Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Co	
DENVER LES	

SHEET NO. 1 TITLE SHEET 2 - 3 STANDARD PLANS LIST AND ABBREVIATIONS (4-9) SUMMARY OF APPROXIMATE QUANTITIES

(9/AC-CX) GENERAL HOTES, SEEDING HOTES AND VALVE BOX EXTENSION DETAILS 11 - 18 TYPICAL SECTIONS SUMMARY OF EARTHMORK, TABULATION OF GUARD RAIL AND IMPACT ATTENUATOR, TABULATION OF FARCE, TABULATION OF TIMBER RETAINING WALL, TABULATION OF 6 INCH PLASTIC PIPE, AND TABULATION OF SIGNAL QUANTITIES 40TH AVE. RAMP AT 40TH AVE. 20 - 21 TABULATION OF REMOVAL, RESET AND ADJUST ITEMS 22 TABULATION OF SURFACING TABULATION OF CURB AND GUTTER, SIDEWALK, CONCRETE CURB NAMP, AND CONCRETE PAVEMENT 24 - 25 STRUCTURE QUANTITIES 26 - 31 TABULATION OF STORM SEWER SYSTEM 32 - 36 GEOMETRIC LAYOUT 37 - 56 STRUCTURE NO. E-16-MX DETAILS 57 - 64 SLOPE FAVING RETAINING WALL DETAILS 65 - 85 RETAINING WALL DETAILS DETAILS OF ADJUST MANHOLE, LOOP DETECTORS, TIMBER RETAININ MALL, "MARACK ATTERWATCH 48TH AVE. RAMP, SIGEMALK EXTENSION 48TH AVE., AND CLUB AND GUITER AND SIDEWALK EXTENSION 87 - 90 CONCRETE PAVEMENT JOINT PLANS AND DETAILS 91 - 99 SANITARY SEWER RELOCATION PLAN AND DETAILS 100 WOOD SOUND BARRIER DETAILS 101 - 108 TRAFFIC MANAGEMENT SYSTEM PLANS AND DETAILS 109 - 122 ROADWAY PLAN AND PROFILE 123 - 128 DETENTION POND DETAILS 129 - 130 WETLAND MITIGATION PLAN

(133-AX-CT)

131 - 149 STORM SEWER AND DRAINAGE PLANS AND DETAILS 150 - 177 SIGNING AND STRIPING PLANS AND TABULATIONS 178 - 214 TRAFFIC CONTROL PLANS Z15 - 219 TEMPORARY LIGHTING PLANS 220 - 224 LIGHTING AND ELECTRICAL PLANS AND DETAILS NEW AND REVISED STANDARDS M-203-11 SUPERFLEVATION OF CURVES - DIVIDED HIGHWAYS SHOULDER PIVOT 8-16-84

M-203-12 SUPERELEVATION OF CURVES - STREETS M-506-12 GUARD FAIL TYPE 4 CONCRETE BARRIER (9 SHEFTS) 2-18-83 M-620-2 FIELD LABORATORY CLASS Z



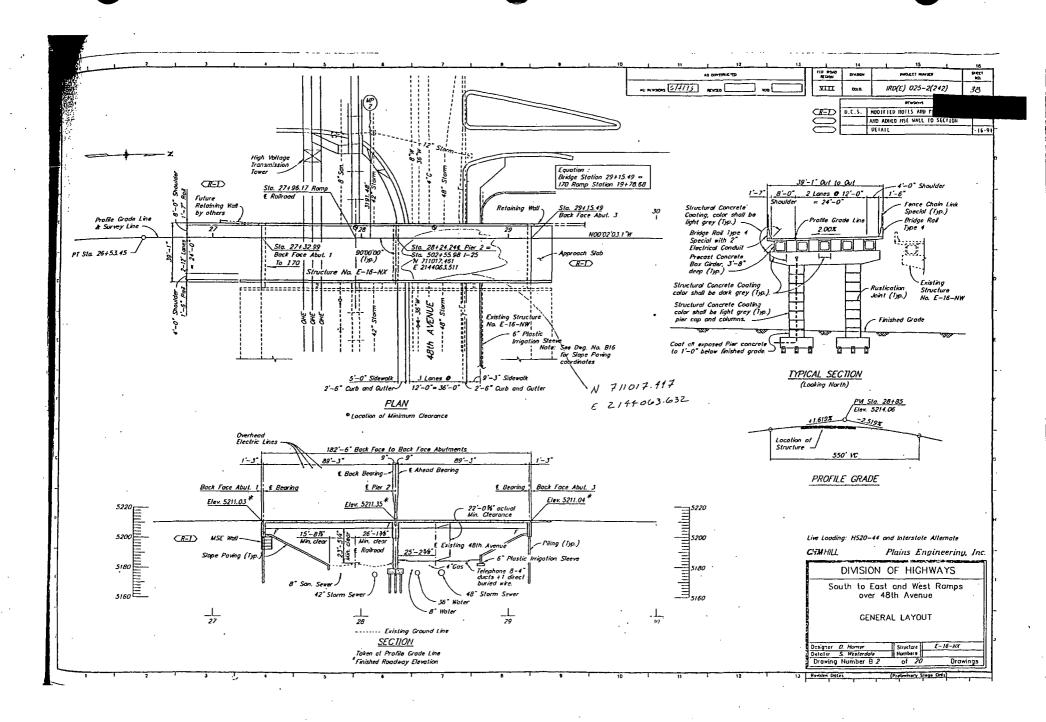
ONTRACTOR FLOTINGS CONTRACTOR SEIN

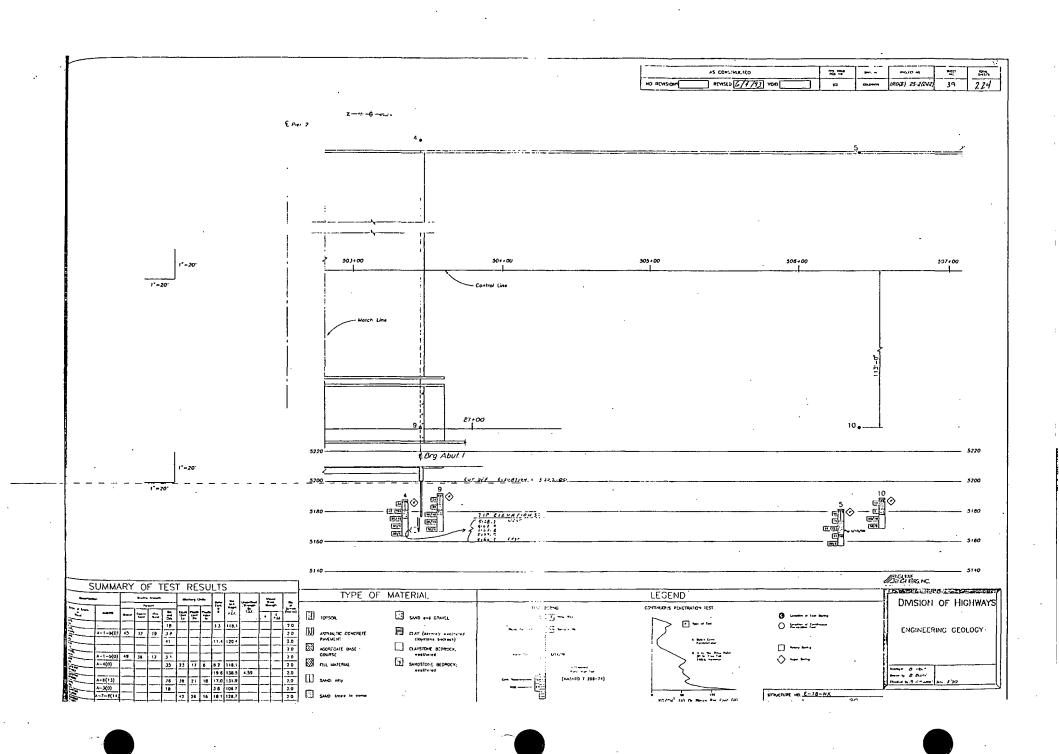
MP 213.76-215.04 DCS (DIST. G)

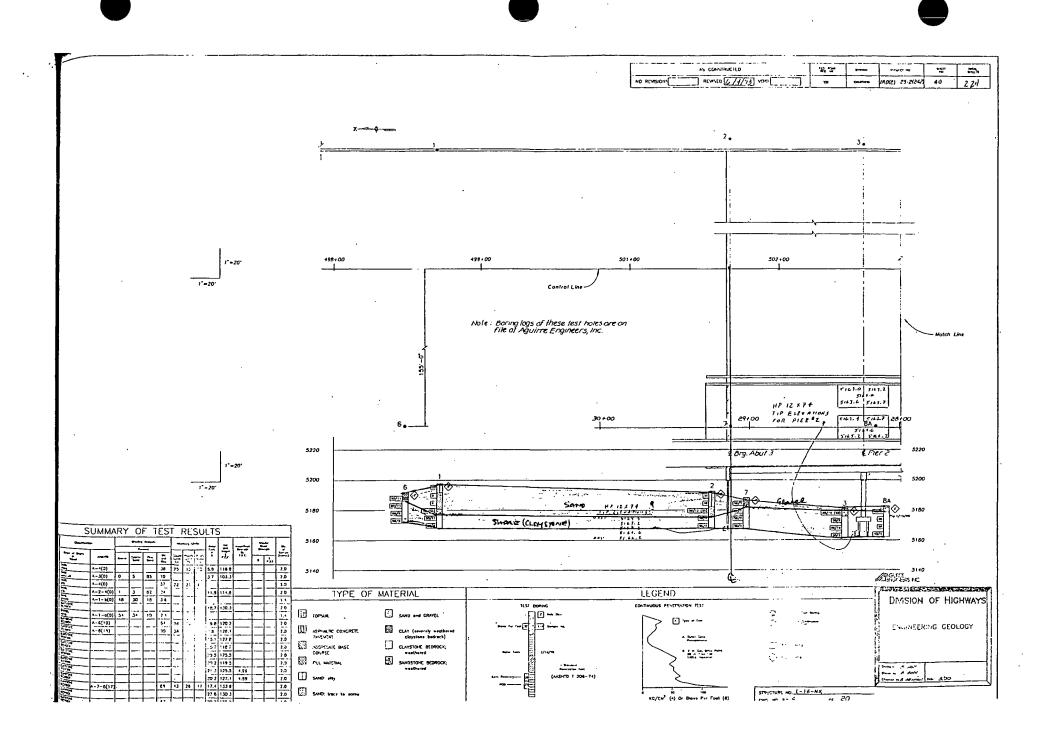


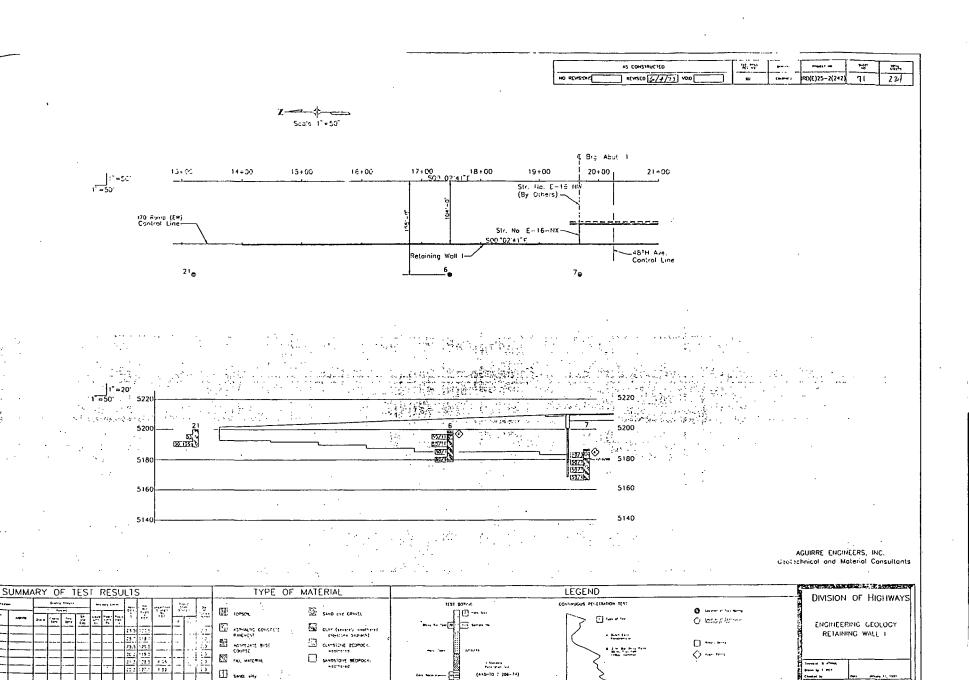
	ROADWA'		# BTR. NO. E-16-HE	
ATION I 25	LIN. PT.	HILES	LIN. PT.	HILES
EG. 1RD(E) 25-2(242)* ROJ. 1 25-3(54)215 = T 215.043	3535.00	0.670		
70 RAHF 3 = 8 I 70 RAHF =	1764.73	0.372		
9 SYR. E-16-NI 9 SYR. E-16-NI	182.50	0.034	102.50	0.034
ND IRD(f) 25-2(242) - ROJ. CC01-0025-48 = PT 213.758	1102.77	0.209		4 3
NET & GROSS LENGTH	6785.00	1,285	182.50	0.034
NET & GROSS LENGTH	6785.00	1,285	182.50	0.03

FOR INTORNATION ONLY - STR. E-16-NI ON I TO RANF

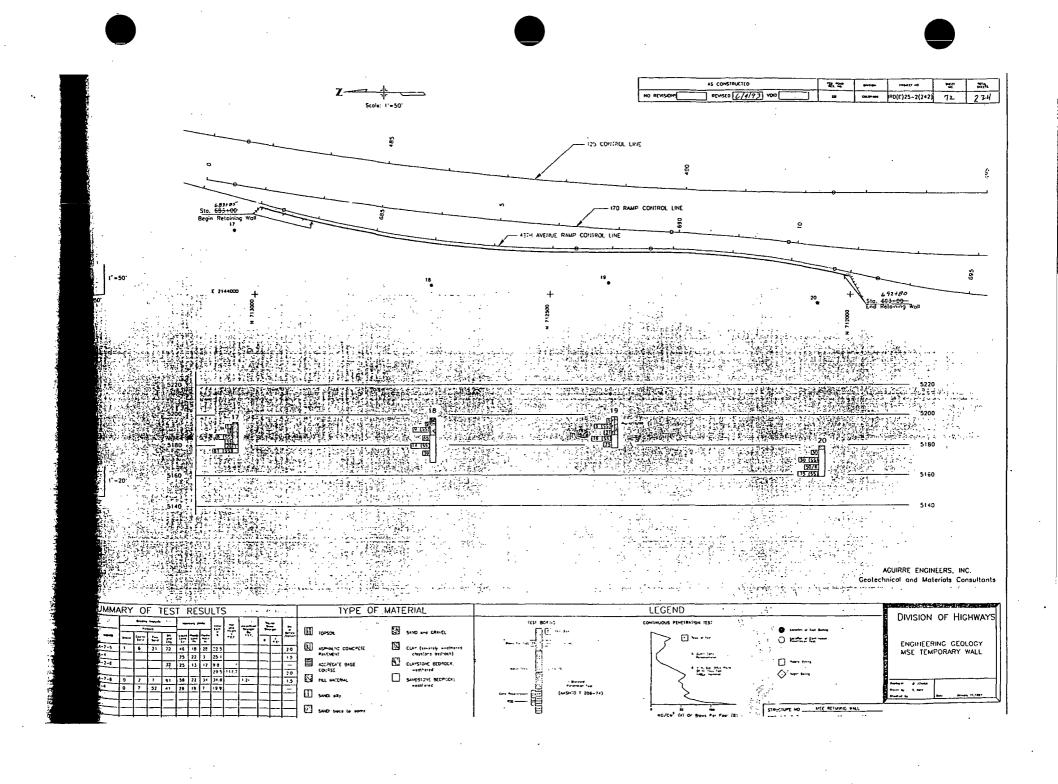

I 25 DESIGN DATA

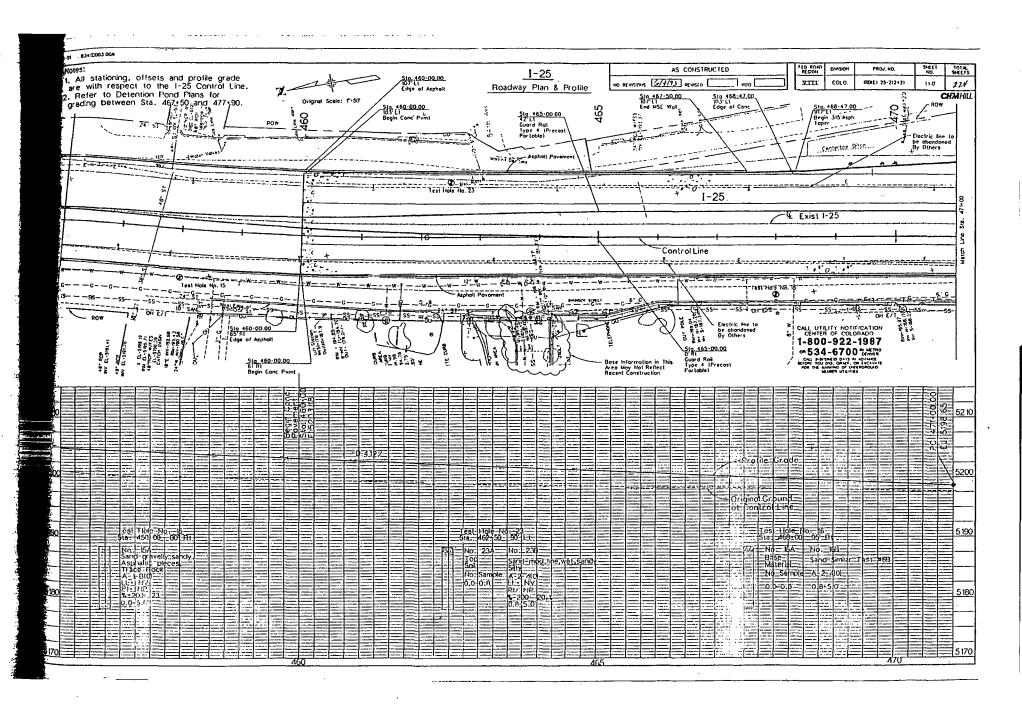

446+65 BEGIN IRD(E) 25-2(242) =


446+63 PROJ. I 25-3(54)215 = MILE POST 215.043

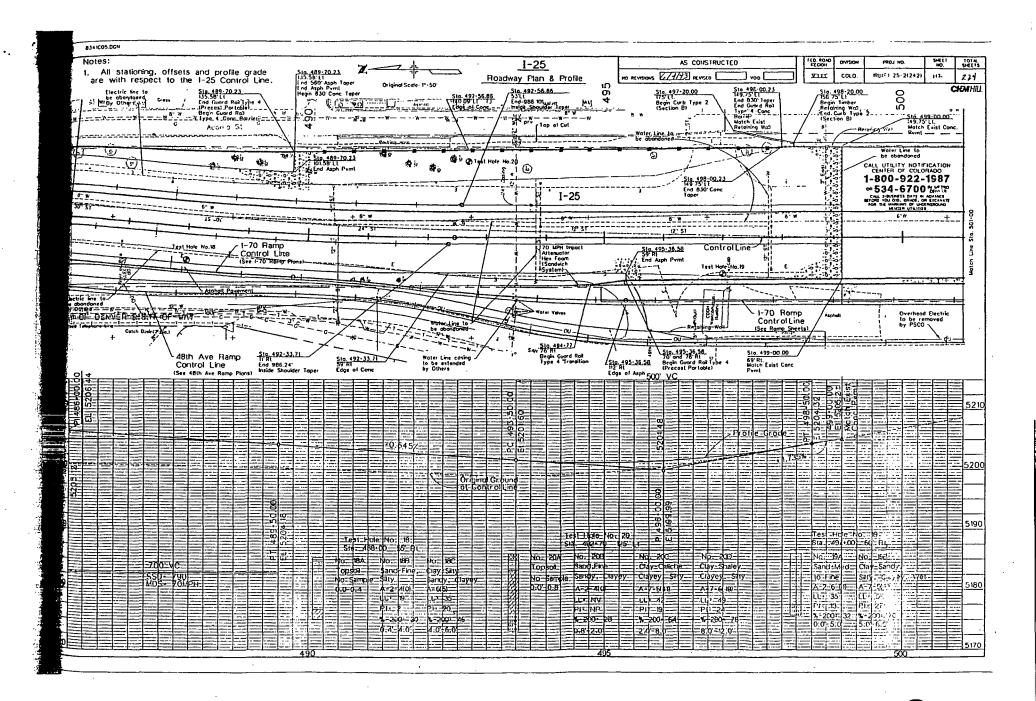

514+50 END IRD(E) 25-2(242) =

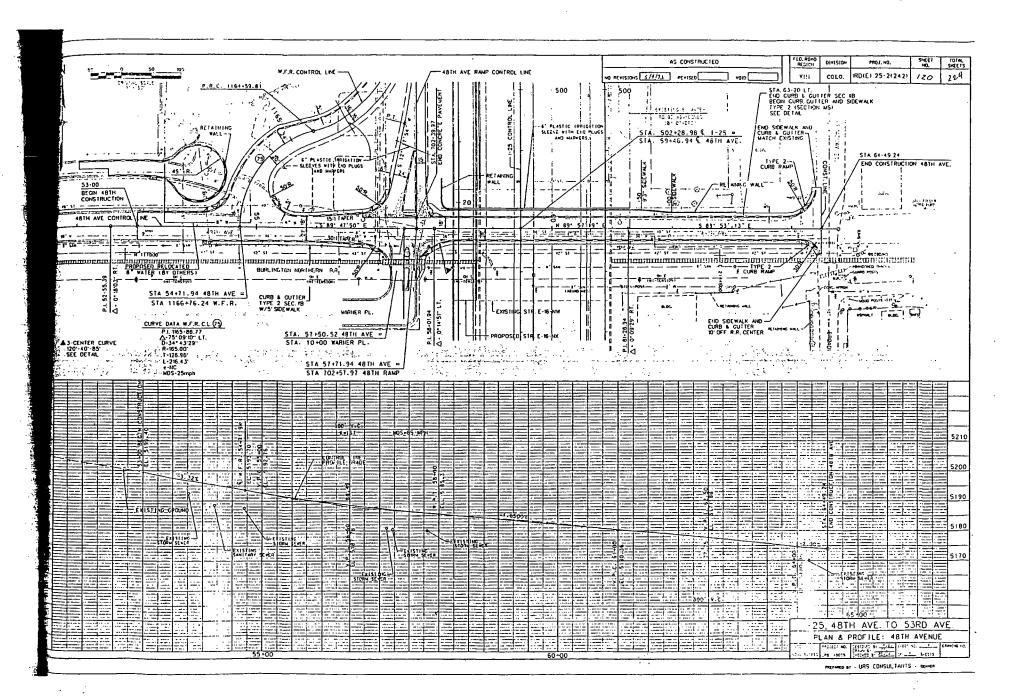
514-50 PROJ. CC01-0025-48 = MILE POST 213.758







STAUCTURE NO DETAINING NA.





8541C004.0CH AS CONSTRUCTED FED ROAD PEGION SIEET NO. TOTAL 1-25 PROJ. HO. DIVISION nies: Roadway Plan & Profile REVISED 6/9/73 VOO V.III COLO. IRD(E) 25-2(242) 111 224 All stationing, offsets and profile grade NO REVISIONS are with respect to the 1-25 Control Line. Sta. 476:30,00 /119.67 Lt Begin MSE Wall 619, 483-00,00 110 Lt. End Gound Barrier Fence S1a. 478-20.00 SIA. 485-50.00 CHMHILL Sta. 482+70.76 107' Lt Edge of Asph 513. 482+70,76 Refer to Drainage Plans for grading on side of 107 L1 End 315 Asph Taper Sta 478-20,00 2 2 103 L1 5 Edge of Conc End MSE Wat Begin 986. ld Inside Shoulder Sign 980.00 Original Scale: 1":50" roadway. Sta. 482-70.76 Refer to Detention Pond Plans for grading between Sta. 467+50 and 477+90. 61a, 475-05.00 003 Li Edge of Conc Sta. 471-62.00 126' L1 End 315' Asph Taper Sig. 475-05.00 Begin 315 Asph Teper 533 318. 484 p.23 ===== Sta. 471-62.00 Sta. 471-62.00 Forge of Conc. . RP. TE BYTAINE WALL OF HE Begin 560' Aspn Taper DEDICATION VALUE Sanitary Sewer to be abandoned and Pioyy Cont Vay be active at the of construction of the project. 1-2555-ટ 30. 21 Electric line to be 12° 57 Control Line - 48th Ave Ramp i=70 Ramo Control Line (See Pamp Sheets) (See Ramp Sheets) Electric line to be standarded By Others DEDICATED VALLEY RIGHT Sta. 479-00.00 CALL UTILITY NOTIFICATION CENTER OF COLORADO Bannock SI. Sta 482-47.47 13 FT-Begin 905.24' Inside Stroutner Sia 482-00.00 61 FU Engle 01 C000-Bonnock
Bonn-Sew to
be relocated
or Modified
by Others Sta. 479-00.00
65 Rt
See 48th Ave Ramp Plans
for Continuation of
Guard Roll Type 4
(Precoat Por fable) 1-800-922-1987 on 534-6700 H METRO
CALL 7-METRO DEL DELLA PROPRIET
ENON TOU DISC. ON EVENTA
FOR THE MARKET OF UNDERSTORDED
HOME METALETES Sta. 0+00 I-70 Ramp Ste. 482-47.47 57 Fit Edge of Conc 1-25 Mainline 5200 5190 est Hole No. 17 0.__7A GI-Mat Send Smar est #19A The Soil Clay Pat. Sand Similar Sand Tire, Sity, We NG Sample - Clayer Sily less 1 820 - 0.0-0-8 A 64) 4-2-4-(0 - 1.11-35 No. 3 ample - 1.15-36 Pt. 10-5-05 ta_smpte_A-2-6/1 LI-NV 5180 =0.0=0.3= PIT-NP **%=200==27** 0.9-2.0





Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	 																							_									_		_						<del></del>
	===			= -				-1::	-	-	- = = = = =			===			= =	=	==			31.5	=	-	=[_			Α	s cons	TRUCT	ED			$\prod^{c}$	ED. POAD RECTON	DIAI	K012	PROJ. I	r0.	SHEET MO.	TOTAL SMEETS
COLDUSAC PROFILE AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND A LINE WAS AND	77 17	1.7   -			1	-		===	1=		====		17-										======	= -	- 40	PE VISIO	ms [		AE VISC	0/2/4	193	V010			VIII	co	LO. IR	D(E) 25-	2(242)	121	27.4
		<u> </u>	1=	= =	-			===	= -	+				+				1 12			- -			_ -	4	-1		<u>-</u> -	-		-		-	1		- -	-   -		1		<u>-</u>
		l		-  -	+		<u></u> <u>C</u> Ψ	ir id	<u> </u>	SAC	PRC	) [IL	E¢		N LI	NE :				1.4		<u> </u>		-	-				4	.	_   _ '	1	1	<u>: </u>		- -	1		<u>↓i</u>	4	
					ļ				: ::	. ::::	<u> - 1 :</u>	1=			¥ .;; :		=====	1	- 1-	1:::			-   -		4 .	_[			1-	W.	ARNI	R_Pi	LAC	Ė_F	RÓI	FJLE	. i ·		1 :	-	
		177	-	4-1	=		-:-	-Z* 0 V		1	1					-	0:40	-	تإن	4-4							J	<u> 11.</u>							1		:   ·- <u>-</u> .			<del> </del>	
		= :	ا او-		1 ::					됱								<u> </u>	.2412					Ē. -	1	. <u> </u>				: .	-								1	10 o	:
		11111111		19	<u>-</u>							\$2			3			97	EEE							3 2 -			<u>                                     </u>						1		- [ ]	<u> </u>		말	
					Š -		=	I =   - I	= ::			- 8				2		782	<u> </u>			4		<u></u> :			薑			Ш.		===		π—¶ο						5	<u>: </u>
					<u> </u>	Pr	ROFFE	E CRADE	ıħ			- 1				3	<b>5</b>	1 2							9	288	≣						1	4 6	12.1		I Hair	- <del></del>		350	-
		-0-		44.4	<u> </u>			2		Œ,			17	$\leq$	6257		1,5 6	7			= [				3	9 -							Ę	"言						3.5	Ē.
				716			$\equiv$		35	₩=			¥-		: : : :		ΙĒ	噩			== -=						I		272				7								5190
						=3	<u>=</u> [	1						B SW	SEWER	1			===						噩		=2.	0%	ΔΞ	==	-3.65×	]		H				2x 1	<del></del>		=
## 1000					1:		$\equiv$	3	=		\= En	STNC	CROUSE																					7	<b>-</b> _ [-						5180
3,501  10,000  WEST FRONTAC SRD  WEST FRONTAC SRD  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000  3,000					E		■.		1/2	$\blacksquare$							鰛																	1							哥
## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 1000 ## 100				₹	E					A.	SAN. SEN	n 0 =												≣[:											三		≢				5170
10.000 WEST FRONTAGERD.  WEST FRONTAGERD.  10.000 WEST FRONTAGERD.  10.000 WEST FRONTAGERD.  10.000 WEST FRONTAGERD.  10.000 WEST FRONTAGERD.  10.000 WEST FRONTAGERD.  10.000 WEST FRONTAGERD.				量				3																										≣							
## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 100000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 100000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 100000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 100000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000 ## 10000																									=	00100													1	400	
					5.1	00.			3	量									1.1.0	100														三							
				█								▐																													
					苣																	∄≣							巨					Ī							
					重																	≢				⇟					≡										
								≢																										=							
					置																V	ÆS.T	ER	ON	J'A(		RD.										⇟				
																								=	ΞĚ	-					= 13-										
100 100 100 100 100 100 100 100 100 100					量												≣										UUS-4	O-MISI						≣							
									≣			量						$\equiv$																				===			
520 September 1				==	1=		=	==				丰		100			≢≡		227			==							-   -	=.	Ur 2			=							
524				丰	+=-							∄≣		15.5				2	200 200			$\equiv$			ΞΞ				\$ 2. =		2 6			=							=
																			39 I										]==		2.20			≣							=
	==						░					=						Š	860										32 -												5200
					E											OVER	y		1.5.77					1						_				E							=
													05.TeH0	6ROUNQ			▋			1							=		1	2.001						≡					5190
	$\equiv \equiv$									$\equiv$		=					▋≣					丰		Ĭ.	cc	OFILE	LINE	\			EX	STNG	٤ =								<u> </u>
					-																			===	=									1		= =	丰	==			5180
	==																																	1=							≣—
					-																				====					-				1=						1=	≣
	=				1		=		315			量		<u> </u>			▋≣																								<u> </u>
Less 48TH AVE. TO 53RD AVE.					<u> </u>								T	3				13					?				<u> </u>						<u> </u>		<u></u>		O.T.	AV5	TO 5		
1-25, 48TH AVE TO 53RD AVE  INDIRECT LIBRARY LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STATE LIGHT STA											_NORUA	L CRO	WII	=1-1				-11		0.02:/			1-1-		130	1=	1:-		0.0337	175 8 1				<u>.</u>  -							
		<u> </u>		<u> </u>	۳.		=		1-				邑	===		11107		3-1-	===										<u> </u>						ч	PASIEC	' NC. OK	104: 17	1 140 s	c	OPENING NO.
1160+00 1155+00 1160+0 1160+0 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+00 1160+000+000+000+000+000+000+000+000+000	 											6U+00	<u>'</u>				-								<u>. !!</u>	<u>99+00</u>	<u>'</u>					<del></del>		13	1571 <del>4</del> 1						

. 1.4

复出人

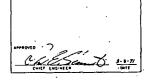
																				_																
		===	===	1	=[:	1=1		T=	1		-		1==			Jij	==		==			:[			AS COM	TRUC TE	0		$\Box$	FEO	ROAD GION	01×1510H	PROJ.	<b>4</b> 0.	SHEET NO.	TOTAL SEE 15
= -						===			ŦΞ.	ĦΞ	-					<u>. [13]</u>				国	===	NO RE	visions [	11112	REVISE	$\Box$		voio :				COLO.	ÆD(€) 25	2(242)	(22	2 2 3
			. ]			-15										- ∏}						1=1	=  =	i-	Ξ. ]		1:::				. <u> i</u> -			11.	1 1	=
-i	334	. <del>. 1</del> 14.	-:t.:	1	-		· =   T	-		3.FE	X 1 2	=  =	l		=::	- 1					= =	ΤΞΙ	3						7.5		= =					
		- 7-1 "	1 1 .:		<del>-</del> ; :			1	<del>.</del>			_				- 63		=		Ş		COUT	O PINE	-1-								1 - 1		11.7		
			h		- 2		-	-  -	1-1	===	6	- -		š -		- <u>Ş</u>					/-	PROF	E: OP NO		-		1.1			-			-	1 - 1 - 2		=
-:			<u>ا برا</u>		- 6		<del> -</del>	<u> </u>			φ :	-		3	1 121	3113.	1467	-1		1	-/-		===				===									5210
=1==				=	18	==		<u> </u>					7=			/							=				1==	-1:00%						1-17:2	1 - 1	<u> </u>
			<b>1</b> -	T 1	T	=:==		133	==	===		= = /	目		1.55t.	We'l	\$\frac{1}{2} \tag{2}		==	1.==			7				9-2			=	= =				1515	520
3 5	1	=133		[- <u>-</u> -	Ξ.	351	===		Ē.	RIGHT : 50	CULDER					J of	- 60						Ş.—										-			Ē
=1==1					= -	1=1			E	ÇROS5	SCOPE										==	1											-			∄
	==	===						∄≝						三三	1				200				J							≡						519
$\exists \exists$				-	= =							≡		≡				50-700	= x	PI I	30 30	ubu.	丰							=						∄
																<b>∃</b> ≡			==								丰				〓	=q'=				5180
	==			1==															==		≡											1=4=				3
			122 E		==				Ħ	SUPER E	DIAGRA	<u> </u>			1		<b>≡</b> ₩,		$\equiv$				$\equiv$		╡		≢					i gi				
			7.d													∄≝																	1			3-
		#			==											₽				CC.	RCD.															<u> </u>
					$\equiv$							$\equiv$								-018	751															3_
		重量	ΞΞ		ΞΞ												===		≡		≢	$\equiv$			≡		≢									∄_
													国			$\equiv \equiv$	〓		≡												丰					ᆿ .
								$\equiv$									==		≢																	3
					⇉≣		$\equiv$										=						≡		≢		≢									1
				6	8010									==	1	≢≡	$\equiv$	685	00		≡≡		≡								69	000				<u> </u>
																																				3
																																				<u> = :</u>
																	$\equiv$						重													ቜ ፡
												量											≡≡				≡	I R.		150 71	V05-2	No.				Ħ.,,
																⇟							$\equiv$		≡		¥≡									521
						1.00%		=				≓≡					3		$\equiv$								=									3—
																			713	FOFEE	CR/DE							3,-		≡						520
											6	≡≡				==			7 =		=									====		1	<b>**</b>	-==	#=#=	1_
								X (5)	(NC	\     	ö -  -				ŧ	<b>T</b>		- 8			- 2	19352						=44=		<b>=</b> }:			1775			519
											vi.																	- 20 =	=	-1		=> 🗓				
											J - 1						=													=		12.	<b>6</b>			3-
==					⊒≣			⇟					扫			= =		==:	7											- Ŷ						318
					==				目					30							===									= :						<u> </u>
										$\equiv$	530	529:		===	7/==	==	MUSES	2011			$\equiv$								=I	<u> </u>						3
==		¥ .					====				12:15	=									=,;		===		≡		-5			=						
					슬림			≣			==+=	- 50	×ER ∙€	EVA IM												7	= 1					1				<b>1</b>
			F SHLO -		= "										+\:	_			$\equiv :$			丰	- 6	102 7		8	- 8	- S	丰		===			1===		3
										壨					1-7:	===			==														-	451.0		<u></u>
													-017	7E1	-\						= =		====				≡		분급			- i	46	1		<u> </u>
					≡⊫				<b>E</b> ; -		N ==	= 2		<u>=</u> r		의 :		#	≡≡				==		= =		==			=;	==	#=		1.		Ēļ
					= =		= =					===								1	#						ΞĖ		FIET	)~		- A - H-		==		<u> </u>
	=	==									# · ·	- 5		- 6					$\equiv$												1-25	. 48TI	AVE.	TO 53	RD A	νE.
	===	==		1=1	ΞŒ							= =	==				===		==			늴					==		-		F	ROFIL	E: 48Ti	AVE.	RAMP	
	690	==		1	<u>=</u>				<u> </u>	7.7			695					∄≣	$\equiv$							700+0	<u> </u>			77	0/11	*2.t	(-C-(0 t)	1. P471 M	C	C#1.143 I
																																	Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Second Control   Seco	No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.		The content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the

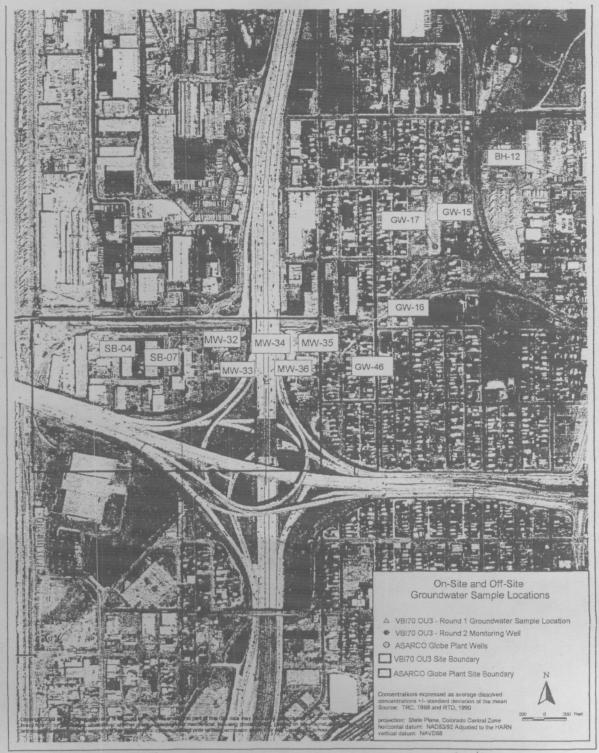
-

.

.--- . . .

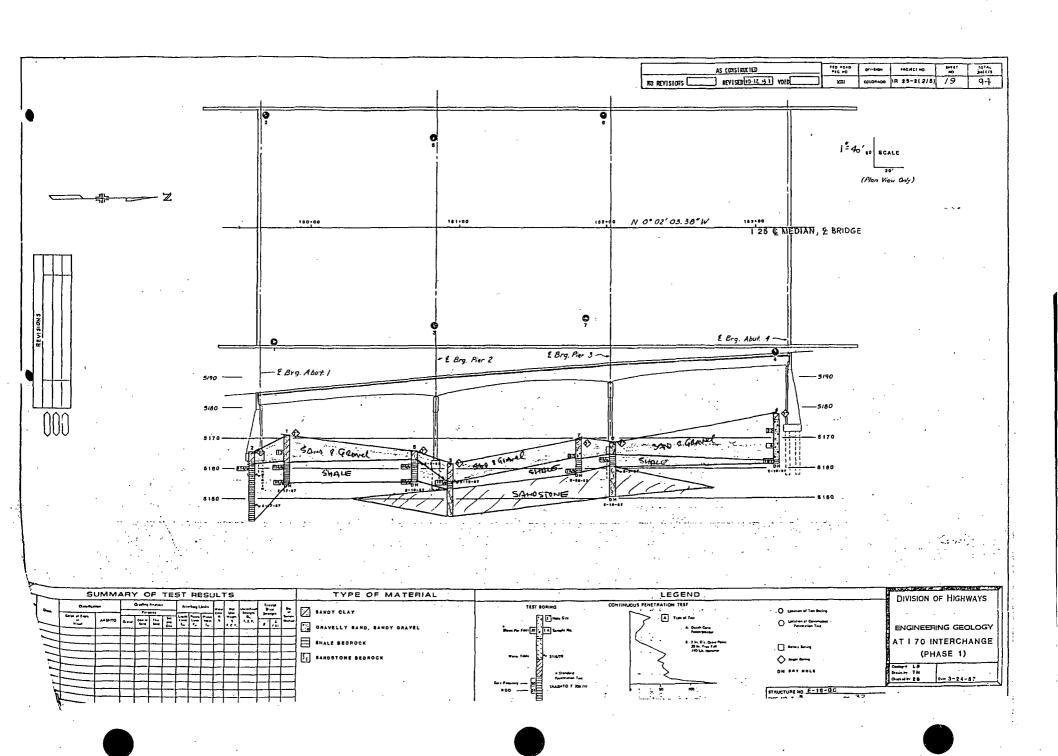
.

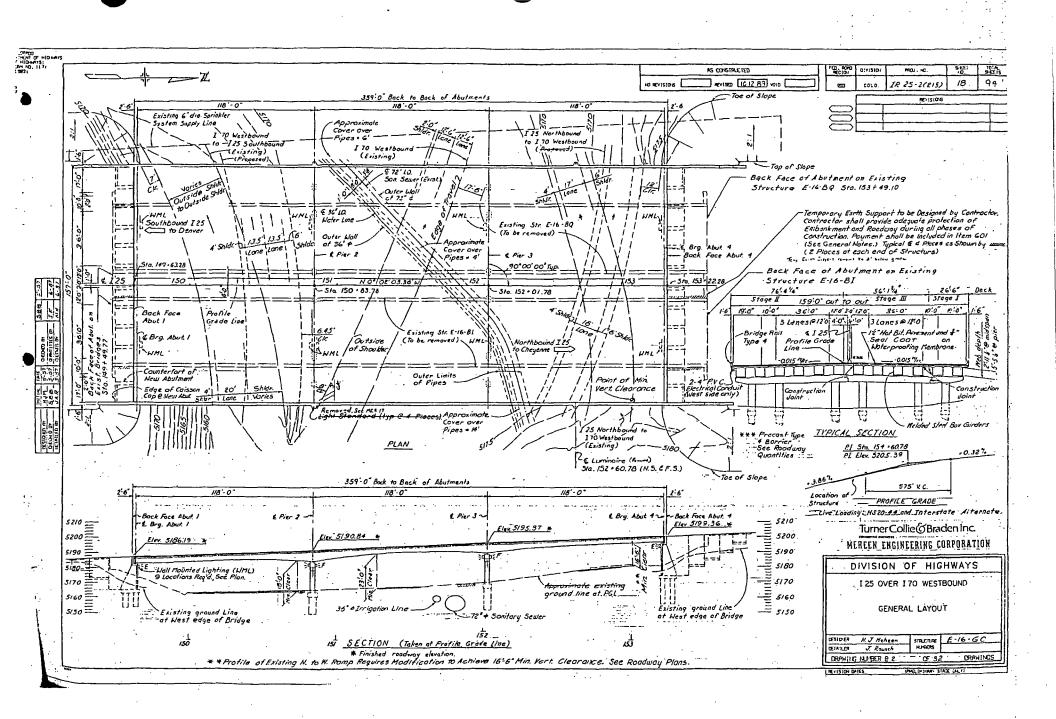

# STATE DEPARTMENT OF HIGHWAYS DIVISION OF HIGHWAYS-STATE OF COLORADO


AS CHAIL OCT. 131811

*144 1461*	· <del>-</del> -
CENTER LINE COUNTY LINE TOWNSHIP OR RANGE LINE LAND LINES CITY LINES RAILROAD BARBED WIRE FENCE	PLAN OF AS CONSTRUCTED COLORADO PROJECT NO. COI-0025-09
WOVEN WIRE - COMBINATION FENCE TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SETEMONED TO SET	STATE HIGHWAY NO. 25
PRESENT ROAD IPLAN SHEETS	DENVER COUNTY
C OF A LINE (CONTROL OF ACCESS)	STATE OF CHANNEL CHARLES OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE
Beard. Pier IV	Contractor - Kenney Construction Co.  Resident Engineer - F. P. M. Namara  Project Completed - Oct. 13,1971  Construction Engineer - Approved 4-14-72
Means and Mil3	p.
Tobas (1)	
OBSERVATION TOWER	
Ur-UG1	US PROJECTS OOZ - 2 (14) -2 (64) 214
	2
	SCALE OF FEET

SIE SPECIAL PROVISIONS FOR NOTICE TO BIODERS






MP 218.75

1" = 500' ±





## P.E. UNDER IR 25-2(193) STATE DEPARTMENT OF HIGHWAYS DIVISION OF HIGHWAYS - STATE OF COLORADO

AS CONSTRUCTED

PLAN AND PROFILE OF PROPOSED

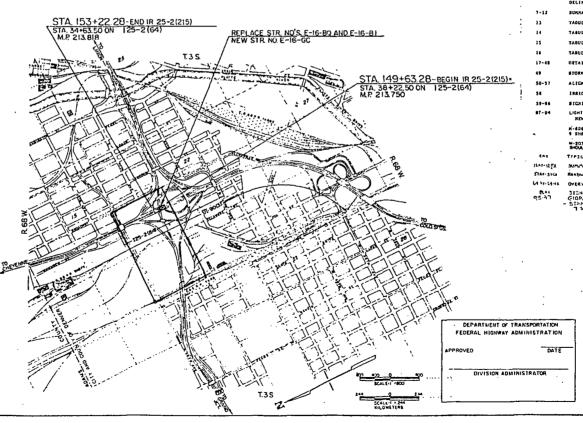
FEDERAL AID PROJECT NO. IR 25-2(215)

STATE HIGHWAY NO. 25 DENVER COUNTY

ON PROFILE VARIES

GRADE LINE ON PROFILE IS SHOWN AS GRADE OF PHISHED ROAD

*LENGTH AND DESIGN DATA


	STATION	MAJOR	STRUCTURE
149+63.28 38+22.50 153+22.28 34+63.50	BEGIN IR 25-2(215)- BEGIN MAJOR STRUCTURE NG E-16-GC* ON 125-2(64) ENO MAJOR STRUCTURE NG E-16-GC- END IR 25-2(215)- ON 125-2(64)	359	
	TOTALS .		
	SUMMARY	LIN, FT	MILES
MAJOR STRU PROJECT NET	CTURE T 8 GROSS LENGTH	359.00 359.00	00680 00680
<del></del>	DESIGN DATA		

MAXIMUM GRADE 3.860% MINIMUM SSD (VERTICAL) 465 FT. MINIMUM SSD (HORIZONTAL) )450 FT. MAXIMUM DESIGN SPEED (VERTICAL) 55 M P.H. MAXIMUM DESIGN SPEED (HORIZONTAL) 155 MPH 2007 DESIGN TRAFFIC VOLUME

DHV-18,240 ADT-182,380 TRUCKS-9% #LENGTH BASED ON STRUCTURE ONLY. 1,49100 LINEAR FEET OF ROADWAY LENGTH REQUIRED FOR APPROACHES.

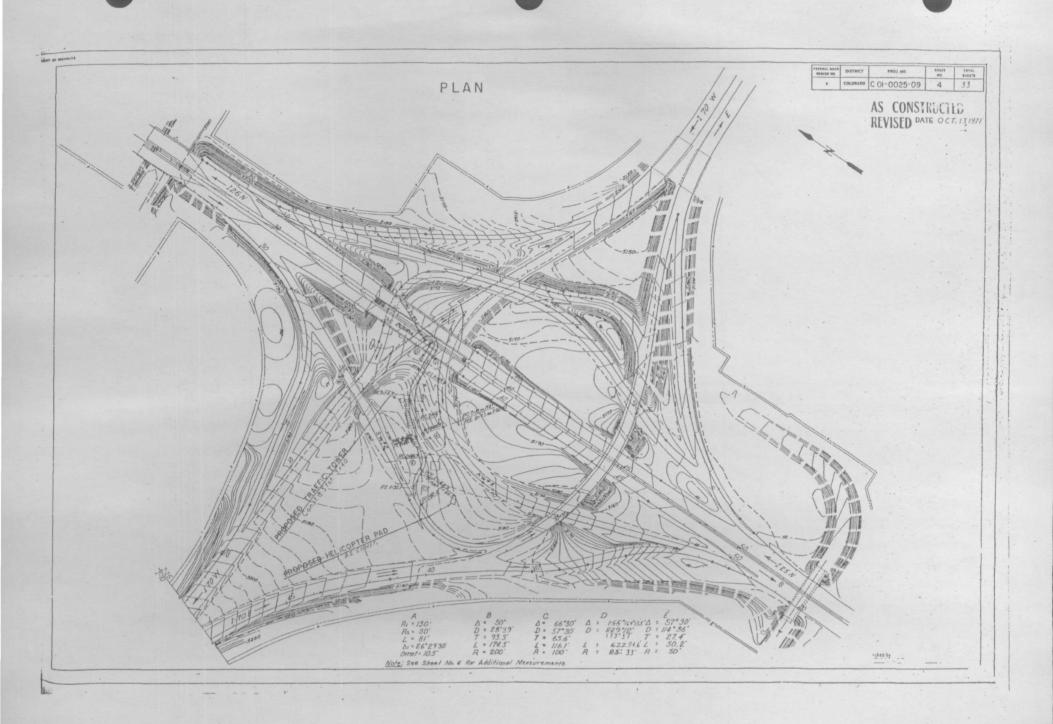


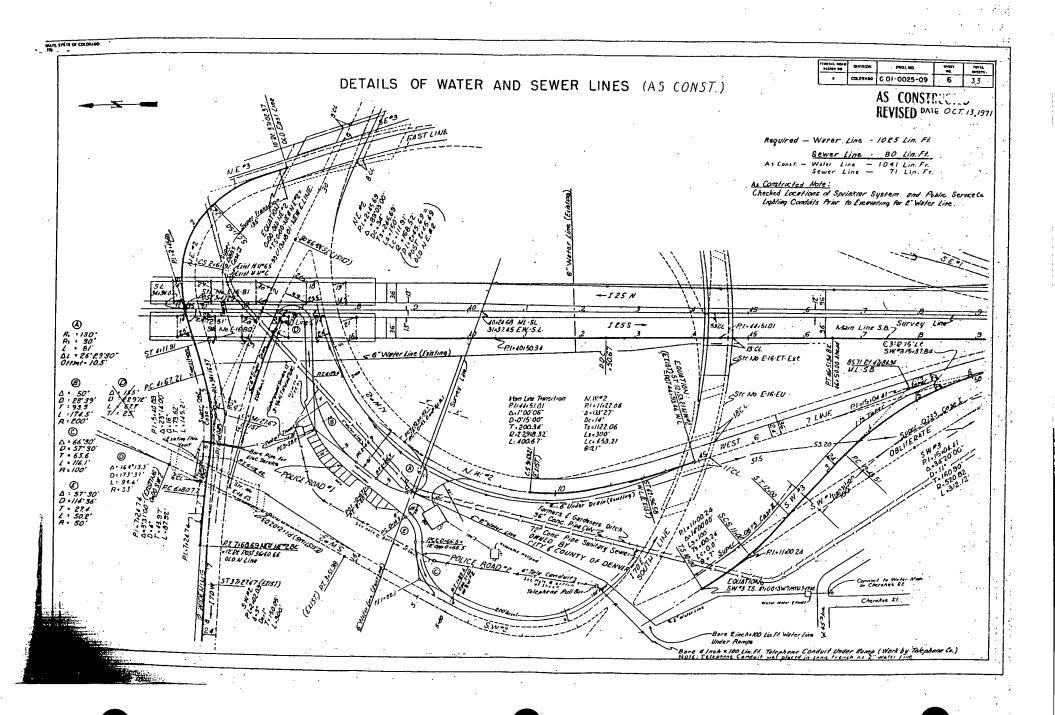
LINEAR FEET



IR 25-2 (215)

AS CONSTRUCTED REVISED TOTE - VOD REVISIONS


INDEX OF SHEETS


STANDARD FLAME LIST TTPICAL SECTIONS BRANKET DETAILS GENERAL HOTES, SUMMARY OF EARTHWORK, TABULATION OF DELINEATORS DETAILS OF STRUCTURE 6-16-60 SIGNING. STRIPING AND DETOUR PLANS LIGHTING PLANS . NEW AND REVISED STANDARDS H-636-12 GUARD RAFL - TYPE 4 CONCRETE BARRIER 9 SHEETS - 2-18-83 M-203-H SUPERELEVATION OF CURVES - DIVIDED MIGHWAYS - SHOULDER PHYOF I SHEET + 8-18-84 SUMMANT OF FIREL SHATTTIES READWAY DETAILS W.S ZAMP OVERHEAD SIGN PLANS STURING AND STREET OF STREET (DWWA)
STURING AND STREET (DWWA)
STURING AND STREET (DWWA)

CONTRACTOR AS HORNER

Project or Resident PROJECT STARTED November 4 1997 PROJECT COMPLETED Nomber 2 104;

R.J.A. DIST. VI - CDL





### **Paul Bergstrom**

From: Sent: To: Cc: Subject: Barbara O'Grady [Barbara.Ogrady@state.co.us] Tuesday, February 01, 2005 2:52 PM pbergstrom@knightpiesold.com; walter@syrres.com Ketellapper.Victor@epamail.epa.gov RE: VBI70 OU3



Linda Trzyna at CDOT has a few environmental documents that may be of interest. It would be easiest if you call her directly at 303-757-9933. She spouts off all these intersections (one was 46th and Pecos, which is nearby). There are many others related to the mousetrap area.

There are construction plans available as well and are in Linda's office. Again, you would have to go there to look at them.

I will pass the VCUP report to Victor tomorrow as well as the CD containing the GW data from Globe 1993-current.

I have requested our own records on the I-25 Corridor. They should arrive tomorrow. I'll let you know if there is anything interesting enough to warrant a field trip over here.

I think these references are worth a look. Barb

Barbara O'Grady
State Project Manager
Hazardous Materials and Waste Management Division
Cclorado Department of Public Health and Environment
4300 Cherry Creek Drive South
Denver, CO 80246-1530
303-692-3395 Phone
303-691-7878 Fax

02/04/06 WORKS MON-THURS. LEFT VOICE MAIL TO CALL TO MEET ON MONDAY
02/04/06 F.M. 7, @ 02/04/05

1415 Liviela Called from time. State can nect us on 705: Afternoon After 1:00 p.m. I Set an appt. In 1330Has at her office at 2000 S. Wolly (Holley & Evons), Enfu this south Parties let to get choleed in. Live a well call nect week to confirm time!

02/19/05 Lorda Still out Sick ("mosor" hearth pullons - can't use computer).
1100 She afterpated being in on 02/14. I'll CAll here then in a.m.
to Set something up.

02/22/05 meet todage 0900 in the office

Howy & EVITUS

South Parky Lot

Buth BLAG, me She will

Esconf us.

PR	ROJECT ARGO Smelfer	Lenda Tryzi	ha JOB NO DVIO 2 00124.
	SIGNED J. Kenkel DATE 02/22/05		
C	DOT PLANS		
دري_	MP 213.52-215,24 I-29 As CONSTRUCTED NO REVISIONS	:	,58 H Are No Info
(2)	Mp 213.97 F25 48th	Ave PP1050 W14	Dening AD INPO
(3)	MP 213,80 I-150 E-70 As constaucted but the Renigras	10/28/75	ab zwpo
(d)	MP 217.77 1-25 0 I-70 As constructed NO newstra		Copy SHT 6 2 33
(5)	Mp 213.75 I-25 over I- As constructed PEP	70 WB 10/13/89 11/1989	COPY SHT 18 2 94 SAT 19 & 94
(4)	MP 213.74 I-25 € I-7	c3/16/83	No For Po
(F)	MP 213.62-213.74 I-25/5-70. AS Constaured 5/25/84	Introhoge	Copy Com SHOET

(6) mp 217.76-215.04 P-25 49th to 50th dire copy sheets
As continue 6/4/93 38,39, 40,71,
Prevised 5 mocrus E-16-NX 72,110;111,112,
120, 121,122

(SHT 21) STR E-16-EI

## Knight Piésold and Co.

1050 Seventeenth St., Suite 450, Denver, CO 80265-2011 Telephone: (303) 629-8788 Fax: (303) 629-8789

	CULAT				[	DATE	07	42	3/o	ς			REF. CHE(									No.			
<u>.</u>	=5 tr	no	te t	<u>ت</u> د <i>۾</i>	7.E	v. I	607	5	5 H	MU Ve	¥2_	(C 4	8 F	6 B	را جريد	i E	eo w	nce.	ر(ء	A	٠ دري	ンプレ	in	: :	:
	50	باود	e_		·		i			<u>.</u>			1					€	ب	1		9CE Kr	•		
mf	W G	. H	 Hh=	21! احد	۶. ۵ 4	0	<u> </u>	511 22	4	5°	l +	65	<b>±</b>	 	 : !						· 	78	<u>.</u>		
NP	- 2-1	3.6	Σ -	- 2	13.	74	  -  -	TE	57	Hou	E :	#1	19			ļ		:		5	17	4		·	; :
mp	213	2 س.	_ =	21	3.	74		71	<b>1</b>	Hal	ET	#	8	<b>#</b>	9		:	5	174	1(2	<i>च्डा</i>	)	5	178	3 (
	G2 +	ניתנ	te	E	æV	•	f	141	eu.	WB	4	C	Ţ-7	(ک	) / 1	NR		48	ĸ	A	en		· · ·	·	: '
M	4						: 	i — - !	! '	 						 			:    -  -			-			: :
											-		:		: ;		: : : :	: : : : :	 	<u> </u>		1	! .	:	: !
							: 					:: :					; ! !	:	; - <del>-</del> -			 	`		
					-		: - : :									:		: · · · ·			i 				
							! !		 		-		t !					:	:  !	1					
							 	<u>-</u> .									ļ 1. 1	:		<u>1</u>		: : : : : :	: 		
				!			! 	·		: :		 	! !	· · · ·						-		ļ 			; · ·
		-{}		<u></u>	<b>-</b>		1	1 .	٠	;				1			:			i i	! .				

## I2 - SCREENING LEVEL ASSESSMENT OF METAL LOADING TO THE SOUTH PLATTE RIVER

- I2-1 SCREENING LEVEL ESTIMATES OF METAL LOADING TO THE SOUTH PLATTE RIVER FROM GROUNDWATER SOURCES ASSOCIATED WITH THE VBI70 OU3 AND GLOBE PLANT SITES (KNIGHT PIESOLD, 2006)
- I2-2 ADDITIONAL SCREENING LEVEL ESTIMATES (INCLUDES PRESENT CONDITIONS 2000 2004) (SRC, 2006)

SCREENING LEVEL ESTIMATES OF METAL LOADING TO THE SOUTH PLATTE
RIVER FROM GROUNDWATER SOURCES ASSOCIATED WITH
THE VBI70 OU3 AND GLOBE PLANT SITES
(KNIGHT PIESOLD, 2006B)



### Memorandum

Date: May 30, 2006

DV10200252.01

To:

Jennifer Walter, Syracuse Research Corporation

From: Cory Conrad, Ph.D., R.G.

Cc:

Paul Bergstrom

Re:

Hypothetical Screening Level Estimates of Metals Loading to the South Platte River from Groundwater Sources Associated with the VBI70 OU3 and Globe Plant Sites

#### 1.0 Introduction

This report is prepared according to the statement of work (SOW) issued to Knight Piésold and Co. (Knight Piésold) on May 10, 2006 by Syracuse Research Corporation (SRC). The SOW specifies "a preliminary, rough, screening level estimate..." of metals loading (cadmium and zinc) from the VBI70 OU3 site and the Globe Plant site to the South Platte River and resulting incremental concentrations from each site in the South Platte River.

It is noted that the screening level estimates of surface water concentrations must be described as hypothetical. It is currently a hypothetical assumption that metals loads in either of the two plumes in the alluvium west of the South Platte River impact the river. The best available study in this area is the ASARCO Inc. and Sate of Colorado Joint Study, Remedial Investigation Report (RI) in 1988 (ASARCO, 1988). The 1988 RI report concluded that "Releases of metals from the Globe Plant site...appear to have had little impact on the South Platte River water quality." (See p. 11 in the Executive Summary of ASARCO, 1988.)

The calculation methodology in the 1988 RI, for example, on p. 5-51 (ASARCO, 1988), is considered to be in a hypothetical manner that may be described as "assuming this... then that...". For example, quoting from the RI report, "based on a typical cadmium concentration...the resulting increase in cadmium concentrations is calculated to be...insignificant and non-detectable...". The logic is extended to a generalization about actual conditions without stating any facts that lead to the actual condition. For example, "on occasion when river flows are low...there may be temporary measurable increases...such as June 17, 1986 [that] appear to be infrequent, temporary and localized." It is noted that within this sequence of assumptions there has not been an assertion based on any evidence or mechanism (such as a gaining reach of the river) that cadmium from the groundwater plume was transferred to the river. Thus, while there was (and continues to be) circumstantial evidence that a groundwater plume from the Globe Plant site may be impacting the river, the data in the 1988 RI were



Jennifer Walter, Syracuse Research Corporation May 30, 2006 Screening Level Estimates of Hypothetical Metal Loading to the South Platte River from Groundwater Sources Associated with the VBI70 OU3 and Globe Plant Sites

apparently not considered sufficiently definitive to enable description of a definite pathway from groundwater to the river.

#### 2.0 Available Data

- 2.1 The 1988 RI Report (ASARCO, 1988) developed a series of map figures depicting groundwater elevations and groundwater concentrations of contaminant metals for the time period August 27, 1987 through March 22, 1988. Plate 4.10 (ASARCO, 1988) depicts cadmium concentrations at wells and isoconcentration contours for the plume downgradient from the Globe Plant site and the plume east of the VBI70 OU3 site. Plate 4.14 depicts similar concentrations at wells and isoconcentration contours for zinc. Previous figures prepared by Knight Piésold have reproduced the cadmium and zinc isoconcentration contours from the 1988 RI for the plume east of the VBI70 OU3 site. The plumes have been slightly modified to extend southward to the location of Interstate 70, but the eastern and western lateral extents have always been presented as in the RI. The 1988 RI also contains extensive sections on groundwater and surface water investigations (Sections 4 and 5, respectively) with tables and appendices giving hydraulic conductivity determinations and well boring logs. An earlier version of the RI Report, dated December 26, 1986, contains a map figure depicting water table elevations on November 14, 1986.
- 2.2 In 2004 and 2005, Knight Piésold conducted groundwater investigations at the VBI70 OU3 site and in the alluvium immediately east of the site and west of South Platte River. Four wells (GW-17, GW-15, GW-16, and GW-46) are located upgradient of the Globe Plant site and downgradient (east) of the VBI70 OU3 site. Well GW-46 was installed by ASARCO/State of Colorado after the 1988 RI. A sampling round with metals analyses confirmed the continued existence of the VBI70 OU3 cadmium and zinc groundwater plumes with slightly higher cadmium concentrations than reported in the 1988 RI. In 2005, the locations and elevations of the above four wells were re-surveyed to allow updating of the hydraulic gradient determination in the Platte Valley alluvium. The update extends southward of the region with a calculated hydraulic gradient from that presented in the 1988 RI (1986 map) to the area due east of the VBI70 OU3 site. The 1986 map with updated water table elevation contours was previously distributed by Knight Piésold.
- 2.3 Additional information on the lateral extent of the Platte Valley alluvium is available in a U.S. Geological Survey (USGS) publication (Robsen, 1996).
- 2.4 As part of the SOW for this report, SRC provided two datasets in electronic spreadsheet formation, as follows:

Jennifer Walter, Syracuse Research Corporation

May 30, 2006

Screening Level Estimates of Hypothetical Metal Loading to the South Platte

River from Groundwater Sources Associated with the VBI70 OU3 and Globe Plant Sites

- The spreadsheet entitled "USGS_MeanStreamflow_1982-2005.xls" that contains daily mean discharge values in cubic feet per second (cfs) for the time period January 1982 through September 2005
- The spreadsheet entitled "2nd2004.xls" that contains analyzed cadmium and zinc concentrations sampled from various Globe Plant site wells over the time period September 1993 through June 2004

#### 3.0 Methodology

The objective of the following calculations is to provide screening level estimates for the mass loading and incremental concentrations in the South Platte River from the VBI70 OU3 site and the Globe Plant site. As detailed in the introduction, the estimates must be categorized as hypothetical because it uses an approach that replicates the methodology in the 1988 RI.

As part of the SOW, SRC provided an electronic spreadsheet entitled "LoadingCalcs_GlobeRI_v1.xls" that contains the following requested information:

- Proposed equations(s) for the computation(s) and definition of the variables in the equation(s)
- Description and summary table of data used to parameterize each equation variable
- Summary table of mass load and incremental concentrations for each site at two flow regimes (low and "typical"), with uncertainty to be gauged (by SRC) on the basis of both a "best estimate" and a conservative "upper bound" estimate for each flow regime.

Tables 1 and 2 of this report are slightly modified from the SRC spreadsheet in order to present the information exactly as requested in the SOW. Assumptions and professional judgments used together with the above computations/variables/parameterizations are provided in narrative format in Section 4, below.

The methodology is as follows:

- Flow in the groundwater plume is calculated using a conventional Darcian flux calculation over the width of the plume, the average saturated thickness of the aquifer, and the hydraulic gradient (see Equation 1, Table 1)
- The corresponding groundwater mass load is calculated from the groundwater flow multiplied by the assumed average plume concentration (see Equation 2, Table 1)

4

Jennifer Walter, Syracuse Research Corporation May 30, 2006 Screening Level Estimates of Hypothetical Metal Loading to the South Platte River from Groundwater Sources Associated with the VBI70 OU3 and Globe Plant Sites

- The impacted surface water concentration is calculated by assuming conservative mixing of groundwater with a specified flow and associated concentration in the river (see Equation 3, Table 2); note that the conservative mixing equation is simply the concentration in the two end-members weighted by their respective flows, normalized to the combined flow
- The incremental surface water concentration is the upstream-downstream difference in concentrations
- It is noted that the incremental concentration is exactly equivalent to the concentration derived from the groundwater mass load normalized to the combined flow (see Equation 4, Table 2); because the groundwater flow is negligible with respect to surface water flows, the incremental concentration for any surface water flow may be closely approximated by normalizing the groundwater mass load to the surface water flow.

The cadmium and zinc mass loads in the VBI70 OU3 plume can also be estimated using data in the RI report. Hypothetical surface water concentrations can be calculated. Thus, comparative loads and concentrations in surface water which can be attributed to each site can be calculated according to the assumption of conservative mixing of groundwater and surface water. Finally, upper bound estimates may be made using maximum observed plume concentrations.

#### 4.0 Calculations and Results

The following assumptions have been made using professional judgments according to time allotted for corresponding tasks in the SOW:

- The best estimates are those made within the 1988 RI for the Globe Plant; the best estimates for the VBI70 OU3 site will be made using RI methods and contemporaneous data, and upper bound estimates will keep all parameters the same except for average plume concentrations.
- Since there is no scope for determining probabilistic surface water flow regimes according to conventional hydrologic practice, the dataset of mean daily flows has been trimmed to the time period October 1, 1982 through September 30, 2005 and analyzed using non-parametric (percentile) formulas. A reasonable low flow is considered the 15th percentile measurement, which is 10 cfs; a typical flow value is considered the median (50th percentile) measurement, which is 62 cfs.
- Since there is no scope for plotting concentrations at wells, time series at wells, or contouring plumes, the definitions of plume widths, past and present, will be as depicted on the map-plates in the RI.



Jennifer Walter, Syracuse Research Corporation May 30, 2006 Screening Level Estimates of Hypothetical Metal Loading to the South Platte River from Groundwater Sources Associated with the VBI70 OU3 and Globe Plant Sites

- The exact method for integrating the Globe Plant site cadmium plume is not given in the RI; therefore, for the Globe Plant site plume, the average cadmium plume concentration estimated in the RI will be expressed as a ratio to the contemporaneous concentration at well GW-29, which had the peak concentration in 1988; the ratio is 0.679.
- Given the ratio of average plume concentration to maximum well concentration for the Globe Plant Site plume, the VBI70 OU3 plume average cadmium concentration in 1988 will be estimated using the same ratio and the 1988 concentration at well GW-15.
- The only parameter that will be varied to determine upper bound estimates will be the cadmium concentrations at well GW-29 (Globe) and GW-15 (VBI70 OU3); the historical maximum concentrations will be substituted to calculate upper bound, average plume concentrations using the same ratios described above.
- For zinc, there is no average concentration estimated in the 1988 RI; despite having a somewhat different shape compared to the cadmium plume, there is no scope for separately determining zinc plume parameters. Therefore, average and upper bound concentrations for zinc in the Globe Plant site and VBI70 OU3 plumes will be estimated exactly as for cadmium but will substitute contemporaneous (1988) and historical maximum zinc measurements at wells GW-29 and GW-15/GW-16 (whichever is greater is for zinc).
- For both plumes, the hydraulic conductivity that will be assumed is 28.35 feet per day (ft/day). This is based on the assumption in the 1988 RI of a value of 1×10⁻² cm/sec for the Platte Valley alluvium. The hydraulic gradient of 0.002 that will be assumed is also from the 1988 RI.
- **4.1** For the Globe Plant site plume, the following parameters are determined from the 1988 RI and the additional data described above:

•	Plume width	550 feet
•	Saturated thickness	25 feet
•	Hydraulic gradient	0.002
•	Average cadmium plume concentration	1.5 mg/l Cd
•	Contemporaneous cadmium concentration at well GW-29	2.21 mg/l Cd
•	Contemporaneous zinc concentration at well GW-29	1.37 mg/l Zn
•	Historical maximum cadmium concentration at well GW-29	22.8 mg/l Cd
•	Historical maximum zinc concentration at well GW-29	4.74 mg/l Zn

6

Jennifer Walter, Syracuse Research Corporation May 30, 2006 Screening Level Estimates of Hypothetical Metal Loading to the South Platte River from Groundwater Sources Associated with the VBI70 OU3 and Globe Plant Sites

From the above information, the upper bound cadmium concentration in the plume is determined to be 15.5 mg/l. The average and maximum zinc concentrations in the plume, respectively, are determined to be 0.93 and 3.21 mg/l.

**4.2** For the VB170 OU3 plume, the following parameters are determined from the 1988 RI and the additional data described above:

•	Plume width	700 feet
•	Saturated thickness .	25 feet
•	Hydraulic gradient	0.002
•	Contemporaneous cadmium concentration at well GW-15	0.073 mg/l Cd
•	Contemporaneous zinc concentration at well GW-15/16	0.213 mg/l Zn
•	Historical maximum cadmium concentration at well GW-15	0.119 mg/l Cd
•	Historical maximum zinc concentration at well GW-15/16	0.241 mg/l Zn

From the above information, the average cadmium concentration in the plume is determined to be 0.05 mg/l, and the upper bound cadmium concentration in the plume is determined to be 0.08 mg/l. The average and maximum zinc concentrations in the plume, respectively, are determined to be 0.144 and 0.164 mg/l.

**4.3** Table 3 shows the calculated (hypothetical) mass loading and incremental concentrations in the South Platte River that may be associated with the Globe Plant site and the VBI70 OU3 plumes. The calculations assume concentrations equal to the detection limit (0.001 mg/L) for both cadmium and zinc in the South Platte River upstream of the hypothetical point of mixing with groundwater.

#### CC:lkr

Attachments: Tables 1-3

### References

ASARCO Inc. and State of Colorado (ASARCO, 1988), "Draft for Public Comment, Remedial Investigation Report, ASARCO Inc. and State of Colorado Joint Study, Globe Plant Site," Denver Colorado, September 20.

Robsen, S.G., 1996, "Geohydrology of the Shallow Aquifers in the Denver Metropolitan Area, Colorado," U.S. Geological Survey Hydrologic Investigations Atlas HA-736.



#### Table 1: EQUATIONS FOR CALCULATING GROUNDWATER (DARCIAN) FLOW AND MASS LOAD

**EQUATION 1: DARCIAN FLOW (Q)** 

Darcian Flow, Q (ft 3/sec) = K * i * A * CFdf

where:

K = Hydraulic Conductivity (ft/day)

i = Hydraulic Gradient (unitless)

A = Saturated Area (ft²) (cross sectional area perpendicular to flow)

CF_{df} = Conversion Factor for Darcian flOW calc (day/sec)

**EQUATION 2: MASS LOAD** 

Mass Load (mg/s) =  $C_{plume}$  (mg/L) * Q (ft³/sec) * CF (L/ft³)

where:

C_{plume} = Concentration of chemical in the plume (mg/L)

Q = Darcian flow (ft³/sec), calculated as above:

CF = Conversion factor (L/ft³)

INPUTS AND EXAMPLE CALCULATION:

PARAMETER	UNITS	VALUE	COMMENTS
C _{plume}	(mg/L)	15.5	average concentration in Globe plume (TRC 1988)
Q	(ft ³ /sec)	0.009	calculated value (see "Darcian Flow Calcs")
CF	(L/ft³)	28.31685	
MASS LOAD	(mg/s)	3.960	calculated value

**EXAMPLE DARCIAN FLOW CALCULATION:** 

PARAMETER	UNITS	VALUE	COMMENTS
К	(fl/day)	2.835E+01	TRC (1988) range is 7.8E-06 to 1E-03 cm/s, assumed 1E-02 (or 28.35 ft.day)
i	(unitless)	0.002	TRC (1988) alluvial groundwater in floodplain
А	(ft²)	13750	TRC (1988) saturated thickness (25 ft) x plume width near GW-59 (550 ft)
CF _{df}	(day/sec)	0.000011574	
Q	(ft³/sec)	0.009	•

## Knight Piésold

#### Table 2: CONCENTRATION INCREMENT IN SOUTH PLATTE RIVER

#### **EQUATION 3:**

$$C_{SouthPlatte} (mg/L) = C_{gw} * Q_{gw} + C_{SP-upgrad} * Q_{SP}$$

$$Q_{gw} + Q_{SP}$$

where:

C_{gw} = Concentration of chemical in groundwater (mg/L)

Q_{gw} = Flux of groundwater (cubic feet per second)

C_{SP-upgrad} = Concentration of chemical in the South Platte River upgradient of the Site (mg/L)

Q_{SP} = Flux of the South Platte River (cubic feet per second)

#### **EQUATION 4: SITE ATTRIBUTABLE CONCENTRATION INCREMENT IN THE SOUTH PLATTE:**

$$\Delta C_{\it site} \; (mg/l) = C_{\it SouthPlatte} \; - C_{\it SP-upgrad} \\ or \\ \Delta C_{\it site} \; (mg/l) = Mass Load / (Q_{\it SP} + Q_{\it gw}) / CF$$

#### **EXAMPLE INPUTS AND CALCULATION:**

PARAMETER	UNITS	VALUE	COMMENTS
C _{gw}	(mg/L)	15.5	Mean plume concentration (TRC, 1988)
Qgw	(cfs)	0.010	TRC (1988) (rounded up from 0.009)
C _{SP}	(mg/L)	0.001	TRC (1988) mean concentration upstream of Globe Plant detention pond outfall (=detection limit)
Q _{SP}	(cfs)	10	Mean flow during 1986 (TRC, 1988): 300 cfs Median flow rate 1982-2005: 62 cfs 15 th percentile low flow rate, 1982-2005: 10 cfs
C _{SouthPlatte}	(mg/L)	0.016484	

#### **EXAMPLE RESULTS:**

Concentration	Units	300 cfs	62 cfs	10 cfs
C _{SouthPlatte} (mg/L)	(mg/L)	0.001517	0.003499	0.016484
ΔC _{site} (ɪng/L)	(mg/L)	0.000517	0.002499	0.015484
ΔC _{sile} (ug/L)	(ug/L)	0.517	2.50	15.5
ΔSite Mass Load (mg/sec)	(mg/sec)	4.389	4.389	. 4.389



## Table 3: SUMMARY OF ESTIMATED MASS LOADING AND INCREMENTAL CONCENTRATIONS IN THE SOUTH PLATTE RIVER FROM VBI70 OU3 (ARGO SMELTER) AND GLOBE PLANT SITES

SITE	PARAMETER	MASS LOADING		INCREMENTAL CONCENTRATION					
		RI Estimate (mg/sec)	Upper Bound (mg/sec)	Low Flow	(10 cfs)	Typical Flow (62 cfs)			
				RI Estimate (ug/L)	Upper Bound (ug/L)	RI Estimate (ug/L)	Upper Bound (ug/L)		
VBI70 OU3	Cadmium	0.016	0.025	0.05	0.09	0.01	0.01		
	Zinc	0.045	0.051	0.16	0.18	0.03	0.03		
Globe Plant	Cadmium	0.425	4.389	1.50	15.5	0.24	2.50		
	Zinc	0.263	0.909	0.93	3.21	0.15	0.52		

ADDITIONAL SCREENING LEVEL ESTIMATES (INCLUDES PRESENT CONDITIONS: 2000 – 2004) (SRC, 2006)

This file summarizes information provided by Knight Piesold in their 5/30/06 Memorandum with the addition of 2 analysis based on current (2000-present) groundwater data from the Globe floodplain plume and the floodplain alluvium east of the VBI70 OU3 site.

These 2 additional scenarios were calculated using the same methods specified in the 5/30/06 memorandum; the only difference being the input concentrations.

Absolute Estimates This tab contains a modified version of Table 3 of the 5/30/06 memorandum

to include 2 additional scenarios (current "best case" and "upper bound").

Relative Estimates This tab contains a table summarizing the contribution of the VBI70 OU3

site to mass loads and concentrations in the South Platte River, relative

to the estimated loads and concentrations coming from the Globe Plant Site.

Current Data 2000-present This tab contains the data used to calculate the mean and max groundwater

concentrations in the Globe floodplain plume and the floodplain alluvium east of the VBI70 OU3 site for the 2 "current conditions" scenarios.

## SUMMARY OF ESTIMATED MASS LOADING AND INCREMENTAL CONCENTRATIONS IN THE SOUTH PLATTE RIVER FROM VBI70 OU3 (ARGO SMELTER) AND GLOBE PLANT SITES

		MASS LOADING (mg/sec)			INCREMENTAL CONCENTRATION (ug/L)								
			Histo	orical		Conditions			w (10 cfs)				low (62 cfs)
SITE	CHEMICAL	AICAL		(2000-present)		Historical		Current Conditions (2000-present)		Historical		Current Conditions (2000-present)	
		RI Estimate (1988)	Upper Bound (1988-present)	Best Estimate (mean conc.)	Upper Bound (max conc.)	RI Estimate (1988)	Upper Bound (1988-present)	Best Estimate (mean conc.)	Upper Bound (max conc.)	RI Estimate (1988)	Upper Bound (1988-present)	Best Estimate (mean conc.)	Upper Bound (max conc.)
	Cadmium	0,016	0.025	0.013	0.036	0.05	0.09	0.04	0.11	0.01	0.01	0.006	0.018
VB170 OU3	Zinc	0.045	0.051	0.033	0.130	0.16	0.18	0.10	0.40	0.03	0.03	0.016	0.064
Globe Plant	Cadmium	0,425	4.389	0.110	1.472	1.50	15.5	1.29	21	0.24	2.50	0.21	3.39
	Zinc	0.263	0.909	0.198	0.963	0.93	3.21	1.90	9.74	0.15	0.52	0.31	1.57

## RELATIVE ESTIMATES OF MASS LOADS TO AND INCREMENTAL CONCENTRATIONS IN THE SOUTH PLATTE RIVER

### A. CADMIUM

Scenario			Relative Mass Load (%)	Relative Incremental Concentration (%) (VBI70 OU3/Globe)		
Case ID	VBI70 OU3 Globe Input Concentration Input Concentration		(VBI70 OU3/Globe)	Low Flow (10 cfs)	Typical Flow (62 cfs)	
А	Current-Best Estimate	Current-Best Estimate	12%	3%	3%	
В	Current-Upper Bound	Current-Upper Bound	2.4%	1%	1%	
С	Current-Upper Bound	Current-Best Estimate	32%	8%	- 8%	
D	RI Estimate (1988)	RI Estimate (1988)	4%	4%	4%	
E	Historical - Upper Bound	Historical - Upper Bound	1%	1%	1%	
F	Historical - Upper Bound	Historical - RI Estimate (1988)	6%	6%	6%	

### B. ZINC

Scenario			Relative Mass Load (%) (VBI70 OU3/Globe)	Relative Incremental Concentration (%) (VBI70 OU3/Globe)		
Case ID	VBI70 OU3 Globe Input Concentration Input Concentration		(VBI70 OO3/Globe)	Low Flow (10 cfs)	Typical Flow (62 cfs)	
Α	Current-Best Estimate	Current-Best Estimate	16%	5%	5%	
В	Current-Upper Bound	Current-Upper Bound	14%	4%	4%	
С	Current-Upper Bound	Current-Best Estimate	66%	21%	21%	
D	RI Estimate (1988)	RI Estimate (1988)	17%	17%	17%	
E	Historical - Upper Bound	Historical - Upper Bound	6%	6%	6%	
F	Historical - Upper Bound	Historical - RI Estimate (1988)	19%	19%	19%	

## APPENDIX J – WELL DATA

J1 - Colorado Division of Water Resources Database - Data for Zip Code 80216
 J2 - Colorado Division of Water Resources Database - Data Field Definitions
 J3 - Colorado Department of Health - 1992 Well Survey Results

## APPENDIX J1

Colorado Division of Water Resources Database Data for Zip Code 80216 See qry_Zip_80216.xls file on Attached CD

## **APPENDIX J2**

Colorado Division of Water Resources Database Data Field Definitions

### **WELL SYSTEM DATA FIELDS**

Field Header	Definition	Definition				
receipt	The receipt number is the number assigned when the fee is paid. The entire receipt number is eight numeric characters followed by one alphabetic character (if required).					
div (Division)	Numeric identifier for Water Division (1-8) in which the well is located.					
cty (County)	Numeric identifier for Colorado counties (1-63) in which the well is located:					
COLORADO COUNTIES NUMERICAL C	ODE:					
		KIT CARSON3				
ADAMS		LAKE 3				
ALAMOSA		LA PLATA				
ARAPAHOE		LARIMER				
ARCHULETA		LAS ANIMAS				
BACA		=				
BENT		LINCOLN3				
BOULDER	07	LOGAN3				
BROOMFIELD		MESA				
CHAFFEE	08	MINERAL4				
CHEYENNE	09	MOFFAT4				
CLEAR CREEK	10	MONTEZUMA4				
CONEJOS	11	MONTROSE4				
COSTILLA	12	MORGAN4				
CROWLEY	13	OTERO4				
CUSTER	14	OURAY4				
DELTA	15	PARK4				
DENVER	16	PHILLIPS4				
DOLORES	17	PITKIN4				
DOUGLAS	18	PROWERS5				
EAGLE	19	PUEBLO5				
ELBERT	20	RIO BLANCO5				
EL PASO	21	RIO GRANDE5				
FREMONT	22	ROUTT5				
GARFIELD	23	SAGUACHE5				
GILPIN	24	SAN JUAN				
GRAND		SAN MIGUEL5				
GUNNISON	26	SEDGWICK5				
HINSDALE	·····	SUMMIT5				
HUERFANO	28	TELLER6				
JACKSON	29	WASHINGTON6				
JEFFERSON		WELD6				
KIOWA	31	YUMA6				
ermitno (Permit Number)	The well permit number (numeric).					
ermitsuf (Permit Suffix)	A character field for the well suffix code that follows the permit number.					
ermitrpl	Identifier indicating a well's replacement.					
ctdate	Date well permit application received.					

#### actcode

The activity code states status of permit application file:

- Code Desc
- AP = New application received.
- AD = Application denied. Denial number entered in permit number field and date entered in permit issued date field.
- AW = Application for a permit is withdrawn. Code and date also entered to status code and date fields.
- Verbal approval granted to well construction contractor to construct a well without a permit in place (emergency only).
- CA = Canceled well permit. Code and date also entered to status code and date fields.
- CD = Change description of acres irrigated (designated basins). Entered to status and date fields of existing record upon receipt of application.
- CO = Application to commingle wells (designated basins). Entered to status and date fields of existing record upon receipt of application.
- CP = Amended household use permit to allow watering of user's noncommercial domestic animals.
- EX = Well permit expiration date extended.
- MH = Monitoring hole notice of construction. MH file number and date entered in permit number and permit date fields.
- NP = Well permit issued. Permit number and issue date entered in permit number and permit date fields.
- TH = Test hole notice. Replaced by MH notice in 1988.
- TW = Test well. Replaced by MH notice in 1988.

wd

A character field which indicates the Water District in which the well is located (1-80). Defined as a basin on minor drainage within the Water Division.

basin

When applicable, a character field indicating the Designated Groundwater Basin Number (1-8):

#### **DESIGNATED BASINS**

NORTHERN HIGH PLAINS	01
KIOWA-BIJOU	02
SOUTHERN HIGH PLAINS	03
UPPER BLACK SQUIRREL CREEK	04
LOST CREEK	05
CAMP CREEK	06
UPPER BIG SANDY	07
UPPER CROW CREEK	08

md

A character field indicating the Designated Groundwater Basin Management District Number (1-13):

#### MANAGEMENT DISTRICTS (BASINS)

PLAINS	01
SAND HILLS .	02
ARIKAREE	03
FRENCHMAN	04
CENTRAL YUMA	05
W – Y	06
NORTH KIOWA-BIJOU	07
EASTERN CHEYENNE	80
LOST CREEK	09
SOUTHERH HIGH PLAINS	10
MARKS BUTTE	11
UPPER BLACK SQUIRREL	12
UPPER BIG SANDY	13

full name Applicant name (character field).

address1 A character field for the street portion of the primary mailing address of the

permit holder.

address2 A character field for the street portion of a secondary mailing address if

submitted.

city A character field for the City of the primary mailing address.

state A character field for the State of the primary mailing address

**zip1** A character field for the primary zip code.

zip2 A character field for a secondary zip code, if provided.

**phone_number** A character field for Applicant's phone number.

pm Principal Meridian in which well is located (S = Sixth, N = New Mexico, U =

Ute, C = Costilla, B = Baca).

rng (Range) Numeric field for the Range in which well is located.

Rnga Identifies half ranges ("H")

Rdir Identifies direction (E, W)

ts (Township) Numeric field for Township in which well is located.

Tsa Identifies half ranges ("H")

**Tdir** Identifies direction (N, S)

sec (Section) Numeric field for Section in which well is located (1-36).

Seca Reserved for locations containing a U in the section number.

QTR160 Character field for quarter section (160 acre quarter) in which well is located.

QTR40 Character field for the quarter-quarter section (40 acre quarter of 160 acre

quarter) in which well is located.

QTR10 Character field for the quarter-quarter section (10 acre quarter of 40 acre

quarter) in which well is located.

**coordsns** Distance (feet) from the north or south section line to the well location.

coordsns_dir Identifies which section line (N,S) from which distance is measured.

coordsew Distance (feet) from the east or west section line to the well location.

coordsew_dir Identifies which section line (E,W) from which distance is measured.

AQUIFER1 Aquifer in which well is located.

AQUIFER CODES:

GW ALL UNNAMED AQUIFERS

KA ARAPAHOE

UKA **UPPER ARAPAHOE** LKA LOWER ARAPAHOE JMB **BRUSHY BASIN** KDB **BURRO CANYON** CHEYENNE KCH CON CONFINED SAN LUIS VALLEY KD DAKOTA TDW DAWSON UTDW **UPPER DAWSON** LTDW LOWER DAWSON TKD DENVER **ENTRADA** TG GREEN RIVER РΗ **HERMOSA** ΚI ILES LARAMIE KL KLF LARAMIE FOX HILLS ML LEADVILLE LIMESTONE KM **MANCOS** MESA VERDE GROUP KMV JM MORRISON то **OGALLALA** ΚP PIERRE SHALE KPU **PURGATOIRE** SALT WASH JMS UNCONFINED UNC SAN LUIS VALLEY TW WASATCH TW WHITE RIVER WILLIAMS FORK ΚW

**AQUIFER2** 

name of second aquifer if well is known to be multiply completed.

subdiv_name

Subdivision name.

lot

Lot number in subdivision.

block

Block number in subdivision.

filing

Filing number.

engineer

Engineer who approved permit.

well_name

Owners's well designation number or name.

Use1 & Use2

#### Codes for well Uses:

Data Code	Use Description
1	Crop Irrigation
2	Municipal
3	COMMERCIAL
4	INDUSTRIAL
5	RECREATION
6	FISHERY
7	FIRE
8	DOMESTIC
9	LIVESTOCK
G	GEOTHERMAL
Н	HOUSEHOLD USE ONLY
κ .	SNOWMAKING
0	OTHER
0	MONITORING HOLE/WELL
R	RECHARGE
E	EXCHANGE AND AUGMENTATION
Q i	<ul><li>=O (Other, or Monitoring Hole/Well)</li></ul>

Use3

#### CODE TYPE

A AUGMENTATION. All wells in augmentation plans are coded with an "A" in the last position. First position is the actual use of the well.

M MONITORING WELL (PERMITTED). The first position is "O" followed by "M" in the last position.

Z HOUSEHOLD USE WELLS ISSUED PRIOR TO HB1111 THAT HAVE BEEN AMENDED PURSUANT TO (3)(b)(II)(b) BY \$25.00 APPLICATION. First position code is "H" followed by "Z" in the last position.

L PERMIT ISSUED UNDER PRESUMPTION (3)(b)(II)(A) FOR DOMESTIC/LIVESTOCK USES AS THE ONLY WELL ON 35 ACRES. First position is either "8" domestic or "9" livestock", or both 1st and 2nd followed by "L" in the last position.

PERMITS ISSUED UNDER (3)(b)(I) WHERE WATER IS AVAILABLE ARE CODED FIRST POSITIONS AS NECESSARY WITH THE ACTUAL USE. HB1111 does not apply to these wells.

G GRAVEL PIT WELL PERMIT. This application (PERMIT) is coded as "O" in the first position with "G" in the last position.

CLOSED LOOP GEOTHERMAL WELL. First position is codes as "G" for geothermal. Last position is "C".

P GEOTHERMAL PRODUCTION WELL. First position is coded "G" for geothermal. Last position is "P".

S OTHER TYPES OF HOLES CONSTRUCTED-ESPECIALLY FOR CATHODIC PROTECTION.
IDENTIFIES THAT THE PERMIT WAS ISSUED PURSUANT TO SENATE BILL 5 (137 (4). First positions are for the actual use(s) of the well.

driller_lic

pump_lic

pidate

statute

statcode

Water well contractor's license number.

Pump installation contractor's license number.

Date the pump installation report is received by DWR.

Statute under which the permit was issued using the last four numbers of chapter and paragraph, i.e. 37-92-602(3)..602(3). (see www.intellinetusa.com/statmgr.htm)

## Interim status of the application or permit:

Code Desc

AB = Abandoned well.

AR = Date application for permit resubmitted to DWR.

AU = Date application returned to applicant for correction or additional information.

EP = Expired well permit.

NS = Exempt wells where no statement of use is required (no longer used).

PI = Pump Installation Report received (no longer used).
PU = Pump Installation Report returned to responsible pa

PU = Pump Installation Report returned to responsible party for correction.

RC = Record change. A portion of the file was modified.

SA = Statement of beneficial use accepted (no longer used in statute code).

SP = Statement of beneficial use received (no longer used in statute code).

SR = Statement of beneficial use resubmitted to DWR.

SU = Statement of beneficial use returned to owner for correction.

WA = Well construction report received (no longer used).

WU = Well construction report returned to responsible party for correction.

WR = Well construction report resubmitted to DWR.

ZZ = Transaction code indicates a portion of the file was updated with general review and update of records.

statdate

Date of the above status code action.

npdate

Date the permit, denial (AD) or monitoring hole was issued.

wadate

Date the Well Construction and Test Report was received in DWR.

trancode

Activity or status code. Last action updated.

trandate

Computer machine date of last update to the record.

sadate

Date of first beneficial use.

sbudate

Date statement of use received.

**exdate** Expiration date of well permit.

**abrdate** Date abandonment report received.

abcodate Date well plugged and abandoned.

abreq Flag if the well requires plugging and sealing upon construction of new well

acreft Annual appropriation in acre feet.

**tperf** Depth to top of first perforated casing.

**bperf** Depth to base of last perforated casing.

case_no Water court case number.

yield Yield in gallons per minute.

depth Total depth of well.

level Depth to static water level.

**elev** Ground surface elevation.

area_irr Acres irrigated.

Irr_meas Acre irrigated units

comment Comment field

meter Totalizing flow meter regd., installed.

wellxno Cross reference to another well or record.

Wellxsuf Cross reference character field for well suffix code (follows the permit

number).

**Wellxrpl** Cross reference identifier indicates well replacement.

Notice of Well Construction Report received (Statewide nontributary rules).

Notice of Commencement of Beneficial Use received (Statewide

nontributary rules).

wcdate Date well construction completed.

pcdate Date pump installation completed

log Flag to indicate if a geophysical is required and received.

**qual** Water quality information available, y or n.

**user1** Initials of last staff member to update file.

**pyield** Proposed yield of well in gpm.

**pdepth** Proposed depth of well.

pacreft Proposed annual appropriation.

well_type Calculated value to determine if record is exempt, non exempt or

georthermal.

valid_permit Calculated value to determine if a well permit is valid. (must be verified)

parcel_no Parcel identifier

parcel_size Parcel size in acres. Number of acres on well site.

noticedate Notice sent to owner indicating permit about to expire. (Not yet used)

utm_x A numeric field for the UTM-X coordinate. All UTM values are Zone 13

based on NAD83.

utm_y A numeric field for the UTM-X coordinate. All UTM values are Zone 13

based on NAD83.

ldentifies source of UTM coordinates. If the location was obtained from the

PLSS location, it is indicated by the description "SPOTTED".

d:documents/word.Well_data fields.doc (6/25/01, ebt) Modified from wellsys.doc 1/27/97 rab. c:officedoc.wellsys.doc

## APPENDIX J3

Colorado Department of Health 1992 Well Survey Results

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Roy C & Myrno R thomas

Street Address: 46 44 Leaf Court

City, State, Zip Code: Denver Co 801/6

Telephone Number

(H): 196-4611 (W):

Years lived on property: nd Rostroe Stamp Hedessary Well present on property: 12 ( ) 136 24 3661217

Years well present on property: Don't Knobo

State Engineers well permit: yes no

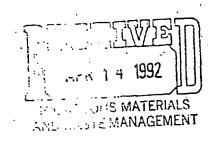
Well depth: Don't Know Well yield:

Well construction: Don't Know

Well usage:

drinking source

bathing


garden irrigation other (specify)

Jull is covered

Alternative water sources:

FILE: ARGO PA/

Permit No: Dun'Y Know



ARGO DOMESTIC WELL SURVEY-PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Sarah Holf

Street Address: 4695 No. Lincoln St

city, State, Zip code: Denver Colo, 80216

Telephone Number

(H) = 296 - 4271 (W) =

rior to that lived at the Laf Et

Years lived on property: -fronci910-1949

Well present on property: Id Signers NEE 244 Haller Chic

Years well present on property: never

State Engineers well permit: yes no

Permit No:

File Beriel

Well depth:

Weil yield:

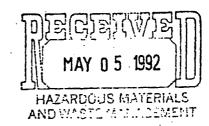
Well construction:

Well usage:

drinking source

bathing

garden irrigation


other (specify)

Alternative water sources:

always used City Hater except the artesian well There was a artesian well located at 4617 Leaf Ct I was always told it was 700 ft. everyon in Blobeville would bring their contains and get water because it was

ILE: ARGO PA/

good of cold The lady who lived there is still living she neight have pictures of it she lives at \$ 4790 North Lincoln It Pauline Holf when 1-70 was built it was destroyed This has never been discussed in any meetings I have thended feel free to



ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Mary D. Williams

street Address: 5394/ no. Brishleine (5340 no Braders city, state, zip code: Denne la larado 80216-1925

********

Telephone Number

(H): C303) 296-2947 (W):

Years lived on property: Sense 1958

Well present on property: yes one

Years well present on property: lo nol kinaco) -

State Engineers well permit: yes no

Well depth: No Nat Know Well yield:

Well construction:

Well usage: MD drinking source MD bathing 120

> garden irrigation 700 other (specify)

Permit No:

Alternative water sources:

E: ARGO PA/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Bornarato Pump and Equipment

Street Address: 5055 N. Washington

city, State, Zip Code: D. CO 802(L

Telephone Number

(H): 295-0647

2 sup wells and 20' casing scaled for Years lived on property:

Well present on property: yes · no

Years well present on property:

State Engineers well permit: yes no

Permit No:

Well depth:

Well yield:

Well construction:

Well usage:

drinking source

- bathing

garden irrigation

other (specify)

Alternative water sources:

on coty water.

FILE: ARGO PA/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: GENIE BEEFINL

Street Address: 707 E 50

City, State, Zip Code: AEU, Co, 8026

***************

Telephone Number (H): (W): 296 9292

Years lived on property: Dog to the property

Well present on property: Yes X 100 700 no

Years well present on property: 30

State Engineers well permit: yes no  $\chi$ Permit No:

Well yield: Well depth:

Well construction:

Well usage: /VonE drinking source bathing SEALED

garden irrigation other (specify)

Alternative water sources: (0/74/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Julia OLETSKI

Street Address: 425 E 49th AVR

City, State, Zip Code: Densey (a for )6

Telephone Number

(H): 296-4766 (W):

Years lived on property: 1937 (55) property.

*******

Well present on property: (yes )

Years well present on property: 1937

State Engineers well permit: yes (no

Well depth: 25-30

Well usage:

Well yield:

Well construction: Cased

drinking source

bathing

Permit No:

garden irrigation

other (specify) Grass-Flowers-IREE

MWWH TIME

DONOTUSE FOR GARDEN

Alternative water sources:

well on City water 1940. AZ

E: ARGO PA/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: John OLETSKI

Street Address: 4935 SHERMAN

City, State, Zip Code: Dane, co 20215

Telephone Number

(H): 296 - 4592 (W):

person (1)

Years lived on property: 50

Well present on property: (yes)

Years well present on property:

State Engineers well permit: yes (no)

Well yield:

Well depth: 27' Well construction:

Well usage:

drinking source

bathing

Permit No:

garden irrigation

other (specify)

CHEN AND WITE

Alternative water sources:

west on city in 1940-1942

E: ARGO PA/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Wayne L Story

Street Address: 4700 Sherman 5

city, State, Zip code: Denver Colo 80266

Telephone Number

(H): 296 4468 (W): 388-4893

Years lived on property:

Well present on property: ( yes)

Years well present on property: \$048

State Engineers well permit: yes no

Permit No:

Well depth:

Well yield:

Well construction:

Well usage: bathing

> garden irrigation other (specify)

Alternative water sources:

City water

Never drak from well - lawn use only

Scars In stalled well

TLE: ARGO PA

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Annutte Espinosa

Street Address: 541 E56th

city, State, Zip Code: Den Co 50216

Telephone Number (H): 296-7778

Years lived on property: ( VV in JUNA

Well present on property: yes

Years well present on property:

State Engineers well permit: yes no

Permit No:

Well depth:

Well yield:

Well construction:

Well usage:

garden irrigation

other (specify)

water Dog: wash Cloth

Alternative water sources:

TILE: ARGO PA/

ARGO DOMESTIC WELL SURVEY
PERFORMED BY AUSTIN N. BUCKINGHAM
PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Weborn (over)

street Address: 5750 N. Washington

City, State, Zip Code:

Telephone Number

(H):

(W):

Years lived on property:

Well present on property: (yes

(yes)

no

Years well present on property:

State Engineers well permit: yes no

Permit No:

Well depth:

Well yield:

Well construction:

Well usage:

drinking source

bathing

garden irrigation

other (specify)

Alternative water sources:

(Drinking - Eity Water)

"ULE: ARGO PA/

ARGO DOMESTIC WELL SURVEY
PERFORMED BY AUSTIN N. BUCKINGHAM
PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: MARTIN NOWKKI

Street Address: 539 & 56540e

city, State, Zip Code: DENUER

Telephone Number

(H):) 295-5314

Years lived on property: 14

********

Well present on property: (yes)

Years well present on property: DNT HW 800-

State Engineers well permit: yes no

•

Well depth:

Well construction:

Well usage:

drinking source

bathing

Permit No:

garden irrigation

Well yield:

other (specify)

Alternative water sources:

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Balana Unbidaco

Street Address: 5589 N Pead H.

city, State, Zip Code: Densor 80214

Telephone Number

(A): 1/2 phane

Years lived on property: Siver 1999

Well present on property: ( yes

no

Years well present on property: Since 1939

State Engineers well permit: yes no  $\lim_{n \to \infty} \frac{1}{n} \lim_{n \to \infty} \frac{1}{n} = 1$  Permit No:

Well depth: Dit Kille Well yield: Jat Know

Well construction:

Well usage:

drinking source

bathing

|COVI

other (specify)

Alternative water sources: On city worker during cooking. bathing

FILE: ARGO PA/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Frantis Mauro

Street Address: 5607 N Washington

City, State, Zip Code:

Telephone Number (H):

(W):

Years lived on property:

Well present on property: ( yes

no

alvening tested

Years well present on property:

State Engineers well permit: yes no

. Permit No:

Well depth:

Well yield:

Well construction:

Well usage:

drinking source

bathing

garden irrigation

other (specify)

Alternative water sources:

ARGO DOMESTIC WELL SURVEY
PERFORMED BY AUSTIN N. BUCKINGHAM
PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Ed Vanderpool

Street Address: 5796 Emecian Jt

City, State, Zip Code: Denver, co 80216

Telephone Number (H)

(H): (W): 296-440y

Years lived on property: YELD THE TOWN ON Well present on property: (Yes) 133 211 33624

*********************

Years well present on property: ?

State Engineers well permit: yes no

Well depth: 7 Well yield:

Well construction:

Well usage: We have newsdrinking source

wid His well

garden irrigation

Permit No:

WWWH OC

bathing

other (specify)

Alternative water sources:

North Wastington Street Water

LE: ARGO PA/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

- Dane Waselkow Name: Public Semice Co

Street Address: 6198 N. Fraklin

City, State, Zip Code:

Telephone Number 67: 286 -6210

3 deep + (capped deep will (1960's 4 shallow well Years lived on property:

yes I dunking well not used (Miller we Well present on property:

Years well present on property:

State Engineers well permit: (yes) no Permit No:

Well depth: Well yield:

Well construction:

Well usage: drinking source bathing

the for cooling garden irrigation other (specify)

1950's + 1960's

No wells now used

Alternative water sources:

contact Mike Everad water myr, for PSC of Col. 294 - 8005

"ILE: ARGO PA/.

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Mr. Satriano

Street Address: 6280 NF Tankelin

city, state, zip code: Denver, CO 80216

Telephone Number

Years lived on property: 60 years

Well present on property: ( yes

Years well present on property:

State Engineers well permit: (yes) no Permit No:

Well depth: Well yield:

Well construction:

Well usage: drinking source bathing

> garden irrigation other (specify)

Alternative water sources:

on city water

ILE: ARGO PA/

ARGO DOMESTIC WELL SURVEY
PERFORMED BY AUSTIN N. BUCKINGHAM
PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Morrow Crane Co -

Street Address: 6350 N. Franklin

City, State, Zip Code:

80216

Telephone Number

(H): 287-2866

& years

(W):

Years lived on property:

no

Well present on property: / yes

Years well present on property:

State Engineers well permit: yes no

Well depth:

Well yield:

Well construction:

Well usage:

drinking source

bathing

Permit No:

not in use

Covered our

garden irrigation

other (specify)

Alternative water sources:

on city water

TILE: ARGO PA/

ARGO DOMESTIC WELL SURVEY
PERFORMED BY AUSTIN N. BUCKINGHAM
PRELIMINARY ASSESSMENT PROGRAM/CDH

Name:

Street Address: 5800 Franklin meluding: 5802 Franklin

City, State, Zip Code: Demun CO

Telephone Number (H): 1707-1709 E

(W): 1721-1723

Years lived on property: 50 years old property 1761

Well present on property: ves no roughly 1771

Years well present on property:

State Engineers well permit: yes (no Permit No:

Wall damble wall wall

Well depth: Well yield:

Well construction:

Well usage: drinking source bathing

(not used)

garden irrigation other (specify)

Alternative water sources:

ILE: ARGO PA/

1805

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Name: Champion Box Bect / Litvak

and the control was not been as the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the

Street Address: 5900 York

city, State, Zip Code: Denver, CO 80216

Telephone Number

(W):288-0766

Years lived on property: 50 xrs. 3 shallowwells
Well present on property: yes a deep wells (one N, ones)

Years well present on property:

shallowells State Engineers well permit: (yes) no

Permit No:

Well depth:

Well yield:

Well construction:

Well usage:

drinking source

bathing

Occoling garden irrigation

Shall compressors, wash trucks, irrigation (not currently)

Alternative water sources:

TLE: ARGO PA/

ARGO DOMESTIC WELL SURVEY PERFORMED BY AUSTIN N. BUCKINGHAM PRELIMINARY ASSESSMENT PROGRAM/CDH

Connic Youngwirth

Street Address: 2000

City, State, Zip Code: Deman CO

Telephone Number

(H): 288-7316 (W):

Years lived on property:

Well present on property:

Years well present on property:

State Engineers well permit: yes

Well depth:

Well yield:

Well construction:

Well usage: .

drinking sourde

gárden irrigation

bathing

Permit No:

other (specify)

Alternative water sources:

Vone.

well water used by 2020 E. 645

and 1980 E. 64th

ILE: ARGO PA/

ARGO DOMESTIC WELL SURVEY
PERFORMED BY AUSTIN N. BUCKINGHAM
PRELIMINARY ASSESSMENT PROGRAM/CDH

Name:

Street Address:

5910 Humbo (Dt

city, State, Zip Code:

Telephone Number

(H):

(W)

Years lived on property:

Well present on property: / y

yes ) no

Years well present on property:"

State Engineers well permit: yes no

Well depth:

Well yield:

Well construction:

Well usage:

drinking source

bathing

Permit No:

garden irrigation

other (specify)

Alternative water sources: